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ABSTRACT 

Standard calibration procedures for multibeam sonars currently only address the fidelity 

of the bathymetric data. Equivalent effort is needed to ensure that the acquired seabed 

backscatter strength measurements are referenced to a similarly precise level. This thesis 

presents an operational method for acquiring reference seabed backscatter data utilizing 

multiple pre-calibrated split beam echo sounders covering a wide range (45-450 kHz) of 

frequencies. This is needed to cover the full range of frequencies utilized by multi-sector 

multibeam systems operating in continental shelf depths. 

The method considers both the frequency and the angle of incidence dependence of the 

backscatter strength of a homogenous seafloor region. By using a mechanically rotated 

plate, the split beam transducers, once calibrated, are able to collect the absolute angular 

response curve of the seafloor for any frequency within the bandwidth of interest. This 

thesis addresses the design, implementation and required processing to deliver the curves 

of selected areas. Although not part of this research, the next step would be to calibrate 

the desired multibeam echosounder for backscatter by comparing the results obtained by 

the systems over the same seafloor area. 

The results obtained, reveal one of the most complete pictures of the continuous variation 

of the seabed backscatter angular response from 45 to 400 kHz. Significantly, this extends 

well above the 100 kHz level that normally defines the upper end of surface scattering 

model fidelity. As the chosen sites cover the main range of expected marine sediment 
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types (gravel to mud), trends in both frequency and grazing angle are apparent that might 

impact the choice of frequency used in multi-spectral backscatter imaging. 

  



1 

 

 

1. INTRODUCTION 

Knowing the physical characteristics of the material on the seafloor can be a requirement 

for different reasons, such as identifying areas with soft sediments for safe anchorage, monitoring 

sediment type for dredge operations, establishing geotechnical properties for structure 

emplacement, mapping biological habitats and geological sediment distribution, among others.  

The classical and unambiguous way to identify the seafloor is to obtain a physical sample 

of the material (usually termed “ground truth”). This, however, demands significant ship time to 

deploy and to retrieve the sampling equipment. An unavoidable byproduct of the discrete nature 

of physical sampling is that the data will consist only of sparsely sampled points distributed across 

the whole area. Therefore, to get around this efficiency limitation, it would be preferable to analyze 

the backscatter information from a multibeam echosounder (MBES), which are already being 

routinely operated by mapping agencies to provide complete seafloor coverage. 

The use of the seabed acoustic backscatter as a classification tool is based on the well-

established observation that different types of seafloor will present a particular acoustic signature 

(ICES, 2007) and thus can potentially be used to attempt seabed characterization. Such 

characterization can be based on physical models (Jackson et al., 1986) or an empirical approach 

through comparison of the acoustic response against sparse co-located ground truth.  

Successful characterization, however, assumes that the acoustic signature for the same 

seafloor is at least reproducible. It has been repeatedly demonstrated, however, that from sonar to 

sonar, even of the same model, that signature can vary significantly (Hughes Clarke et al., 2008, 

Lamarche and Lurton, 2018), implying that the output is uncalibrated. Two such uncalibrated 

systems will provide unrelated responses for the same seafloor, which will prevent further 

comparative studies. As an intermediate solution, overlapping data from different systems are 

often adjusted to produce the same result (Hughes Clarke et al. 2008, Roche et al., 2018 and Weber 

and Smith, 2018), but even then, neither system is providing an absolute measure.  
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There is thus a pressing need to come up with a robust method of obtaining an absolute 

response. The advantage of having an absolute response of the seafloor is that it will be possible 

to both attempt regional classification using multiple systems as well as compare data at the same 

location from different systems collected at different times, thereby looking at seafloor changes. 

The complexity of calibrating a MBES for backscatter is the main reason why this thesis 

presents an alternative method, based on an extension of the concept describe by Weber and Ward, 

(2015) and Eleftherakis, et al., (2018). The most well-known approach, standard within the 

fisheries community is to suspend a reference sphere of precisely known target strength under the 

sonar (Foote et al. 1987, Demer et al., 2015).  For a vertically-mounted wide (7+ deg) beam system, 

the logistics of suspending, moving and locating the sphere within the single beam are manageable 

in the field (Foote et al., 1987), and could be done for narrower multibeam beams in a tightly 

controlled tank environment (Foote et al. 2005). The logistics, however, of precisely navigating a 

sphere under a ship-mounted MBES in open waters within an obliquely oriented beam as narrow 

as 1o, is very unlikely to be done successfully. It has been attempted for narrow sector (only ±40 

deg), wider beam multibeam systems such as the ME70 (Ona et al. ,2009) and at 200kHz for a 

Reson 7125 (Lanzoni and Weber, 2011). Note that an ME70 receiver is split both fore-aft and 

across track. An important limitation is that most MBES receivers are split only across track and 

thus the within-beam fore-aft location of a suspended target cannot be identified. To address this, 

Lanzoni and Weber (2011) presented a method using a split beam sonar together with the MBES 

to determine the position of the calibrating sphere. Additionally, for an MBES, the calibration 

needs to be individually performed for each receiver beamforming channel (typically several 

hundred today), from the nadir up to 65o, or more, to port and to starboard and thus the target has 

to be moved well out to the side (e.g., Ona et al., 2009).  

Removing the MBES from a ship so that it can be calibrated in a tank (as demonstrated by 

Lanzoni, 2011) is possible but has significant limitations, two of which are the far-field problem 

for low frequencies; and possible changes due to radiation pattern differences between the sonar 

mounted in the tank and on the bottom of a hull. The installation of such complex system is usually 

not done in a detachable fashion. 
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The method of calibrating split beam echosounders (SBES) with beam width of 7o are well 

understood by the fisheries community (Foote at al., 1987) where they need to estimate the amount 

and size of the fishes they are observing as well as tracking the variation of those numbers along 

the seasons. To achieve this, they need their systems to be calibrated to ensure consistent responses. 

They use spheres with known target strength (TS) and compare the values obtained by the SBES, 

so they can estimate the beam pattern and the correction for the maximum response axis (MRA) 

of their systems. 

As a logical extension of the fisheries approach, by now deploying the pre-calibrated SBES 

to ensonify the seafloor and rotating the system through a range of grazing angles, it is possible to 

have the absolute angular response curve of that seafloor at the frequency used on the SBES (the 

first documented application was Urick, 1954). This approach is expanded on in this thesis. 

Considering that the most common multibeam systems owned by the Brazilian Navy as 

well as the U.S. Naval Oceanographic Office and the N.O.A.A. Office of Coast Survey fleet 

operate in the frequency range from 45kHz up to 400 kHz, this project selected four SBES 

transducers with combined available bandwidth covering the range from 45kHz up to 450 kHz.  

By deploying these systems 10-60m above the seabed and rotating them in elevation angle and 

azimuth, the absolute seabed backscatter strength angular response may be derived across this 

frequency range for the local seabed. 

That absolute response of the seafloor can then be used to calibrate the MBES by 

comparing the results at the same seafloor. The specific application of the calibration to the MBES 

would be the next logical step of the project but is beyond the scope of this thesis. This thesis will 

focus on the design, implementation, and proper data reduction needed to obtain the absolute 

angular response curve of a seafloor for the frequency range from 45kHz up to 450 kHz. As such 

a broad high-frequency range has rarely been attempted, especially with continuous frequency 

coverage and extending over the full range of grazing angles, the results, and particularly 

limitations of the method will be described, together with recommendations for future research.  
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PROBLEM STATEMENT:  

The seabed backscatter strength can be used to estimate specific physical properties of the 

sediment water interface (as will be presented in Chapter 3), which may be used to infer seabed 

parameters of economic and environmental value to society.  Examples include information on 

non-living natural resources to be exploited (e.g., aggregate or placer minerals, Roche, 2002) or as 

indicators of specific benthic habitat of value to commercial fisheries (Kenny et al., 2003). 

Therefore, measuring the backscatter response properly, in this case by ensuring calibration, is an 

essential precursor to identifying the seafloor. 

As mentioned in the introduction, many nation’s hydrographic services routinely use shelf-

depth multibeam sonars within the frequency range from 40 kHz – 400 kHz that standardly deliver 

two products from the same survey: bathymetry and backscatter mosaics. There is usually no 

additional operational cost to collect backscatter data, as it is within the standard survey procedures 

already. The only additional effort involves archiving, processing, and presentation. Unlike the 

bathymetric processing sequence, for backscatter processing, calibration has not standardly been 

undertaken. Note that for deep waters (deeper than 500m), to allow for the greater path lengths, 

lower frequencies, in the range 12 kHz to 30 kHz, are commonly used. Although this thesis will 

not address those lower frequencies (mainly due to the prohibitive size and weight of the 

infrastructure required), the approach presented should be equally applicable. 

As the backscatter strength output from these systems are not routinely calibrated, to ensure 

a usefully interpretable value, techniques have been developed to provide at least a stable and 

repeatable relative response. In this manner, areas surveyed by a single system will be classified 

according to their signature relative to each other. To provide a useful reference, representative 

physical seabed samples (“ground truth”) are collected from areas that appear similar. Should a 

different uncalibrated system, however, be used it will provide an offset response for the same 

area, even if they operate with the same frequency and parameters. As a result, even though 

bathymetrically, two separate systems show equivalent data, the resulting backscattering map 

produced by those systems would be unrelatable, therefore, from the point of view of backscatter 

mapping, there would be no use to have a large area surveyed by more than one system.  
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If, however, a practical method of calibrating multiple systems to a common absolute 

reference were performed, two or more survey systems could then be used together and could be 

related to each other and compiled to cover a larger area. As an extension of this concept, with 

both absolute measurements and reference ground truth, a library might be developed to 

automatically identify the type of seafloor, and thus there could be no need to collect further ground 

truth anymore. 

To facilitate future automated seabed characterization, the problem addressed in this thesis 

will be to design, implement and assess a practical method for calibrating MBES backscatter 

strength estimates over a wide range of frequencies using split beam echo sounders (SBES).   
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2. BACKGROUND  

2.1. CONTRIBUTIONS TO THE RECEIVED INTENSITY 

Multibeam and single beam echosounders are primarily used to determine the depth of the 

water column based on the time it takes for the sound wave to travel from the transducer to the 

seafloor and back. In addition, however, some of these sonars can provide the strength of the 

received acoustic intensity. As initially collected, however, this value is not an inherent property 

of the seafloor. Rather, its level is a result of a combination of radiometric, geometric, and 

environmental factors (one of which is the seafloor), each of which influence the resulting 

intensity. Only by unravelling the individual or combined effect of the non-seabed related factors 

can we obtain a measure of the bottom backscatter strength. 

2.2. DEFINITION OF SEABED BACKSCATTER STRENGTH 

To characterize the seafloor acoustically, one needs a measure that is an inherent property 

of the seafloor.  

The dimensionless quantity called the scattering cross section per unit area of a scattering 

seabed surface (σ) is defined as 

σ =  
𝑟2𝐼𝑠

𝐼0𝐴
     (1) 

where r is the range, Is is the scattered intensity, Ii is the incident intensity on the surface, 

and A is the effective ensonified area (Jackson et al., 1986). The logarithmic form of this, Sb = 10 

log10 σ, is referred to as the scattering strength (Urick, 1975) and its value is an ensemble averaged 

quantity in dB. 

A sonar equation is commonly used to describe the levels in each part of the sound travel, 

and a simplified (logarithmic) version can be designed as: 

EL = SL - 2TL + TS    (2) 
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Where EL is the received Echo Level, SL, is the transmitted Source Level, 2TL is the two-

way (two times) the Transmission Losses caused by spreading and absorption and TS is the Target 

Strength that contains the Sb 

TS = Sb + 10log(A)   (3) 

A being the ensonified Area. 

So, Sb can be described as: 

Sb = EL - SL + 2TL - 10log(A) (4) 

While TL and A can be conventionally calculated knowing the geometry and the frequency, 

the EL and SL terms require calibration. Notably, it is adequate to achieve just their combined 

calibration (EL-SL, the product of the source level and receiver sensitivity) simplifying the 

process.  

Once these steps are undertaken, finally an estimate of Sb can be attempted. For a given 

seabed type, Sb varies only with grazing angle (Gr), azimuth, and frequency. 

 

2.3. PHYSICAL CONTROLS ON Sb 

The measurement of interest in this thesis is the scattering strength of the sediment-water 

interface (the seafloor). Common types of seafloor range from soft muds to solid rock. Such a 

range of wide material types needs to be parameterized in a way that can be usefully input into a 

physical model (e.g., Jackson et al., 1986). The parameters most usually obtained include:  
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Interface Roughness (defined by power and exponent of 2D spectra). Even though the 

mean grazing angle between the beam vector and the normal to the mean seabed surface is 

estimated here, stereo photography of the seabed (Briggs, 1989) reveals that the sediment water 

interface is not really a simple plane. For a small area, the height deviations about a mean plane 

may be described by a probability distribution function (de Moustier, 1986). For a given height 

distribution variance, however, the horizontal scale over which the heights change can be quite 

different and thus an alternate way of presenting roughness distribution is a two-dimensional 

spectrum (Jackson and Briggs, 1992). The most common way of parametrizing such a spectrum is 

to estimate the mean slope and intercept of that spectrum in log-log space. This is termed the 

spectral slope and exponent. 

As the seabed is a 2D surface, there is always the potential for the roughness to vary with 

azimuth (for example ripple fields). Most models, however, reduce the 2D spectrum to an 

equivalent 1D version. Lurton et al. (2018), however, have clearly identified azimuth dependence 

in some seabeds. For this reason, part of the experimental design is to deliberately rotate the SBES 

in azimuth (in addition to elevation angle) to see if there is such an azimuthal heterogeneity in the 

calibration site.  

Given that most spectrums have a slope, the amount of roughness clearly varies with length 

scale and thus, as scattering depends on the scale of the roughness relative to the acoustic 

wavelength (Ogilvy, 1991), one can expect roughness scattering to be frequency dependent. For 

this reason, we expect to observe some frequency dependence in the calibration results. 

Impedance Contrast. Whatever the interface roughness, the amount of scattered energy 

will depend on the seabed surface impedance contrast.  Impedance is defined as the product of the 

sound speed and bulk density in the material. Thus, the sound speed and bulk density of the 

surficial sediment and the overlying water must be known. Note that bulk density is the density of 

the combined solids and liquids (e.g., sand grains and interstitial fluids). Additionally, to provide 

the contrast, the sound speed and bulk density of the overlying water mass is required.  

Volume Scattering contributions. Given that the surface reflection coefficient is never 

1.0, there will always be the potential for energy to refract through the sediment water interface 

into the volume of the sediment 
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For low impedance sediments (e.g., fine sands and muds), even with a rough interface, 

most of the energy will refract into the sediment and thus there is a secondary mechanism for 

further scattering if there are lateral impedance variations buried in the sediment. Examples of this 

might include buried pebbles, shells, or burrows.  To parametrize this one needs to have an estimate 

of the length scales (3D spectrum) and magnitude of the buried impedance contrasts  (e.g., Tang 

et al., 2002, Briggs et al., 2010). In practice this is an extremely hard parameter to measure and 

thus usually a single constant is empirically estimated.  

Whatever the volume heterogeneity in the sediment, the scattering strength will depend on 

how much of the energy arrives at the buried scatterer. Thus, the attenuation in the sediment, which 

is normally at least 103 times larger than in seawater, is important. As acoustic attenuation in the 

sediment is strongly frequency dependent (Peng et al., 2004), the effective depth into the sediment 

to which sound penetrates will be correspondingly frequency dependent. So again, as part of the 

calibration, for soft sediment it would be expected that, if volume scattering is the dominant 

influence, there will be frequency dependence observed.  

Time variability of Scattering Parameters: If a seafloor reference site is intended to be 

used more than once (see section 3.3), one of the concerns is always that the scattering properties 

may vary over time.  For example, the impedance contrast is also dependent on the impedance of 

the overlying water and thus, for a given sediment type, the ratio could have seasonal dependences 

as the overlying oceanography changes.  

For the case of interface roughness, common roughness elements at scales approaching the 

wavelength such as ripples and burrowing can vary with surface wave and or seasonal bioturbation. 

And for the case of volume scattering, again if bioturbation is a seasonal phenomenon then this 

may influence the long-term scattering strength. All these factors must be considered in the 

selection of calibration site. 

file:///C:/Users/ivanb/OneDrive/Documentos/Mestrado/Thesis/Writing/%20e.g.%20Tang%20et%20al.,%202002,%20Briggs
file:///C:/Users/ivanb/OneDrive/Documentos/Mestrado/Thesis/Writing/%20e.g.%20Tang%20et%20al.,%202002,%20Briggs
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Dealing with speckle – statistical distribution of scatter strength: For an extended target 

such as the seafloor, the instantaneous scattering is controlled by the contribution of multiple 

scattering components all with random phase. The net result is that, for the same seafloor, 

successive instantaneous estimate of the backscatter strength will vary significantly. The outliers 

are termed speckle. Only the mean value and the distribution is of interest. Thus, to get a stable 

mean estimate of the bottom backscatter strength, multiple measurements must be obtained to 

observe that population. This requirement for multiple observations will be addressed as part of 

the sampling density considerations in the experimental design. 
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2.4. SBES CALIBRATION FACTORS 

While the ultimate intent of the method being developed is to use it to calibrate survey 

multibeam echosounders, this thesis is primarily concerned with the extraction of a reference 

backscatter measurement using a single (split) beam echosounder (SBES). Thus, the study here 

will be constrained to briefly review those radiometric and geometric factors in the split beam 

while its calculation is more detailed in the section 4.1. 

Note that all of these factors are also common to the MBES, but they are more complex as 

there are multiple beams, with asymmetrical shapes and variable center frequencies and pulse 

lengths. Additionally, several of these factors are not a constant if the MBES operational settings 

are changed. Such changes are common as the depth varies. 

Range effects – as part of the sonar equation, the transmission losses (TL) are due to the 

spherical spreading and the attenuation effects in the two-way travel, making TL dependent on the 

range. It is worth noting that the attenuation effects are frequency dependent. For this adequate 

knowledge of the temperature and salinity (and strictly pH) variations with depth must be known 

(Carvalho and Hughes Clarke, 2012). 

Beam pattern – Both the transmit and receive beam pattern for a split beam echo-sounder 

are frequency dependent. For the purposes of this study, just their combined product is important. 

Any point target located within that pattern will have its apparent target strength modulated by that 

pattern. The calibration process deliberately involves moving the reference target across the beam 

to quantify this (see section 4.1). This combined pattern will, of course be frequency dependent.  

The beam pattern observed by the sphere calibration is then used to determine an effective 

beam width. This is the equivalent solid angle, at normal incidence, over which the power at the 

MRA would be spread to provide the equivalent power that result from integration of the real beam 

pattern over the whole sphere. This equivalent angle dimension is then used to estimate the 

ensonified area. 
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 Ensonified area – for the sphere calibration, the ensonified area is not considered, as the 

method compares the TS with a model sphere. For a bottom ensonification, however, the 

instantaneous ensonified area is required to normalize the Sb response (see section 3.8). The slant 

range, the grazing angle, and the two-way equivalent beam width defined by the beam pattern are 

the predominant factors that influence the area calculation. Figure 1 illustrates how the ensonified 

area for an oblique incidence is approximated by the rectangular area of S1xS2 limited by the pulse 

length (for CW case) or the length of the Matched-Filtered extract (for the FM case used herein) 

on the across-track dimension, referred to as PL on the figure, and by the effective fore-aft beam 

width on the along-track. For a normal incidence, however, both the across and along-track 

dimensions would correspond to their respective equivalent beam widths. 

For the Figure 1, consider: 

ψac – Two-way equivalent beam angle across-track. 

ψal – Two-way equivalent beam angle along-track. 

θ – Grazing angle. 

PL – Pulse Length (for a CW pulse) or the length of the Matched-Filtered extract (for the 

FM case used herein) 

R – Range 

S1 and S2 – correspondent sides of a rectangular area calculated by the simplification 

explained herein. 
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Figure 1 - Sketch of the ensonified area of an oblique incidence. 
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2.5. PREVIOUS WORKS 

 Preexisting experiments measuring frequency and grazing angle dependence of 

backscatter 

The first studies mentioning the frequency and angular dependence of the seabed 

backscatter response date from the period of the Second World War (NDRC, 1946). In that study, 

bottom backscatter strength was first reported, and an estimate of the frequency dependence was 

made. Notably the authors stated, “An irregular variation of (the backscattering coefficient) with 

frequency was noted (…), but this variation is less than the estimate error of calibration.” There 

was thus already the recognition that transducer calibration would be a limiting factor in our ability 

to obtain useful seabed backscatter strength measurements. 

Some years later, Urick, in 1954, performed a study on four different areas (“from a hard 

rocky bottom to a soft muddy one”) using a transducer with a range of frequencies varying from 

10 kHz to 60 kHz installed on a structure that allowed tilting the equipment to compare the 

response at different grazing angles. He also used a mine as a “reference sphere,” “to obtain a 

rough calibration.” He used a continuous wave (CW) pulse and, knowing that duration together 

with width of the beam pattern and the approximate grazing angle, estimated the ensonified area. 

This was the first detailed description of the method that this thesis builds on. Specifically, a 

mechanically rotated single beam of known beam pattern, source level, pulse length and receiver 

sensitivity. 

In the 1980s, as part of a program supported by the Office of Naval Research a number of 

other authors (Boheme et al.,1985, Boehme and Chotiros, 1988, Stanic et al., 1988, Stanic et al., 

1989 among others) published articles exploring important details about what contributes to the 

backscatter response, such as grazing angle, frequency dependence, azimuth dependence, 

roughness of the seafloor and ensonified area.  
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The ensonified area, in particular, is important to properly normalize the backscatter 

response, but it needs to have the grazing angle properly assessed, therefore the raytracing and the 

seafloor slope play an important role here as shown by the Figure 2 (Boheme et al., 1985). In 

contrast to the approach used in 1985, for the method developed here, the grazing angle was 

determined without the need for raytracing (see section 3.8).  

  
Figure 2 - Spreading of rays with range “l,” launch angle “θl.” (a) Ideal case, (b) with ray tracing (Boheme et al., 1985). 
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The acoustic measurements performed on sandy bottoms near San Diego, CA by Boehme 

et al., (1985) were “made using transducers mounted on a tripod assembly about 4m tall rested on 

the bottom” pinging at a range of grazing angles as low as 2o - 10o and a range of frequencies of 

30 - 95 kHz (see Figure 3) with CW and FM pulses of small bandwidth (1-4kHz) varying the pulse 

length. Boehme and Chotiros, (1988) reproduced the experiment with similar parameters over a 

frequency range of 30 - 80 kHz at low grazing angles in a sand bottom in Charleston, SC in 20m 

deep waters. The published paper included a comparison of the results (see Figure 4, on the left-

hand side plot) between the fixed platform method with a different approach, a moving sonar 

platform over a long track (tens of kilometers). A plot comparing the two regions showing a 

frequency dependence at the low grazing angles analyzed in the experiments was presented by 

Boehme and Chotiros, (1988), and is reproduced here on Figure 4, on the right-hand side plot.  

 

Figure 3 – “Estimated values of the bottom backscattering characteristic 10 log(µ) versus frequency for the fine sand 

bottom region near San Diego” (Boehme et al., 1985). 
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In another study, also in sandy area, south of Panama City, FL, Stanic et al., (1988) 

collected bottom backscattering measurements as a function of frequency (20-180 kHz), grazing 

angle (5o-30o), azimuthal angle, and CW pulse of length 5µs – 10ms using a support tower. The 

experiment conducted in Jacksonville, FL (Stanic et al., 1989) detailed the results from a shelly 

bottom with the same acoustic tower within the same frequency and grazing angle ranges. This 

tower consists in “a twin-hull catamaran design with a vertical tank supporting an instrument 

chamber, a triaxial positioner, and a two-dimensional array mount.” Considerable logistics were 

thus required involving towing to the predetermined position, on site instrument assembly and then 

deployed on the ocean bottom (see Figure 6). Also, divers had to be employed to connect various 

cables between the tower and the support ship that must be moored nearby. Both sources and the 

acoustic receiving system (an array of a dozen of hydrophones) were laboratory calibrated. 

 

Figure 4 - On the left side, the frequency response at grazing angle of 10o from various sources. On the right side, a 

comparison between (Boehme et al., 1985) and (Boehme and Chotiros, 1988). 
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The angular response curves (ARC) for Panama City and Jacksonville are reproduced on 

Figure 5 and Figure 7, respectively. 

 

Figure 6 – The acoustic tower configuration (Stanic et al.,1988). 

Figure 5- Angular response curves at 40kHz (left) and at 150kHz (right) in Panama City (Stanic et al., 1988). 
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From these 1980s studies, a comparison between the CW and FM pulses of short 

bandwidths produced similar results. Although Boehme et al., (1985) stated that “an examination 

of the frequency dependence reported for bottom backscattering strength results (was) 

inconclusive by virtue of the large variations in reported results, even for similar bottom type,” 

other studies suggested that there could be inferred some frequency dependence (see Figure 8 

reproducing Stanic et al., 1989).  

Gensane, (1989) developed a device called a “Reverberometer” which consisted of a 

parametric array as the transmitter capable of transmitting CW and FM pulses varying from 8kHz 

to 40 kHz and a hydrophone as the receiver capable of digitizing the received signal at 100 kHz. 

The Reverberometer was lowered near the bottom in shallow waters on several different areas of 

sand, gravel and clay and the grazing angles varied from 4o to 90o. The results showed the expected 

angular response curves but no frequency dependence between 8 and 40 kHz except near nadir 

where it was observed a decrease in the response along the frequency. 

 As can be seen, unlike the experiment in this thesis, most of these studies did not observe 

larger grazing angles and usually only sparsely sampled in the frequency domain and were usually 

limited to less than 200 kHz. These experiments also required difficult logistics, including a 

moored ship and divers to deploy the fixed bottom. This thesis intends to replicate an anchored 

version of the bottom ensonification in a much simpler manner covering a wide range of frequency 

and all the practical grazing angles. 

Figure 7 - ARC for lower frequencies (left) and higher frequencies (right) in Jacksonville (Stanic et al., 1989). 
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Recent developments in acquiring Reference Sb 

Up to the end of the 90’s most of the seabed backscatter experiments used relatively narrow 

band CW pulses and thus, the backscatter strength was only valid for a specific center frequency 

(even though multiple transducers were used to obtain stepped results at discrete offset 

frequencies). Of interest though for this project is the continuous frequency variation as modern 

multi-sector systems, employing broad band transducers, have multiple relatively tightly spaced 

center frequencies for each sector. 

For any single transducer there is an available bandwidth which could be exploited, either 

by progressively switching center frequency for subsequent CW pulses or, more efficiently, by 

utilizing a swept FM pulse covering the full available bandwidth. In 2015, Weber and Ward were 

the first to demonstrate this approach when they performed an experiment using an FM pulse 

(swept from 170 kHz to 250 kHz) pointing at just a single fixed grazing angle (45 degrees).  

Figure 8– Comparison of frequency dependence for the areas from the 1980s studies (Stanic et al., 1989). 
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The calibration involved comparing the spectrum of the observed TS of a sphere against a 

model (see later discussion in section 3.4). Once calibrated, to overcome the randomness of the 

backscatter response and obtain a stable seabed backscatter strength estimate, they averaged a 

number of pings along a survey line while over a seabed with assumed homogenous material type. 

This was acquired from an underway vessel. 

More recently, the French National Institute for Ocean Science, Institut français de 

recherche pour l'exploitation de la mer (IFREMER), used two calibrated split-beam transducers 

using CW pulse centered at 200 kHz and 333kHz and performed a cross calibration with MBES 

in the field. The SBES were calibrated using the method of sphere calibration. 

In summary, these previous pioneering studies describe the preceding work that has led to 

the concept developed in this thesis and provide substantial background on the evolution of the 

calibration method proposed here. Herein, the swept frequency approach of Weber and Ward 

(2015) will be combined with mechanically rotated geometry of Eleftherakis et al. (2018).  
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3. METHODOLOGY 

3.1. OVERVIEW 

The objective is to have a reference seabed backscatter data against which one can calibrate 

multibeam backscatter. The method proposed in this thesis is based on a combination of the Weber 

and Ward (2015) and IFREMER approach (Eleftherakis et al., 2018) and adopts the same first step 

in calibrating the reference SBES with the well-known method of the model sphere widely adopted 

in the fisheries community.  

Target strength values of reference spheres were calculated by equations presented in 

MacLennan (1981) and properties of tungsten carbide and copper spheres were defined in 

MacLennan and Dunn (1984) and Foote, et al. (1981), respectively. 

With the SBES calibrated, a suitable site to collect the reference data needs to be chosen. 

That area is selected bearing in mind the following considerations: it should be flat, homogeneous, 

isotropic, low traffic, protected from weather and currents, and as far from sediment discharge and 

turbidity currents (to avoid seabed changes), as possible. 

Previous Implementations 

For comparison, Weber and Ward (2015) used the “NEWBEX” reference line which was 

a long corridor with a few well-known seabed types (Figure 9). Prior geological knowledge (Ward 

and Birch, 1999) indicated that these sediment types did not change with time. Measurements were 

averaged over elongate transects ~ 600m long in which the seabed was known to be all the same. 

Along that transect the azimuth was always the same (orthogonal to the ship track). The stability 

of this corridor has now been evaluated over several years of collection (Weber et al., 2018). 

Notably, the corridor is in a high energy environment and thus mainly consists of coarser sands 

and gravel. 
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 Eleftherakis et al., (2018) in contrast picked a few local areas in and around the Rade de 

Brest (see Figure 9) that they believed might be stable. The reference and MB data were 

deliberately collected along short (~400m long) transects within this area at a full range of 

azimuths. A few sites were subsequent recognized to not be sufficiently temporally stable and/or 

have a strong azimuth dependence (Lurton et al., 2018) 

 

  

Figure 9 – Comparison of the philosophy of selecting homogenous areas between Weber and Ward, 2015 and 

Eleftherakis et al., 2018. 
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Implemented approach to collecting reference data. 

For this thesis, a slightly different approach to obtaining reference data was utilized. Rather 

than collecting the SBES data from a moving vessel with a rigid, potentially rotatable frame, the 

decision was made to be stationary, and have a suspended frame that could easily be rotated in 

azimuth and elevation angle (similar in concept to Gensane, 1989). Interestingly, although 

stationary, from a 20-50m altitude above the seafloor, the resulting samples are still spread out 

over an area with a diameter of several hundred meters, comparable to the transect scale used by 

the previous experiments. The only difference is that the high grazing angle data is preferentially 

restricted to a much smaller area. This choice was in part a financial decision and allowed much 

simpler and less complex deployments. 

For both the previous experiments, and this thesis, the SBES sonars are held close to the 

surface so that the slant range to the seabed will grow with depth. For depths less than 30m, this is 

manageable as even the highest frequency echoes are just discernable at those slant ranges. For 

deeper depths, however, this would not be practical as was found for two of the areas (see results 

section 3.8). 

To address the potential azimuthal complications identified by Lurton, herein the SBES 

was deliberately manipulated to sample the seafloor in different azimuths to test for any variation 

in the angular response with heading. At each azimuth, in turn, it was rotated through all grazing 

angles from normal incidence to as low as is practical (~5-10 deg grazing). And the data was 

acquired across the full range of frequencies that the non-calibrated MBES tested operates 

(EM2040 180-400 kHz and EM710 MkII, 40-100 kHz). Of particular concern is to obtain enough 

redundant measurements across the full range of grazing angles so that we can obtain valid 

statistical measures of the mean and variance. 

This last point addresses the fact that any instantaneous measurement of scattering intensity 

has a strong speckle component (Ogilvy, 1991). Most scattering models expect a high variance 

(standard deviation equivalent to the mean for true Rayleigh scattering). Thus, only by making a 

large number of observations that can be averaged (see section 3.8), can a stable mean angular 

response curve be extracted. 
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Once the SBES is calibrated (see section 3.4), the response obtained, after considering all 

the losses and normalizing by the area (see details in section 3.8), is our best estimate of the 

absolute response curve of that seafloor which should be obtained by any calibrated system. 

Although not a part of this thesis, the next step would be, on the same area of the seafloor, 

for the MBES to collect backscatter measurements covering all the different grazing angles and 

azimuths. If the MBES has a range of operating modes (combinations of pulse lengths, beam 

widths, center frequencies) the data would need to be collected separately for each mode. The 

response obtained by the MBES will not be equal the absolute response curve as it is not calibrated 

yet. For a given grazing angle at the center frequency used by the MBES, the difference between 

the reference and the MBES backscatter strength estimate is the calibration that should be applied 

to the MBES (e.g., Figure 10 of Eleftherakis et al., 2018). In practice, the simple difference is not 

actually a sufficient corrector, as that instantaneous difference is often a reflection of sector beam 

patterns which may rotate as the vessel rolls and thus corrupt the measurement at a particular 

grazing angle differently depending on the vessel roll (Hiroji and Hughes Clarke, 2016 and 2017).  

 



26 

 

  

Figure 10 - Angular response curves of calibrated SBES EK60 (200kHz on top and 333kHz on bottom) and an 

uncalibrated MBES EM2040 (from Eleftherakis et al., 2018). 
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3.2. EQUIPMENT 

The equipment employed in this thesis was composed of: 

Table 1 - List of Transducers 

Owner Model Freq-mode FM up PL Power 

SIMRAD ES70-7C 45kHz to 95kHz 2.048ms  150W 

SIMRAD ES120-7C 90 kHz to 170 kHz 2.048ms 150W 

SIMRAD ES200-7C 160 kHz to 260 

kHz 

2.048ms 100W 

CCOM ES333-7C 280 kHz to 450 

kHz 

2.048ms 50W 

 

Table 2 - List of other equipment 

Equipment Owner Model Parameter 

IMU UNB MRU-6 rate:100Hz 

Rotatable plate CCOM --- --- 

Sphere CCOM WC Diam: 38.1mm 

 

- Split beam echosounders (SBES), model EK-80, manufactured by SIMRAD: They 

(or their predecessor the EK60) are one of the most commonly used by the fisheries because of the 

possibility of localizing the targets within its 7o of beam width. As part of the system, there were 

four wide-band transceivers (WBT) and four transducers, consisting of one set provided by the 

Center of Coastal and Ocean Mapping (CCOM), the ES-333-7CD (operating frequency from 280 

kHz to 450 kHz), and three sets provided by SIMRAD, the ES70-7C (45kHz to 95kHz), ES120-

7C (90 kHz to 170 kHz), and ES200-7C (160 kHz to 260 kHz).  

- An Inertial Measurement Unit, MRU-6, that could calculate the pitch, roll magnetic 

heading and heave, provided by the University of New Brunswick (UNB). This outputs a serial 

string (EM300 format) of orientation at 50 Hz into the WBT for inclusion in the EK80 data stream. 

- A mechanically rotatable plate: manufactured by CCOM, for mounting the transducers 

and the MRU-6. The rotation mechanism merely consisted of ropes to the surface where an 

operator was free to tilt and scan with the plate. 
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- A tungsten-carbide (WC) sphere of 38.1mm of diameter as the reference sphere for 

calibrating the SBES, provided by CCOM. 

The facilities and research vessel available for the project were: 

- The Centre for Ocean Engineering’s Tank was used for lab tests and to calibrate the 

ES70-7C, ES120-7C and ES200-7C transducers. 

- The CCOM’s R/V Gulf Surveyor for field tests in Portsmouth, NH. 

- The Canadian Hydrographic Service’s CSL Heron, a hydrographic/geophysical/ 

oceanographic survey launch, with length of 10m and draft of 1.15m, for collecting the data in BC, 

Canada that was analyzed in this thesis. 
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3.3. SELECTION OF SUITABLE AREA 

As mentioned, the reference area should fulfill some requirements as detailed in the 

sequence: 

Flat, or at least planar - to avoid errors in calculating the grazing angle due to rapidly 

changing slopes. The greatest concern exists mainly near nadir where it is not possible to derive 

the grazing angle from the phase ramp (see section 3.8). 

Roughness – strictly this factor is frequency dependent as relief at scales shorter than the 

wavelength will be irrelevant. The roughness scale of concern here is at wavelengths that fit within 

the projected ~5-degree beam footprint thereby impacting the estimation of the local grazing angle. 

As a result, the seafloor should be as smooth as possible to avoid errors in the grazing angle 

estimation and rapid fluctuations in the response due to unresolved slope changes. Also, some 

features such as sand ripples which would have roughness that is azimuth dependent would 

therefore be undesirable. 

Homogeneous – as the plate is rotated to achieve lower grazing angles, the horizontal 

distance of the covered area can be ten times the depth for grazing angle up to 5.7 degrees which 

can lead to a large area of coverage. To have an angular response curve of the seafloor, the 

sediment on the whole covered area (e.g., 500m diameter for 50m altitude) should be the same.  

At the longest scales there should thus be no regional sediment type variations across the 

~200-400m diameter testing site. At the shortest scales, the minimum length scale over which 

homogeneity is apparent needs to be qualified. Many seafloors, if viewed at optical scales have 

local patchiness due to, for example, presence/absence of shell debris or burrow spacing. The idea 

here is that this heterogeneity should take place at scales small with respect to the size of the 

instantaneous ensonified area. Typical footprint dimensions are a function of the range as 

discussed further in this section (Impact of water depth on site suitability). Bottom photography 

did indeed demonstrate that there is heterogeneity at small scale in almost all the areas. 
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Navigational restrictions – each government, institution or research group has its safety 

procedures and should be aware of the traffic as well as the predominant weather conditions mainly 

regarding the sea state and the tides and currents around the selected area. For example, traffic 

lanes or active fishing zones should be avoided. Similarly, exposed water is to be avoided as the 

suspended plate would tend to rotate too rapidly and the safety of the operator becomes of concern. 

Also, strong tidal streams are detrimental as the resulting flow past the plate prevents it from being 

directed at all azimuths. 

Stationarity – when the composition of the sediments in the area is demonstrated to be 

stationary over time, with no discharge of sediments, no presence of turbidity currents, erosion or 

other geological variations, then such area can be used as a reference area for calibrating any sonar 

with the same absolute reference curve established with calibrated SBES at any time until it is 

noticed there has been some variation on the seafloor. As part of this, human disturbances such as 

anchorage areas of trawled areas should be avoided. 

As a practical procedure, a previous survey with an uncalibrated MBES would provide an 

ideal means of selecting the best area to perform this method of calibration. 

The areas chosen in this thesis are in British Columbia, Canada as we had logistical support 

of the Canadian Hydrographic Service (CHS) who made one of their ships available for this 

research, the CSL Heron. 

Each area was selected based on 1990-2005 vintage 300 kHz multibeam data (EM3000 or 

EM3002) collected, and kindly made available, by the CHS.  This allowed the regional delineation 

of backscatter variability and gross seabed roughness. Areas of patchy seabeds, strong slopes or 

obvious rock outcrops, were avoided. Figure 11 illustrates a 4 x 2 km area around the sand site 

revealing the variation in bathymetric roughness and backscatter variability.  
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Based on the CHS data, five homogenous sites were identified with as wide a range of 

mean backscatter strength as possible. EM710 and EM2040 bathymetry and backscatter acquired 

over these sites at the time of the calibration data collection are presented in Figure 12. These 

indicate that the area within the EK80 data collection radius (indicated by the yellow circle) was 

completely homogenous. 

 

  

Figure 11 - Archived multibeam bathymetry and backscatter for the sand site (Sidney Approaches). Star pattern 

identifies the location of the test area. Data courtesy of the Canadian Hydrographic Service. Processed using swathed. 
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 The Table 3 summarizes the characteristics of each area, and for the sediment type, the 

samples are pictured in Appendix I. 

Table 3 - Characteristics of each area 

Area 
Collection 

date 

Sediment 

type 

Average 

depth 

Average 

Sound speed 
Temperature 

A 09JUN2019 Mud 55m 1491 m/s 12oC 

B 10JUN2019 Shell hash 44m 1487 m/s 11oC 

C 12JUN2019 Muddy Sand 14m 1487 m/s 11oC 

D 08JUN2019 Sand 17m 1491 m/s 12oC 

E 10JUN2019 Cobbles 25m 1487 m/s 11oC 

Calibration 12JUN2019 xxx xxx 1489 m/s 11oC 

 

Figure 12 - Bathymetry and backscatter acquired using EM710 and EM2040 over the five calibration sites. The sites 

are ordered from lowest backscatter (left) to highest backscatter (right). The yellow circles indicate the radius of the area within 

which calibrated backscatter was collected. Processed using swathed 

“COBBLES” 
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All the areas are protected by the surrounding islands (see Figure 13 below), ensuring a 

smooth sea state. Additionally, the areas are out of the lanes of traffic and the multibeam 

bathymetry indicated that they were flat and sufficiently smooth, with minimal indication of 

different sediments within the same area.  

 

Impact of water depth on site suitability: 

Although not appreciated when the sites were first selected, it turned out that the water 

depth had an impact on the ability to collect low grazing data at the highest frequencies. Most 

notably, Area “A” had the softest sediment type, mud, and the greatest depth, 55m, which resulted 

in the received signal to noise ratio (SNR) being too weak to collect useful data from the transducer 

with the higher frequency (the ES333-7CD, centered in 333kHz) at grazing angles beyond 40 

degrees. Although the depth of Area “B” was also relatively deep (~44m), the sediment type 

present in the area had a stronger backscatter strength, so the ES333-7CD was able to process the 

received signal even at lower grazing angles.  

“Mud” 
A - 53-55m 

09JUN 

“Shell hash” 
B - 42 - 45m 

10JUN 

“Muddy Sand” 
C - 10 - 15m 

12JUN 

“Sand” 
D - 18 - 20m 

08JUN 

“Cobbles” 
E - 22 - 26m 

10JUN 

Figure 13 – The location of each area on the Nautical Chart CHS 3441 - Haro Strait Boundary Pass and Satellite Channel 
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Figure 14 demonstrates the slant range variations with altitude and grazing angle. This 

reveals that for a flat seafloor, the slant range at grazing angle of 10o can be only 50m for a plate 

elevated 10m from the bottom whereas it can be 300m if the plate is 50m above the seafloor. 

Oceanographic Environmental Characterization: 

To properly reduce the backscatter data, the transmission loss terms that are frequency 

dependent need to be precisely estimated. This is primarily controlled by the local oceanography. 

Fortunately, there were no significant variations in temperature nor in the harmonic sound speed 

during the few days of observation around the areas. For calculating the absorption losses shown 

in Figure 15, a pH of 8 and a salinity of 30 PSU were assumed.  

Figure 14 - Slant range as a function of grazing angle for a flat seafloor at different depths, 10m (blue), 30m (purple), 

and 50m (red). 
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The data acquired from area “E” was collected during strong currents, tilting the plate 

significantly, which prevented collecting response from the nadir. As a result, its angular response 

curve has its grazing angle limits between 5 and 85 degrees. Also, as the plate acts as a kite when 

suspended in the tidal flow, it was not possible to align the beam at all azimuths. Rather only 

azimuths facing up or down stream were possible. This demonstrates the importance of selecting 

areas with reduced current conditions. 

The site chosen for the SBES calibration was well protected from waves and currents and 

was deep enough to have the sphere deployed in the far field as well as being distant from the 

seafloor to avoid any confusion in target detection. The sediment type is irrelevant in this matter. 

The only other concern is that there should not be local scatterers in the water such as fish or algae. 

  

Figure 15 - Correction for absorption to be applied as a function of range and frequency, with environmental parameters of BC. 
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3.4. CALIBRATION OF SBES WITH SPHERE MODEL 

The approach used herein is the one most commonly used by the fisheries community 

utilizing the target sphere method to calibrate their sonars for the purpose of detecting and 

characterizing biomass in the water column. The sphere is a point target whose dimension is small 

with respect to the projected solid angle of the beam. As part of the calibration, the apparent target 

scattering strength (TS) can be estimated. To do this, in addition to the standard transmission loss 

calculations, the only correction required is to estimate where, within the two-way beam pattern, 

the target lies. The resulting TS estimate can then be compared with the expected model and the 

difference being the required calibration (the combined source level and receiver sensitivity 

product). The additional step beyond the fisheries approach that is used in this thesis is that, having 

achieved the calibration, we are now considering the ensonification of an extended target (the 

seafloor surface). This thus implies that the dimensions of the ensonified area must be considered. 

The reference sphere is usually made of tungsten carbide or copper, with known parameters 

such as density, compression and shear wave speed and diameter. As noted by the National 

Oceanic and Atmospheric Administration (NOAA), the environmental conditions are important to 

determine the impedance contrast (NOAA, 2020); therefore, the temperature and salinity (and 

thereby sound speed) of the water are considered to calculate the expected TS according to the 

frequency. The TS values are calculated using equations in MacLennan (1981). The properties of 

the WC and Cu spheres are from MacLennan and Dunn (1984) and Foote et al. (1981), 

respectively. 

The sound wave reaches the sphere and is partially scattered omnidirectionally, partially 

revolves around the sphere as the contributions of compression and shear waves. Depending on 

the diameter of the sphere, the wave that goes around the sphere can be in opposite phase with the 

reflected wave, therefore, certain frequencies will get none or weak response due to destructive 

interference (see minima in Figure 16), that are referred to as “nulls.” Close to the location in 

frequency of these nulls, no calibration is possible and thus interpolation is required. 
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In this thesis, a tungsten carbide (WC) sphere with 38.1 mm of diameter was used. Due to 

irregularities on the construction of the sphere, when comparing to the model, the actual location 

in frequency of the nulls may be offset from the predicted model position. Thus, the immediately 

surrounding frequencies close to the expected null position are not considered to avoid errors and 

the adjacent values are interpolated. To fill the nulls within the bandwidth of one sphere, another 

one with a different diameter could be used.  For this experiment, however, only one sphere was 

used, and the nulls were replaced by interpolation and the transducer calibration was expected to 

vary smoothly across the bandwidth. 

An additional problem with the choice of 38.1mm sphere for the 333 kHz transducer was 

that, between the nulls, at the higher end of the frequency range, the TS varies quite steeply with 

frequency (see Figure 16). Thus, if the actual sphere response is slightly shifted due to imperfectly 

assumed properties or dimension, biases may result in the calibration. At the lower end (40-~250 

kHz) the inter-null TS variability was much flatter. 

The net result is that the quality of the calibrations obtained for the ES70, 120 and 200 

transducers appears much more robust than the ES333 (see section 4.1). 

  

  

Figure 16 – TS model of a WC 38.1m sphere with the environmental parameters found in BC 
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Locating reference target within beam pattern 

An important characteristic of the split beam echosounders is that the transducer has 

adjacent sectors that can be used to calculate the angle of the target with respect to the boresight 

based on the difference in phase between the echo at each of the sectors. The sketch in Figure 17 

presents the transducer split into four sectors, represented by dashed lines, which enable the 

localization of a target in terms of along-track and across-track angles within the beam. 

It is important to have multiple soundings on the sphere in different positions in all 

quadrants within the beam, near the MRA as well as by the edge of detection. The variation of the 

apparent TS response reveals the two-way beam pattern of that transducer and if the transducer 

had been perfectly constructed, the beam pattern would show an axial symmetry and the MRA 

would be located at the maximum response axis (MRA). 

Figure 17 - Sketch of the split beam sectors. 

along-track 

across-track 
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The sphere calibration should be performed for one transducer at a time. The response 

obtained from the sphere by the transducer must be corrected to account for the two-way 

transmission losses that results from spherical spreading and absorption. The spherical spreading 

loss is a simple geometric function of range whereas the absorption loss is not only a function of 

range but also is dependent on many environmental properties of the sea water, such as 

temperature, salinity, pressure, pH and, particularly important in this thesis that is using FM pulses, 

it is dependent on frequency. Therefore, the spherical spreading loss is applied in the time domain 

and the absorption one is applied in the frequency domain. 
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3.5. FREQUENCY DOMAIN PARTICULARITIES 

The ultimate aim of this project is to obtain a measure of the backscatter strength over the 

full available bandwidth of the transducers. For efficiency, rather than using successive 

narrowband CW pulses each progressively stepping through the frequency range, one ping at a 

time, FM pulses were used of 2.048ms of duration. Each transducer’s FM pulse swept linearly 

through the full available bandwidth. The pulses were chosen to be closer to a rectangular shape 

(“fast ramp”) rather than tapered. This was so that the full power was maintained at the ends of the 

available bandwidth. The price for using rectangular pulses is that there are stronger time sidelobes 

in the autocorrelation of the pulse. This would matter if range resolution was the main requirement. 

But for the case of this experiment, it is the frequency content that is paramount. This is also 

important to know in selecting an appropriate window around the main target echo as these 

sidelobes contain valid energy both before and after the main target echo. 

The original received signal (Rx) for a point target has an elongated envelope the same 

length as the pulse length (~2ms) and when correlated with the transmitted pulse (Tx), generates 

a narrow Matched-Filtered (MF) result (see Figure 18), the width of the peak of which reflects the 

bandwidth.  

Each signal Rx, Tx or MF contains all the frequency information within it. The Fourier-

Transform is the means of examining it. In the case of the signal that is digitally sampled, therefore 

discrete in time, the Fast-Fourier-Transform (FFT) is then applied. 

Because the matched filtered echo will have preceding and trailing sidelobes, as part of the 

pulse autocorrelation function, a finite window before and after the target needs to be included in 

estimating the TS.  Furthermore, because the diametrically re-radiating echoes occur at times after 

the leading edge of the echo, to calculate the full spectrum of the target strength, the window must 

be extended several decimeters beyond the position of the first target echo. 
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The length of the extract of the signal used to apply the FFT is referred to here as the 

“subset” and was a significant matter of consideration in this thesis as it has implications in the 

resolution in terms of frequency. The larger the subset, the greater is the frequency resolution (see 

Figure 19). The choice impacts the results at both the calibration and the bottom echo analysis 

stage. 

 For the calibration, the length has to be at least as long as all the echo contributions (trailing 

circumferential waves and sidelobes in pulse autocorrelation), but not too long to include other 

spurious contributions such as knots in the line or natural suspended targets. For the calibrations 

utilized, a window 30 cm before and 30cm after the peak of the target was used, corresponding to 

approximately 200 samples. At a 250 kHz sampling rate, this corresponds to a frequency resolution 

of 1.25 kHz. 

Figure 18 - From top to bottom: Transmitted signal (Tx); Received signal (Rx) with a sphere as first target and the 

seafloor as the second and strongest target; MF signal (convolution of the Tx and Rx); and level in dB of the MF signal. X-axes 

are in meters. The signals are represented by its real part with a red line evolving the echo envelope based on the absolute value 

of each signal. 
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For the seabed echo, the dominant factor affecting the choice of subset length is primarily 

a geometric one. The length impacts the results in two ways: for high grazing angles it controls 

our ability to discriminate in angle, and at lower grazing angles it affects how we compensate for 

the across track beam pattern projection (see section 3.8).  

Whilst the time sampling defines the Nyquist frequency and is inherited by the transceiver, 

the selected size of the subset sample will define the resolution in the frequency domain. As will 

be discussed further later, the chosen seabed subset length was 64 samples (19cm) which, with a 

250 kHz sampling rate resulted in a 3.9 kHz spectral resolution.  Note that this is significantly 

larger than the theoretical range resolution which is controlled by the FM pulse bandwidth (ranging 

from 50 to 200 kHz or 1.5 to 0.4 cm).  As we do not expect to see rapid changes in the bottom 

backscatter strength over a few kHz (as the seabed consists of a wide range of scattering scales 

unlike the solitary reference target), this was considered adequate. The resulting seabed backscatter 

frequency trends (see section 4.3) bear this assumption out. 

Figure 19 - Comparison of FFT of different sample sizes, 64 (blue) and 256 (red) for a 38.1mm sphere detection for 

each transceiver. 
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 For the work done herein, the length of calibration FFT, which controls the frequency 

resolution of the calibration, was not the same as the length chosen for the seabed FFT. This results 

in complications in applying the finer calibration coefficients to the coarser seabed spectra.  This 

will be discussed later in section 3.8. 

For the case of a signal that is a continuous wave, the length of the subset is indifferent, 

providing the same result, as long as it has the minimal resolution to define the signal. For the case 

of the reference target echo, however, where there is a peak with only noise before and after the 

peak, the longer the length of the subset, the more noise is incorporated on the signal to calculate 

the FFT, which yields a compromised response. A proper normalization of the signal is then 

needed to compensate this factor. 

The way SIMRAD, which produces the transducers used in this project, normalize the FFT 

of the MF signal is presented below (Demer et al., 2015): 

Utarget(f) = 
𝑈𝑟(f)

𝑈𝑡(𝑓)
   (5) 

The frequency response of the target (Utarget(f)) is the frequency response of the subset that 

includes the target (Ur(f)), normalized by the frequency response of the autocorrelated transmitted 

signal with the same length as the subset (Ut(f)). The autocorrelated transmitted signal has twice 

the length of the transmitted pulse. So, the maximum possible resolution in frequency is the 

correspondent resolution achieved with an FFT of twice the length of the transmitted pulse. 

As will be seen in section 4.1, the beam pattern also has a frequency dependence; therefore, 

a unique beam-pattern correction, based on the observed location of the target in the beam should 

be applied to each point in the FFT. 
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3.6. SPHERE CALIBRATION SUMMARY 

The sequence to process the data for the sphere calibration was: 

1. Convolve Rx with the Source Function to arrive at the MF.  

2. Add the geometric spreading component of the transmission loss.  

3. Apply the FFT.  

4. Normalize by the FFT of the autocorrelated Tx. 

5. Add the transmission loss due to absorption as a function of frequency.  

6. Locate the sphere in terms of angles within the beam by using the across and along-

track phases. 

7. Using multiple pings, with enough data to cover the whole beam-pattern, calculate the 

pattern as a function of frequency. 

8. Obtain and correct all pings for the beam pattern as a function of frequency, based on 

the across and along track angles, so all the pings would correspond to an equivalent 

MRA response. 

9. Calculate the average in a linear scale, not in a logarithmic scale. 

10. Compare the result with the model disregarding the neighborhood around the nulls 

(identified as areas with slopes greater than 0.1 dB/kHz. 

11. Interpolate the response of the frequencies surrounding the nulls (done linearly). 

12. The comparison is the calibration that should be applied to the transducers together 

with correction for the beam pattern according to the angle of the response off the 

boresight. 
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3.7. LOGISTICS OF BOTTOM TS DATA COLLECTION 

This section describes the logistics of acquiring Sb data from an anchored vessel with the 

suspended plate. The ship should be steady at a position at the center of the selected area and avoid 

drifting to collect data only within the area with the same type of sediment. Anchoring is 

recommended. 

The plate containing the transducers of the SBES and the motion sensor unit is submerged 

a few meters to allow controlled rotation and prevent surface interference. As mentioned, moments 

of strong current should be avoided when possible. 

Since the transducers overlap in frequency, it is necessary to ping one at a time to avoid 

interference. As the maximum slant range was < 250m a 0.33s ping repetition rate was used. The 

plate should be steady or rotating slowly enough during the ping, so the angle of transmission and 

reception are nearly the same. Therefore, the rotation rate should be as slow as the range demands 

to collect each sequence of pings, bearing in mind that the range can be about ten times the altitude 

with grazing angle as low as approximately six degrees. Considering this, the rotation at lower 

grazing angles should be less than 1 degree of rotation within the ping duration, so, less than 3 

degrees per second. 

The plate is gradually rotated up to about 85 degrees of roll, with no intentional variation 

in pitch, and it is then rotated back through nadir and up to -85 degrees in the reverse azimuth. The 

rotation is repeated several times at different headings to account for the azimuthal dependence.  

In reality, there will always be some pitch rotation. What this implies is that the beam 

elevation vector is not adequately described just by the roll. For large rolls, a few degrees of pitch 

do not significantly impact the grazing angle. But as the roll decreases (and the grazing angle 

increases) the sensitivity increases.  
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Figure 20 below demonstrates the impact of the pitch in the grazing angle with the roll. On 

top, the grazing angle as a function of roll for pitch=0 o, 5 o, 10 o, 15 o and 20o. On bottom, the 

difference between the grazing angle and the complementary angle of the roll, for a pitch = 0o, the 

grazing angle and the complementary roll are equivalent. The dashed red line indicates when the 

difference exceeds 1 degree. For a pitch = 10o, for example, the difference becomes less than 1 

degree for roll greater than 50o, whilst for a pitch = 5o, the difference becomes less than 1 degree 

for roll greater than 12o. 

   

Figure 20 - Impact of Pitch in the grazing angle. 

Pitch = 0o 

Pitch = 5o 

Pitch = 10o 

Pitch = 15o 

Pitch = 20o 

Pitch = 0o 

Pitch = 5o 

Pitch = 10o 

Pitch = 15o 

Pitch = 20o 
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3.8. BOTTOM TS DATA PROCESSING 

The data is processed following the steps detailed below: 

Echo Envelope Identification and MRA Strike-Point Location 

STEP 1 - Amplitude Detection: 

After the matched filtering, for every ping, the first step is to locate the two-way-travel-

time (TWTT) of the maximum response, considering just the spreading component of the 

transmission loss (see Figure 21).  

The absorption loss was not considered to find the TWTT because the signal-to-noise ratio 

(SNR) would be affected, mainly at higher frequencies and longer ranges. A more robust code 

which uses the average absorption coefficient (as a broad band pulse) should prevent this from 

happening and use all the corrections to find the TWTT. However, it will only have a minor 

difference on the final result, since this is only a preliminary estimate of the approximate center of 

the echo envelope.  

Figure 21 - Raw MF signal in blue in comparison with the signal compensated by spreading (40log(r)) in red.  
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The Figure 22 reveals the peak response, where the TWTT was found for that ping. 

Based on the TWTT of the amplitude detection, the data is subset by windowing according 

to the expected length of the echo accounting for the elevation angle measured by the MRU-6 and 

the nadir depth. On this step, the data was narrowed using ±3 degrees of elevation from the 

estimated TWTT point. This reflects the average two-way 3dB widths of ±2.5 degrees. The idea 

being to utilize just the echo envelope within the main lobe. 

Ri = Rt sin (Gr) / sin (Gr + 3o)  (6)  

Rf = Rt sin (Gr) / sin (Gr -3o)  (7)  

Where: 

Ri – Initial range of the extract to be observed 

Rt – Range of the target by amplitude detection 

Rf – Final range of the extract to be observed 

Figure 22 - Finding the Maximum response: MF signal with TL (TS) in grey, smoothed TS in blue line, Maximum TS in 

vertical dashed dark blue, boundaries in vertical dotted blue. 
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Gr – Grazing angle 

This allows a better search for the zero-crossing on the next step.  

As part of the following step, a series of subset of points will be analyzed rather than only 

one point and the error will be within the range of the subset. 
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STEP 2: attempted Phase detection (and limitations) 

This step will search for the zero-crossing on the across-track phase ramp, constrained 

within the range delimited by the previous step. When it cannot identify a clear zero crossing in 

the phase, there will be only amplitude detection. This could occur if the number of phase samples 

within the range window is too few or a regression through that phase data shows too high a 

residual. In practice, amplitude detections were forced within ~ 4 degrees of normal incidence.  

As the phase data is inherently noisy, vector averaging of the phase differences was 

conducted before seeking the zero crossing (Figure 23). The impact of this phase smoothing on 

subsequent estimation of the grazing angle is discussed later. 

Figure 23 - Searching for the zero crossing within the boundaries defined by the previous step: Across-track angle 

(phase-across) in grey, smoothed phase-across in red line, Maximum TS in vertical dashed dark blue, boundaries in vertical 

dotted blue and Zero-crossing in vertical dashed dark red. 
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The across-track phase signal is obtained by the difference of phase between the two sectors 

on the port and the two sectors on the starboard. The slope of the phase difference indicates the 

sonar-relative across-track seafloor slope which, for a low relief seafloor, will be mainly due to the 

roll of the plate. The electric phase is then converted into physical angle according to the 

manufacturer’s indication of sensitivity for each transducer. The corresponding along-track phase 

is obtained from the difference between two sectors facing forward and the two sectors facing aft. 

For large values of pitch and small values of roll, the slope of this phase difference will indicate 

the pitch displacement.  

For the typical situation in this experiment, however, while the roll varies through ±85 

degrees, the pitch is typically small (< 10 degrees). Under these circumstances, the geometry of 

the annulus constrained within the beam footprint needs to be considered as under large roll and 

small pitch geometries, that annulus extends across the full fore-aft (along-track) dimension of the 

footprint. As other researchers have noted, for such an extended target, as the annulus will include 

parts of the surface at all the different along track angles, their complex scattered sum cannot be 

used to indicate any one along-track seafloor slope. 

As a result, only the across-track seafloor slope can be discerned and thus the grazing angle 

estimate is imperfect. This aspect is expanded more in the grazing angle estimation section.  

Assuming that an improved TWTT estimate is obtained using phase, the window for 

analysis is now shifted and slightly expanded. Based on the same concept of narrowing the sample 

of the time series of each ping used in the previous step (equations 7 and 8), the data analysis 

window is defined by applying a new constraint within ±5 degrees of elevation from the zero-

crossing point.  

Ri = Rp sin (Gr) / sin (Gr + 5o) (8)  

Rf = Rp sin (Gr) / sin (Gr -5o)  (9)               

Where: 

Ri – Initial range of the extract to be observed 

Rp – Range of the target by phase detection 
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Rf – Final range of the extract to be observed 

Gr – Grazing angle 

The new boundaries defined by the phase ramp (see Figure 24 below), when a zero-crossing 

was found, will define the limits of the phase ramp to be used on the next steps.  

 

Considerations about the selection of subsets within the echo envelope  

Once the echo envelope has been identified, previous studies (Weber and Ward, 2015 and 

Eleftherakis et al., 2018) had both restricted their analysis to just the peak of the envelope, 

providing a single bottom backscatter strength for that ping cycle. Given, however, that such 

instantaneous estimates can be overprinted by speckle, it was considered advantageous to obtain 

multiple estimates to get a more stable average.  Without this step, getting sufficient samples 

requires covering a larger area (for an underway vessel as was the case for Weber and Ward, 2015 

and Eleftherakis et al., 2018) or more transects over the same area.  

Figure 24 - Redefining the range of selected data: Across-track angle (phase-across) in grey, smoothed phase-across 

in red line, Zero-crossing in vertical dashed dark red, new boundaries in vertical dotted magenta. 
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In this thesis, the decision was made to use multiple points within the echo envelope so that 

more independent estimates of the bottom backscatter strength (each at slightly different angles) 

could be obtained from each ping cycle. To do so, however, requires compensation for the across 

track beam pattern.  

Also, the number of independent samples (herein termed subsets) will depend on the choice 

of subset length relative to the echo envelope length. The envelope length of course, varies with 

both sonar altitude and grazing angle.    

In this project the time sampling interval of all four transducers were the same, 4µs, which 

corresponds to 250 kHz of bandwidth in the frequency domain. The number of samples selected 

in the time domain will be the same in the frequency transformation, equally distributed within the 

bandwidth. The sample size can be set as convenient, the more samples, the better resolution in 

frequency. However, the longer the sample, the worse the resolution in grazing angle. 

Figure 26 shows a MF signal being extracted and the corresponding FFT with large and 

small subsets to illustrate the difference in frequency resolution between using a short or long 

subset length. As can be seen, while the longer FFT gives better frequency resolution, the echo 

envelope variation due to the across-track beam pattern becomes significant over the subset length.  

Thus, there is an additional complication with long subset lengths in that the beam pattern 

contribution is changing throughout the FFT window, complicating the beam pattern 

compensation. 
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Based on inspection of the length of typical high-grazing angle echo envelopes which were 

seen to be as short as a few decimeters, a subset length of 19 cm (64 samples) was chosen.   If the 

echo envelope at the 3 dB points was longer than this, more than one subset would be used. And 

to get more estimates, each subset would overlap its neighbors by half of the subset length. For the 

lower grazing angle footprints which extend several meters, this resulted in ~60 subsets for the 

lowest grazing angles (see Figure 26). 

For a better computing performance and to avoid being out of memory on MATLAB, the 

length of the MF signal that was extracted was limited to 2001 samples (~6m in range) around the 

peak of the MF, which implied in a limitation of 61 subsets of 64 samples. For the pings with a 

high grazing angle, the echo envelope would require fewer subsets, but for lower grazing angles 

and in deeper waters, the echo envelope would be greater than 6m, demanding more than what 

was provided herein. A further development on the codes would be necessary to allow more data 

in the analysis. 

Figure 25 - The two plots on the top show the same extract of the MF signal with different sample sizes and the bottom plot 

shows the FFT response of the seafloor with the correspondent sample sizes. The zero-crossing occurrence is shown in the 

dashed dark red line. 
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The net result of this choice was that the frequency resolution was 250 kHz/64 = 

3.9kHz/bin, which provided 12 bins between 45kHz and 95kHz for the TC ES70-7C, 20 bins 

between 90 kHz and 170 kHz for the TC ES120-7C, 25 bins between 160 kHz and 260 kHz for 

the TC ES200-7C and 43 bins between 280 kHz and 450 kHz for the TC ES333-7CD. 

 

Grazing Angle Estimation 

Ultimately, for each subset, a grazing angle needs to be associated. Within a single beam 

footprint, the ray path depression angle will be expected to vary by at least 5 degrees reflecting the 

swing from inboard to outboard edges of the beam pattern. In addition to the change in ray vector, 

the slope of the seafloor below will not be exactly zero. 

Figure 26 - Increasingly number of subsets as the grazing angle is lower. 
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To try to estimate that grazing angle, two strategies were implemented depending on how 

close to normal incidence the beam was. 

 

Method 1 - Grazing angle from MRU-6 

The Inertial Motion Unit MRU-6 provides Pitch and Roll, among other measurements, that 

can be utilized to calculate the approximate angle that the TC is pinging at with respect to the 

Nadir. Note that this assumes that the MRU is perfectly aligned with the boresight of each of the 

transducers.  With this assumption, if the seafloor is horizontal and flat and the sound travels with 

no refraction, then the grazing angle (Gr) can be directly obtained by the MRU-6:  

Gr = √θ2 +  φ2   (10) 

Being θ and φ the pitch and roll, respectively. 

In reality, as shown by Figure 27, the alignment is not perfect, and the seafloor will likely 

present some relief. Additionally, although not critical at high grazing angles, there will be a ray 

tracing along the water column. 

Grazing angle 

Roll (φ) 

Pitch (θ) 

Roll (φ) 

Pitch (θ) 

Grazing angle 

Figure 27 - On the left, an ideal propagation of the beam where the grazing angle can be directly calculated by the 

ship’s attitude. On the left a sketch of a more realistic case that demands other technics to infer the actual grazing angle. 
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The advantage of using the MRU orientation directly is that both the pitch and roll can be 

combined to get a 3D grazing angle. This turns out to be significant as with the freely suspended 

configuration used, there was often pitch present. The result of this is that, if only the roll were 

used, one might erroneously assume that normal incidence had been achieved when the roll was 

zero. As, for some smooth sediments, the specular peak in the angular response curve (ARC) can 

be steep, this could corrupt the reference estimate of the ARC. 

Although not implemented herein, an imperfect but practical approach to partly address the 

case of a non-flat seafloor, would be to estimate the mean regional slope (dip and azimuth) from 

the chart (or accompanying multibeam survey). This might be adequate as the site is already 

deliberately chosen to not contain significant slope variations.  This would better constrain the true 

location of the specular peak echo.  

 

Method 2 - Grazing angle from phase ramp 

Given all the limitations of the assumptions in the MRU approach to getting grazing angle, 

a more direct method would be preferred. To get the actual grazing angle, one should know the 

ray tracing and the seafloor slope. In this thesis an alternative method, based on the phase ramp 

was adopted, and its limitations (and advantages) are explained here. 

The phase ramp across-track indicates the angle within the beam where the backscatter is 

coming from and the difference of this angle at two different times represents one angle of a 

triangle (Figure 28 below) calculated by the equation:  

Gr = sin−1 𝑟1 . sin β 

√𝑟1
2 + 𝑟0

2 −2 .  𝑟1 . 𝑟0 . 𝑐𝑜𝑠 β

  (11) 
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As each time corresponds to a known range, and all the other measurements of such triangle 

can be calculated, one of them being the grazing angle (considering the limitations of this method). 

One notable advantage of this method is that, because both ray paths have almost the same 

refracted distortion (just a fraction of a degree apart), the grazing angle calculated reflects the 

actual seabed impinging angle irrespective of the refraction. At low grazing angles, especially 

where there are strong refraction distortions, the difference between the launch angle and the 

arriving angle can be over a degree.  

Because, for low grazing angles, we have multiple phase samples across the echo envelope, 

potentially the algorithm outlined above could give us a grazing angle for every pair of phase 

angles. In reality, of course, the instantaneous phase estimates are noisy. Thus, some phase 

smoothing is required. Herein, it was decided to get the average MRA relative angle at the center 

of each subset. Thus, between each pair of subsets, the grazing angle can be calculated and used 

to generate the figure of the bottom as illustrated. As can be seen, this allows us to recognize both 

the average across track seafloor slope over the whole echo envelope and identify if there are 

shorter wavelength slope variations within the beam footprint. 
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Figure 28 - Geometric calculation of the grazing angle based on information from the across-track phase. 
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Figure 29 illustrates the seafloor across-track relief calculated by the phase of one ping. 

Figure 29 - Demonstration of one ping with multiple subsets that combined show the relief of the terrain on the 

across-track direction. The bottom plot is a zoom in the bottom. 



60 

 

The net result is that, for each bottom backscatter strength estimate from a subset, there is 

a unique associated grazing angle. Each echo envelope can thus potentially provide Sb estimates 

over a range of up to 5 degrees in grazing angle. As will be expanded upon in the results in section 

4.2, the Sb value were sorted by 1-degree bins. And as the plate is being rotated no more than ~1 

degree between pings, in a single sweep, five estimates of the Sb for a single bin may therefore be 

obtained. 

As outlined in the discussion in the bottom detection approach, phase detection is only 

possible for beam vectors more than ~2 deg off the apparent normal incidence. Thus, within that 

range the simpler MRU approach has been defaulted to. 

An additional concern is whether noise in the phase ramp results in false grazing angle 

estimation, thereby distorting the measured backscatter angular response. To minimize this the 

angle from the phase was calculated based on the mean of the moving average of the phase within 

the subset. Increasing the averaging length smooths out real across-track seafloor roughness, but 

potentially prevents false angle noise. The phase noise impacts how detailed one is able to calculate 

the micro reliefs. As each subset window represents an average of the relief along-track over a 

distance equal to the fore-aft beam width (~ 5 degrees), micro relief at shorter scales than this 

would be averaged out anyway. 

In this discussion, it is important to acknowledge that only the across-track phase is 

considered as the along track phase is not useful for the usual high roll, low pitch situation, when 

the annulus covers an extended surface fore-aft. By not being able to use the along track phase 

there is a lack of consideration of the combined pitch of the transducer and any slope in the 

orthogonal direction  (see Figure 20 above on section 3.7, quantifying the angular error if pitch is 

present). Thus, for this method to perform better, a flat seafloor and a good control of the plate to 

avoid pitching is mostly desired.  

Although not implemented here, it is recognized that, for the special case of no roll and 

some pitch, the along track differential phase could in fact provide a valid grazing angle. Indeed, 

if there is about equal pitch and roll, a diagonal phase difference could also be considered.  
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To illustrate this effect, Figure 30 shows the mechanical angle derived from the difference 

of phase between fore/aft, (the “along-track phase”). Two examples are presented, one close to 

normal incidence and one very oblique (large roll).  For both cases, the pitch is around the same 

magnitude, -7.7o on the left and -9.9 o on the right.  the roll, on the other hand, is, on the left, just 

a couple of degrees, whereas on the right the roll is -61.6 o. The along track phase ramp is clear 

when the roll is close to zero, allowing the localization of the ensonification on the along-track, 

but for bigger rolls, the along-track phase becomes just noise. 

In reality, by the time you get within a few degrees of normal incidence, the annulus can 

no longer be reasonably approximated by a linear swath either along or across the beam footprint. 

Rather it would appear as a circular subset. A more detailed examination of estimating grazing 

angle within a few degrees of normal incidence would be a useful future avenue of investigation. 

 

Transmission Loss Spreading Corrections to   the subsets  

The range associated with each subset, that will be used to determine some corrections and 

to estimate the grazing angle, is calculated by a simple multiplication of the TWTT and the mean 

sound speed obtained by the MVP. This is then used for the transmission loss terms. Note that the 

subset is a finite range over which the TL does vary slightly. For the calculations performed herein, 

just the average TL at the center of the subset is applied. 

The transmission loss (TL) term is composed of the two-way spreading and the absorption 

components, the first one being only range dependent, which is in dB calculated by:  

Figure 30 - Along-track phase. 
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40 log(R), or 20 log(R2)  

and should be added to the MF signal. In linear scale, the correction to the linear pressure 

term would be the product between the MF signal (MFlinear) and R2, which corresponds in dB as:   

20 log(abs(MFlinear)) + 20 log(R2) 

Figure 31 shows the application of the range losses. 

 

FFT with Normalization 

In the same manner as applied in the sphere calibration, a FFT is applied to the (sub) extract 

of the MF signal (referred to here as the subset) normalized by the FFT of the autocorrelated 

transmitted signal with the same size as the subset. As justified previously, as part of this 

experiment, the FFT size was chosen to be 64 samples in order to obtain several independent 

solutions within a typical echo envelope. 

In this manner, each subset will generate a frequency response associated with the mean 

slant range of the subset, a single grazing angle, and (for the cases of a pulse/FFT limited 

ensonified area) an angle within the beam with respect to the boresight. For a low grazing angle 

echo envelope this typically results in multiple solutions over about a 5-degree range of grazing 

angles. 

Figure 31 - Three plots of the MF signal without the geometric component of the transmission loss correction in light 

gray and with the 40LogR correction in dark gray, the blue lines represent the moving average of the MF. Each plot has a 

different roll (and thus grazing angle), changing the shape and the range of the peak response. 
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The FFT results are then subjected to a sequential application of frequency dependent, 

beam pattern dependent, range dependent and area dependent corrections in order to arrive at a 

calibrated backscatter strength estimate for that grazing angle. These corrections are outlined 

below, except for the geometric spreading that is only range dependent which has already been 

discussed above. 

Beam pattern correction 

The maximum response axis (MRA) corresponds to the aiming direction of the transducer 

and any echo contribution for an angle away from the MRA will return a weaker signal according 

to the beam-pattern, as measured by the sphere calibration. As discussed in section 3.4, previously, 

that calibration is defined using the fore-aft (along) and port-starboard (across) angle derived from 

the differential phase. Unlike a point target such as the reference sphere, however, which can be 

considered to lie at a unique along and across angle, the instantaneously ensonified area potentially 

extends across a range of both along and across angles. For the pulse/FFT-length limited ensonified 

area case, only the across track angle can be identified. Thus, the beam pattern correction is applied 

differently in the across and along track direction. 

 For the along track direction, the equivalent beam width is estimated (close to the 3dB 

width) for each frequency bin. The resulting dimension due to that angle, projected over the slant 

range, is used as part of the ensonified area correction (see section 3.8). 

For the across track direction, the port-starboard angle within the beam with respect to the 

MRA is calculated from the mean angle within the subset in the smoothed across-track phase, as 

explained previously. As an alternate to a simple mean, a fitting curve could also be utilized and 

may be subject of future study. The angle, then, is used to derive the across-track beam-pattern 

correction. That beam pattern correction is frequency dependent and thus needs to be applied for 

each subset across the frequency domain. 
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Figure 32 demonstrates the frequency dependence of the beam-pattern and its application 

on the frequency response of the MF signal. Top-left, there is a 3D view of the beam-pattern 

correction as a function of frequency and angle (with respect to the boresight), on bottom-left, the 

frontal view to highlight how a higher frequency has a narrower beam-pattern than a lower 

frequency. On the right-hand side, a 3D-plot of the frequency response of each subset along one 

ping to demonstrate how curved the response is before the correction for beam pattern (the dashed 

lines were used to better guide the viewer). Also, the MF signal in red was plotted out of scale on 

the background to show the pulse envelope. 

 

 Calibration for MRA correction 

The other factor derivable from the sphere calibration is the calibration curve for the MRA 

that should be applied after the beam-pattern correction, which is also frequency dependent. It is, 

however, invariant in range and is thus applied to all subsets within the beam regardless of the 

angle. As a result, the calibration is equally added to all subsets in the frequency domain. The 

Figure 33 shows the correction for the MRA of the ES70-7C. All corrections will be expanded in 

Chapter 4. 

High Freq  

Low Freq  

Figure 32 – Plots of beam-pattern and its application. 
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Absorption correction 

As mentioned in the paragraph about the spreading correction, the absorption is part of the 

TL and is frequency dependent, and thus this term is only applied in the frequency domain after 

the FFT, rather than together with the spherical spreading term in the time domain. 

The absorption is a function of several factors such as slant range, frequency, temperature, 

salinity, pressure, pH and depth. Although strictly the absorption coefficient will vary with depth 

due to pressure and oceanographic stratification, for each frequency bin in the FFT, a single mean 

coefficient is used herein and applied uniquely for each subset as a function of slant range. The 

corresponding frequency dependence as a function of slant range is illustrated in Figure 34. 

  

Figure 33 - Correction for the MRA of the ES70-7C. 
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Area normalization 

To go from the Target Strength to a Bottom Backscatter Strength, the instantaneous 

ensonified area needs to be estimated. This area corresponds to that subset of the projected annulus 

(with a radial width controlled by the FFT length) which lies within the projected beam pattern. 

 While the beam pattern is strictly a continuous function over the entire sphere (all azimuths 

and all elevation angles), practically one can limit it to within the main lobe and define that limit 

by using an equivalent solid angle centered about the MRA, within which the peak power is 

radiated. For narrow beam ensonified areas such as multibeam footprints, commonly the 3dB beam 

width equivalent is used. As demonstrated, however, by Weber (2013), when integrating the total 

power over all solid angles, a better typical approximation is about 1.15 x the 3dB limit. That 

approximation was used herein. 

Figure 34 - Absorption loss as a function of frequency and range in dB with estimated environmental parameters. 
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Given the constraint of an equivalent beam width, there are two discrete cases where the 

ensonified area is defined differently. The choice of case depends on whether the projected radial 

(across track) dimension of the annulus is larger than (the beam-limited case) or smaller than (the 

pulse/FFT-limited case) the projected across-track bean width. This geometry, first defined in 

Urick (1954), is illustrated in Figure 35, where a long pulse has a circular ensonified area near 

nadir, whilst with a short pulse, the ensonification becomes an annulus instead of a full circle, and 

at oblique incidences a section of the annulus is the geometry of the ensonification and is 

represented at different times of the same ping, before the boresight, at the boresight and after the 

boresight.  

Commonly those two cases are managed with simplifications: 

For the beam-limited case, the area is approximated as a rectangle with along and across 

track sides defined by the projected along and across equivalent beam widths: 

A0 = ψal  ψac R
2 / sin(Gr)  (12) 

Where ψal (Along-track) and ψac (Across-track) are the two-way equivalent beam angles in 

radians, varying with frequency, R is the range to the center of the subset ang Gr is the grazing 

angle of the subset. 

Figure 35 - Sketches of ensonified area, two near nadir with long pulse and short pulse and one with oblique incidence. 
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For the pulse/FFT-limited case, the area is commonly approximated by a rectangle of 

dimension of the along track projected equivalent beam width and the across track by the projected 

pulse/FFT-length as defined in: 

A = R  ψal  c  Ƭ / 2 cos(Gr)   (13) 

Where c is the average sound speed and Ƭ is the time-length of the FFT for a MF signal 

(Weber and Ward, 2015), whereas for a CW pulse this term would be the pulse length. 

Herein these approximations are used. Strictly though, as the beam width gets larger, they 

are not ideal, as at the highest grazing angles, the curvature of the annulus within the projected 

beam footprint becomes significant. This becomes more acute as the FFT length used gets shorter 

so that pulse-length limited case is maintained at higher grazing angles. To do a more accurate 

calculation, however, would only be justified if the grazing angle were precisely known. As 

described in the grazing angle estimation section, at these highest grazing angles, the across track 

phase cannot be used and thus the pitch and roll of the sonar is substituted.  

The along and the across track equivalent beam angles are usually defined separately to 

accommodate the case of Mills Cross geometry where the transmitter and receiver arrays are of 

differing lengths. For the piston source used here the calibration of the transducers demonstrated 

that the beam-pattern is approximately axisymmetric whereby the along-track and across-track 

angle for the beam-pattern have the same value, only varying with frequency. 

It is acknowledged though, that errors from the calculation of the grazing angle, the beam-

pattern, and the range will lead to frequency-dependent biased error in the area estimation. 

Add all corrections 

As the sonar equation states in dB, the Sb is: 

Sb = EL + 40 log R + 2 α r – SL – 10 log A (14) 

EL – SL is represented by the MF signal and includes the calibration. 

“40 log R” was implemented as mentioned by the “spreading correction” paragraph. 
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“2 α R” is added as calculated by the “absorption correction” paragraph. 

“10 log A” is subtracted based on the term “A” as estimated by the “Area normalization” 

paragraph. 

The calibration terms of “beam-pattern” and “the MRA correction” are also considered 

according to their respective paragraphs. 

Thus, the final term is the actual Sb result in terms of frequency and grazing angle for all 

subsets and all pings. 

Compilation of Sb observations into Bins of 1 degree and 4kHz (64 counts) 

With all the corrections added to the seafloor response, in the time and frequency domain, 

it is possible to compile the resulting measured grazing and frequency dependence of the Sb. The 

subsets, however, produce instantaneous values with pronounced random components (speckle) 

which, as discussed previously in this section, can have a standard deviation approaching the mean 

value. Thus, averaging is required to reveal the mean response.  

The frequency domain is already discrete based on the size of the subset as mentioned 

previously, at about 3.9kHz for a selected FFT window of 64 samples. In order not to smear the 

frequency dependence further, no additional averaging in frequency space was attempted.  

The acquired data provided apparent grazing angles in the range 5 to 90 degrees and each 

subset has a corresponding value. When considering the choice of a suitable grazing angle bin size, 

the first factor is uncertainty in the grazing angle measurement itself.  The second factor is the 

number of available samples within the chosen bin size to average. To obtain enough samples to 

average, four aspects were controllable: 

• the ping rate for a given transducer, 

• the rotation rate of the transducer,  

• the size of subsets within each echo envelope and  

• the amount of time spent pinging.  
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A typical resulting histogram distribution by grazing angle is illustrated in Figure 36.  

As can be seen, from the nadir to about 60o of grazing angle, the observation density 

increases with decreasing grazing angle, remaining approximately the same amount up to 40o, and 

decaying up to the lowest grazing angle. This is a result of the number of subsets possible within 

the echo envelope increasing with lowering grazing angle. The curve flattens and decline as a 

result of the limitation imposed to the extract of the MF used to compile the subsets, which implied 

in a limitation of 61 subsets of 64 samples within the extract of 2001 samples (see Figure 37).  

This limitation would not be required if the project worked with unlimited extract of the 

MF data, which would increase even more the number of subsets for low grazing angles. The 

lowest density unavoidably occurs at the highest grazing angles close to normal incidence where 

the steepest variation with grazing angle occurs.  The choice was made in this thesis to average the 

responses within one-degree bins. The net effect is that for the results presented, each bin is the 

average response of 1 degree and ~4kHz. 

 

Figure 36 - Histogram of samples of the correspondent grazing angle (within 1-degree) calculated only by the 

MRU-6 on top (notice the scale) and a comparison with the grazing angle calculated by the phase on bottom. 
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Average Sb in linear scale for each bin 

The average is calculated for each set of Sb responses that are within the one-degree range 

from 0-90 degrees. It is possible to overlap results by taking the average of the same range of one-

degree varying from 0.5-89.5 degrees, but it was not done in this thesis. 

It is important to note that the Sb is in dB, but the average should be calculated in linear 

intensity units. That way, the Sb is transformed into linear Intensity to have the average calculated 

and then is transformed back to dB.  

Sb(f, gg) =  10 log10 [
1

𝑁
∑ 10

𝐵𝑆𝑖(𝑓,   𝑔𝑔)
10⁄𝑁

𝑖=1 ],  

for (0 > gg ≤ 1), (1 > gg ≤ 2), … , (89 > gg ≤ 90) (15) 

  

Figure 37 - Number of subsets in function of Grazing angle for the ES200-7C in Area C (14m deep) The grey dots 

represent the pings where there was only amplitude detection and therefore, only one subset. 
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STD of Sb in linear scale for each bin 

The same logic of the previous paragraph is applied to calculate the standard deviation. 

STD(f, gg) = 10 log [√
1

𝑁−1
∑ 10𝐵𝑆𝑖(𝑓,𝑔𝑔) 10⁄ −𝑁

𝑖=1 10𝐵𝑆(𝑓,𝑔𝑔) 10⁄ ],  

for (0 > gg ≤ 1),…,(89 > gg ≤ 90) (16) 

 

Final absolute response curve 

The final absolute response curve is a shortened dataset with one value of Sb in dB for each 

bin of one degree by ~4kHz within the range of frequency operated by each transducer. 

Since the corrections are applied by each transducer independently, there will be 

overlapping results for the bins at the edges of the frequency range of the transducers, except 

between the ES200-7C and the ES333-7CD because their frequency range do not overlap. Those 

overlapping bins from different transducers should ideally have the same Sb value. 

The Sb curve in terms of frequency and grazing angle is then the reference that any system 

should be able to compare when collecting Sb data of the same seafloor and any difference should 

be considered to calibrate the system. 
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4. RESULTS 

4.1. SPHERE CALIBRATION RESULTS 

Before attempting seabed backscatter estimation, the first requirement is to calibrate the 

transducer/transceiver with respect to a reference target. This section described that calibration 

process. The sphere calibration was performed in three different sites with different environment 

conditions, but with all parameters properly considered in the method, each site should deliver the 

same correction values (assuming no degradation in the transducer/transceiver hardware).  

The first attempt was performed in May 2019 at the lab tank in fresh water, with the water 

temperature around 21oC and the sound speed in the water about 1486m/s. The Tc ES333-7CD 

was not available yet, so, the calibration was performed only with the other three transceivers. 

The sphere calibration results that were applied in this thesis were obtained in BC, Canada, 

on 12th June 2019, in salt water with temperature around 11oC, a salinity of 30 PSU and the sound 

speed in the water about 1489m/s 

Another sphere calibration procedure was performed also in salt water in Portsmouth, NH 

in August 2019 where the water temperature was around 17oC, the salinity was 30 PSU and the 

sound speed in the water was about 1492m/s and its results are displayed for comparison.  
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Comparison between Tank, BC and NH 

The calibration curves for each transceiver in three different environments should be 

ideally the same.  

The first plot (Figure 38) shows the result using a high resolution in frequency (longer 

FFT), where the apparent oscillation in the calibration is clearly present. When applied, however 

using a shorter FFT window, for example 64 samples equivalent to that utilized for the seabed 

subsets, the oscillations will not be present. As the calibration, by necessity must cover a window 

of around 60 cm to capture the full target characteristics, the difference in frequency resolution has 

to be accounted for in the application of the calibration.  

Figure 38 - Calibration curves for each Tc at three different environments, CCOM’s fresh-water lab tank in blue (the 

Tc ES333-7CD was not calibrated in the tank), the calibration in BC in green and a calibration procedure performed in 

Portsmouth, NH in red. 
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To try to handle this, a smoothing was applied to the calibration curves (Figure 39) before 

application to the seabed subset spectra. As has become apparent when examining the results (see 

below), for all except the 200 kHz transducer, there remain small but clear systematic frequency-

dependent calibration residuals. These are probably a result of improper handling of these 

calibration oscillations. This is further complicated by the necessary interpolation over the nulls, 

where those oscillations cannot be accurately reproduced. 

Figure 40 illustrates the comparison between the calibration results obtained at the three 

areas and indicated that the calibration differences were within about ±1.5dB. In each case more 

than 300 pings for each TC were statistically independently collected to get to this result.  

Figure 39 - Smoothed calibration curves for each Tc at three different environments, CCOM’s freshwater lab tank in 

blue (the Tc ES333-7CD was not calibrated in the tank), the calibration in BC in green and a calibration procedure performed in 

Portsmouth, NH in red. 
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The notable exception was the ES333-7CD whose calibration was seen to be more 

divergent for frequencies higher than 330 kHz. A further research should address the reasons for 

that the 333 kHz mismatch, but, as will be shown on the next section, the excessive number of 

nulls that the sphere utilized by this thesis present at higher frequency suggests that a sphere of a 

different diameter should be more appropriate for ES333-7CD. 

Despite the application of this smoothing, the final seafloor results (see section 4.3) indicate 

that there remain small systematic frequency dependent residuals in the frequency domain which 

are clearly not real. To address this, they could be subsequently removed by fitting a trend to those 

results (see Figure 41). This step, while resulting in a more believable smooth frequency 

dependence, does at this time leave a question about the absolute fidelity of the resulting reference 

data. 

Figure 40 - Difference of calibration results from BC, NH and CCOM's tank for each transceiver. 

Figure 41 - MRA corrections from sphere calibration for all transceivers. High frequency resolution (gray), 

downsampled to 64 counts (blue),and correspondent fitting curve (red). 

ES70-7C: 

ES200-7C: 

ES120-7C: 
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Comparison of the observed reference target nulls with the model  

A comparison between the average response obtained from each transducer and the ideal 

TS for the model sphere (Figure 42) indicates that the exact null locations were often slightly 

offset. As a result, the frequency range in the vicinity of the nulls should not be considered. More 

spheres of different diameters that have nulls at different positions in the frequency range could be 

used to have a more complete response, however in this thesis, a linear interpolation across the 

null windows was done when necessary. The nulls and their vicinity were identified using the 

slope of the model curve. Regions with > 0.1 dB/kHz were discarded. 

As mentioned in the previous section, the number of occurrences of null is greater as the 

frequency increases, to the point that for the ES333-7CD, a large number of gaps need to be 

interpolated, leading to more errors, as shown by the Figure 42. 

Figure 42 - Plots of the ideal TS response from the reference sphere in blue, the mean response from 

each TC in red and the frequency sector not considered due to the nulls in gray. 
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Additionally, in the inter-null regions, as the frequency increases, the slope of the TS curve 

gets steeper. Thus, any inaccuracy in the estimate of the sphere diameter and/or P and S wave 

velocity that might shift the curve in frequency, will result in larger mis-calibrations.  

 

Beam pattern estimation 

The combined transmit-receive beam pattern (i.e., two-way) derived from the sphere 

calibration indicates how the intensity of the signal drops as the angle increases away from the 

MRA and how it varies with frequency. These results (Figure 43) will be applied as a correction 

for each frequency bin in two ways. Firstly, the equivalent along–track beam width (1.15x 3dB 

limits) is used as part of the ensonified area calculation.  

Figure 43 - Beam pattern of each transducer obtained by the sphere calibration with a highlighted line of the 3dB 

correction value. 
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Secondly, the across- track beam pattern is used in one of two possible calculations: for the 

beam-width-limited case, it defines the equivalent across track beam width, or for the pulse-length-

limited case, it controls how each subset is gained up depending on where its center lies relative 

to the MRA. At the MRA, angle = 0, there is no correction. 

To support the equivalent beam width estimation, the angle at which the intensity is half of 

the value at the MRA, or -3dB, is calculated (Figure 44) which, of course, also varies with 

frequency. Note that this is expected to vary smoothly with frequency and does indeed do so for 

the 70, 120 and 200 kHz transducers. An irregular pattern, however, is observed for the 333 kHz 

transducer suggesting imperfect calibration, again possibly related to a poor choice of sphere.  

Figure 44 - Angle of intensity 3dB less than the MRA in function of frequency for each Tc, with the edges of the 

nulls in dashed blue. 
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4.2. BOTTOM BACKSCATTER RESULTS (BY FREQUENCY 

AND GRAZING ANGLE) 

As described earlier, five areas in BC, Canada were selected due to their homogeneous 

characteristics, their flatness, and other qualities addressed in section 3.3. The five areas were also 

deliberately chosen to be widely different seafloor types covering much of the expected range of 

sediments from muds to gravels.  

All four transducers were set to ping sequentially an FM pulse to get a complete response 

over the full bandwidth investigated. The sequential pinging was set up to avoid leakage between 

overlapping sections of bandwidth.   The plate on which they were mounted was mechanically 

rotated, in a smooth way, several times, to obtain the response from any grazing angle from 90, 

nadir, to near 5 degrees. Also, the plate was rotated in the Z-axis to investigate any azimuth 

dependence. Figure 45 illustrates a typical view of the resulting distribution of beam footprint 

centers from above. As can be seen a reasonably even distribution was normally achieved. Poorer 

distribution was normally a result of anchoring in a tidal stream which forced the plate to 

preferentially align across the flow, resulting in measurements predominantly just upstream or 

downstream. The results are detailed in this section. 

Figure 45 - Footprint of Area A (55m deep) on left and of Area D (17m deep), with strong tide currents on right. 
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Footprint Location and Bottom Detection Failures. 

As previously described in section 3.3 (Figure 14), the slant range depends on the altitude 

of the transducer and the grazing angle. For a given slant range and source level, the ability to 

achieve sufficient SNR depends on the slant range, the bottom type and frequency, the two main 

varying factors that define this being the TL, and the Sb. In the event of insufficient SNR, the 

bottom detection process was not successful, and that ping was recorded as rejected. 

In this thesis, the areas chosen were between 14m (Area “C”) and 55m (Area “A”) deep. 

Area “A” was not only the deepest site but also had the sediment with lowest Sb, contributing to 

the lack of received signal at higher frequencies and lower grazing angle. Figure 46 and Figure 47 

plot the position XYZ in meters of each subset with a dot, based on the heading, pitch, roll and 

range (heave was neglected), to show that the seafloor was sampled in different azimuths. It can 

be seen that the number of rejected soundings in “Area A” is larger than in “Area C” due to the 

depth and the type of seafloor. The ES333-7CD has more gaps due to its lower SNR, mainly on 

“Area A”, where it is deeper. One way to avoid that in the future, and also to undertake this 

procedure in even deeper waters, would be to deploy the equipment closer to the seafloor by 

suspending them on a cable below the vessel (as was done by Gensane, 1989). This of course 

comes with additional complications about how to achieve the elevation and azimuth rotations. 

Another advantage of being closer to the seafloor is that the horizontal distance would be shorter, 

reducing the required radius of the area needed with the same sediments. 
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Figure 47 - 3D plot for each Tc with the position in meters of each subset of data according to its grazing angle, range, 

and azimuth for “Area C”, with an average depth of 14m. All rejected pings are in gray 

Figure 46 - 3D plot for each Tc with the position in meters of each subset of data according to its grazing angle, range, 

and azimuth for “Area A”, with an average depth of 55m. All rejected pings are in gray 
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Figure 48 illustrates a zoomed in subset of the figures above which demonstrates that from 

each ping, by using the phase ramp, rather than just one sounding, several subsets can be acquired 

that represent more observation points of the seafloor. 

  

Figure 48 – View from above, on “Area A”, zoomed in 10x10m. 
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Extraction of Echo Envelope from the Echogram  

As first recorded, the data is viewed as a conventional echogram with successive traces 

plotted sequentially. The seabed echo will vary from a minimum slant range equivalent to the local 

depth, to a maximum of ~ 5x that minimum range at the lowest grazing angles.  

As part of the first step in the bottom detection process, a window is extracted around the 

initial estimate of the location of the center of the beam. As discussed earlier, that window length 

reflected the approximate expected length of the echo assuming a beam width of ±5 degrees. This 

was done for memory management reasons. Should the initial detection estimate be faulty (as was 

often the case at longest ranges with the ES333), the phase information would not indicate the 

expected ramp and that ping was thus rejected. However, the full echogram can still be reproduced 

if intended, since the raw data is preserved.  

As the plate is rotated, with an increment of roll, the grazing angle gets lower and the range 

of the seafloor increases. The echograms illustrated in Figure 50 and Figure 49 show the detected 

bottom of “Area A”, the muddy site 55m deep, with its range varying with the roll, and it is 

noticeable how much noisier that range estimate gets at larger ranges. Notice that the color bar 

represents the scale of the MF signal corrected by the range, in dB, and that the transceiver with 

higher frequencies have weaker signal response, to the point that the ES333-7CD cannot detect the 

bottom correctly at longer range. 
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Figure 49 - Echogram of Area A, average depth 55m. 

Figure 50 - Echogram of ES333-7CD at Area A with the correspondent Roll in red for each ping. Notice that 

increasing the roll, the range also increases. 
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As a contrast, the echograms of Area C, with average depth of 14m, and a muddy sand 

bottom, are presented in Figure 51 and Figure 52. As can be seen, the bottom is easily detected for 

all transducers and the ES333-7CD does not show as much noise as in Area A. 

 

  

Figure 51 - Echogram of Area C, average depth 14m. 

Figure 52 - Echogram of ES333-7CD at Area C with the correspondent Roll in red for each ping. Notice that 

increasing the roll, the range also increases. 
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Implementation of each applied correction. 

The corrections added to the MF signal that will provide the final absolute Sb response are 

described below. 

- Corrections for Transmission Loss 

 This can be separated into that component due just to spreading (Figure 53 left), which is 

not frequency dependent and absorption which is frequency and environment (T and S) dependent 

(Figure 53 right). 

 

- Correction from sphere calibration for MRA. 

Based on the procedures outlined in section 4.1 (see Figure 41), calibration corrections for 

each of the four transducers are applied in frequency to the FFT of the subset of the matched filter 

output. 

 

  

Figure 53 - On the left-hand side, a 2D plot of the losses by spreading with range. On the right-hand side, the 3D 

plot of absorption loss by frequency and range, with the environmental parameters of "Area A." The other sites would have 

similar curves for absorption since approximately the same parameters were observed. 
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- Correction for beam pattern for subsets off the boresight 

Based on the previously described calibration the correction for echoes at angles way from 

the MRA were applied by transducer and frequency. This was used in two ways: to estimate the 

effective along track beam width, and to correct for the across track signature superimposed 

response on each of the subsets. 

As can be seen in Figure 54, as expected, for each transducer, the beam width narrows with 

increasing frequency. This should be a smooth variation, but for the ES333 the calibration shows 

a slight irregularity as noted earlier. 

  

Figure 54 - Beam pattern for each transducer based on the sphere calibration. 
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Ensonified Area Correction: 

 The correction for Area is calculated for each subset as a function of frequency dependent 

beam pattern, grazing angle, range, and FFT length as explained previously. To illustrate the 

typical frequency and grazing angle dependence, Figure 55 represents a model of the values which 

was made based on the actual beam pattern obtained by the sphere calibration, but in a flat seafloor 

14m deep. Actual values for area correction are noisier since the grazing angle and range are not 

perfectly correspondent. 

Note the abrupt step at high grazing angles. This represents the estimated shift from a beam 

width limited to a pulse/FFT-length limited ensonified area. And the gradual drop and then rise in 

the ensonified area illustrates the two competing aspects of the growing along track footprint and 

the shortening projected FFT length (the width of the annulus). For each transducer, the ensonified 

area systematically shrinks with frequency as the beam widths (both along and across) shrink.   

Figure 55 - Values of 10log(A), being "A" the ensonified area, considering the beam pattern calculated on the sphere 

calibration modeled in a flat bottom with 14m of depth. 
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Comparing response, before and after applied corrections: 

For each ping, one or more subsets of the matched filtered output are extracted from around 

the estimated beam center. Each subset provides a unique spectrum for that transducer and grazing 

angle uncorrected for the frequency dependent variables (attenuation, beam pattern, calibration, 

and area normalization).  Before binning and averaging, these raw observations include the 

incoherent speckle. The uncorrected results are illustrated on Figure 56-top and show abrupt 

transducer to transducer offsets as well as gradual variations within a single transducer reflecting 

all the frequency dependent terms.  The corrections outlined above are then combined and added 

to those and presented in Figure 56-bottom. If the corrections and calibration are adequate, the 

resulting data should now show a common trend. The next step is to average these data to provide 

a mean (and variance) estimate for each frequency and grazing angle bin.  

After narrowing all the data in bins and cleaning out the responses that seemed to be 

incorrect (bottom mis-tracking or low SNR), the plots on Figure 57 are representative of the 

angular and frequency response curves of the absolute Sb for each site. 

These data are now available to use as an absolute reference, against which the backscatter 

strength estimates from any multibeam sonar can the compared. For a typical narrow band system 

(most simply a single sector MBES with a CW pulse), the closest corresponding frequency bin can 

be extracted.  

Note that, while five different seabed responses are provided, only one would typically be 

needed to do the calibration. If the same multibeam were to acquire Sb data over two or more of 

these sites, the calibration result (the mismatch between the MBES Sb and the reference) should 

be identical. 
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Figure 56 - Cloud of points of BS for each subset within each frequency slot for Area E before and after the 

corrections. 

Sb 

Sb 



92 

 

  

Figure 57 - Absolute BS of each site 
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4.3.  OBSERVATIONS ON SEABED RESULTS 

Trends in frequency 

Although the main aim of this research is to provide a reference against which a specific 

multibeam sonar’s backscatter can be calibrated, a byproduct was the measurement of the actual 

seabed response over a remarkably wide range of frequencies. As early as McKinney and 

Anderson (1964), it was recognized that there was a frequency dependence. Those earliest studies 

similarly covered a wide range of sediment type (muds to rock) and employed multiple 

transducers, in that case all calibrated with reference to the TS of a 28-inch sphere. The frequency 

dependence, however, was only obtained using CW pulses at discrete frequencies (12, 25, 30, 45, 

50, 70, 100, 180, 290 kHz) spaced more widely at the upper end of the frequency range. The data 

acquired herein, utilizing FM pulses, allows a continuous assessment of that frequency 

dependence. And a similarly wide range of sediment types were examined (mud to cobbles). Grain 

size estimation is currently only by eye (due to COVID closure of grain size laboratory facilities). 

Nevertheless, notable trends exist and are reported here. 

From the data stored in bins, it is possible to create other plots to better describe the 

characteristics within the data. The trend in frequency can be seen at different grazing angles for 

each site. Figure 58 illustrates those trends at four representative grazing angles. 

Superimposed over the average frequency trend is an apparent rapid fluctuation. While this 

could be inherent noise in the data, the high level of averaging allowed through the use of subsets, 

would suggest another cause. Figure 59 illustrates the use of smoothing applied to each transducer 

separately. One can see that, although offset, each of the five sediment types exhibit a near identical 

rapid variation with frequency. This suggests that imperfections in the calibration rather than a 

physical phenomenon.  
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Additionally, between each transducer’s results there appear slight offsets, again indicating 

a slight calibration remnant. To address this, in Figure 59, a curve fit is applied across all transducer 

results. This allows the visualization of trend (and permits interpolation across the ES200-ES333 

frequency gap).  

A third aspect that needs to be addressed is the high noise content in the muddy sediment 

results above 200 kHz. As discussed previously this is an unavoidable result of the highest slant 

ranges due to the 55m transducer elevation, combined with the lowest seabed backscatter strength 

measurements. To deal with this, the mud curve has been manually culled at the lower grazing 

angles. 

Figure 58 - Frequency trend of BS for all sites at grazing angles of (rotating clockwise)20, 40, 60 and 80 degrees. 

The original data from the bins are in gray and the smoothed response are colored. 
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Figure 59 uses cleaned data to determine a curve fitting to the frequency response across 

the full 45-400 kHz range. To illustrate the changing frequency trends with grazing angles two 

representative grazing angles of 75 and 35 degrees are used as illustration. Three distinct frequency 

trends are most noticeable, associated with the coarser/higher impedance sediments (Areas B and 

E), the sandy sediments (areas C and D) and the muddy site (Area A). 

Whilst the muddy site preserves the same strong drop in Sb with frequency at different 

grazing angles (the reversal in the trend is probably suspect above ~ 200 kHz), the frequency trend 

in the sandy sites change significantly, decreasing with frequency at the higher grazing angle to 

increasing with frequency at lower grazing angles. Finally, the coarsest sites show the flattest 

frequency response at both grazing angles, exhibiting just a slightly drop with frequency, with 

different slope at different grazing angles. For all sediment types, the frequency dependence 

notably flattens with increasing frequency. 

Figure 59 - Frequency trend at grazing angles of 75o (left) and 35o (right) with fitting curves to better visualize the trend. 
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The frequency trends seen herein are similar to those reported previously although few high 

grazing angle comparisons are available. For example, for sands, McKinney and Anderson (1964) 

saw a positive trend with frequency at lower (10˚) grazing angle for. It is harder to compare these 

results with the 10-30˚ data from four sandy sites performed in the 1980s (Boehme et al., 1985, 

Boehme et al., 1988, Stanic et al., 1988, Stanic et al., 1989) as the frequency trends there were 

weak and the individual frequency results showed no consistent trend. For the coarser sediments, 

McKinney and Anderson reported an almost flat response for solid rock and Jackson et al. (1986b) 

show a weak positive trend with frequency. 

All these previous results, however, involved sparse frequency sampling and rarely 

addressed near normal incidence. The results reported herein, have a much more continuous view 

of the frequency dependence and always extend to normal incidence. As such, these results may 

guide future efforts in multi-spectral backscatter classification. To date these efforts (Hughes 

Clarke, 2015, Brown et al., 2019, Gaida et al., 2020) have taken advantage of available bandwidth 

in shelf-mapping sonars. As the frequency dependence generally is weakest at the highest 

frequencies, less information is probably gained by collecting 200 v. 400 kHz rather than <=100 

kHz v. ~300 kHz. 

Trends in angle 

While the frequency dependence is illuminating, most multibeam systems only operate 

within a narrow frequency band. Within that band, the calibration has to be undertaken over the 

full range of grazing angles. If properly calibrated, the shape of that angular response is the primary 

output of the mapping system and it can directly be used to attempt sediment classification 

(Fonseca et al., 2007). Additionally, however, for the purpose of mosaic (plan view spatial maps 

of backscatter) construction one of the main required image processing steps is to flatten the 

angular response. Any variation in that shape with sediment type complicates this. To help the 

reader visualize the variation in that curve shape as a function of sediment type and frequency, 

Figure 60 presents the classical visualization of the angular response curve for three different 

frequencies for each transducer.  
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Figure 60 - Angular response curves of different frequencies with color code for Areas: A - Mud (red), 

B - Shell hash (green), C - Muddy Sand (blue), D - Sand (dark blue), and E - Cobbles (dark green) 
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Depending on the frequency, the angular response of two different sites can vary between 

similar to strongly contrasting. Take for example, the response of the sites Area C (“Muddy Sand”) 

and D (“Sand”) to observe how similar their curves are at 123kHz and how different they become 

at 200 kHz.  

In Figure 60, a curve fit is attempted to illustrate the trends. As can be seen, however, above 

200 kHz for the mud curves where noise is contaminating the lowest grazing angles, the rise in Sb 

at the lowest grazing angles is almost definitely an artefact. Similarly, the shell hash curves as seen 

through the ES333 transducer, even though a stronger average Sb, has problems at the lowest 

grazing angles as the site was deep (47m).  

Investigating the ripple artifact in the frequency trend 

While the general frequency trends are clear, superimposed on top of all the curves is a 

small magnitude (generally < +/-2dB) rapid variation in frequency that appears systematic as it is 

present largely irrespective of sediment type and grazing angle. In order to analyze it, that trend 

has been extracted and is presented in figures 61 and 62.   

Figure 61 - Difference of the bottom response to the fitting curve for the frequency trend at steps of 5o of grazing angle. 
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The extracted residuals are derived by subtracting a smooth curve fit to the 45-450 kHz 

trend in Sb within a narrow range of grazing angles from the corresponding observations. As can 

be seen, irrespective of either the grazing angle or the sediment type (all 5 sediment type data are 

plotted here), the frequency trend always shows the same rapid fluctuations with frequency.  This 

strongly suggests that this is a result of imperfect compensation for frequency dependent 

transducer calibrations rather than a seafloor response. To investigate this, two aspects were 

considered, MRA calibration and beam pattern response. 

As noted in the sphere calibration, the apparent MRA corrections for all transducers except 

the 200 kHz exhibited a characteristic ripple on the outer edges of their bandwidth (see figure 38). 

One possible explanation for the residuals is that the normalization of the sphere response by the 

magnitude of the autocorrelation of this design pulse (see formula at end of section 3.5) was not 

applied correctly. The attempt at compensating for this by smoothing (see figure 39) was only 

partially successful. To test this hypothesis, the difference between the smoothed and original 

calibration was derived (Figure 63) and then plotted against the residuals (Figure 64). This reveals 

that there is indeed some correlation.  

 

Figure 62 - Difference of the bottom response to the fitting curve for the frequency trend for grazing angle from 41o-70o. 

Sb 
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Figure 63 - Difference of the sphere calibration response to the fitting curve in the frequency domain. 
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The alternate possibility is that the residuals come from imperfect beam pattern 

compensation which should vary only smoothly with frequency. Figure 65, however, illustrates 

the difference between the applied beam pattern corrections and a smoothed fit. The residuals do 

not appear either significant or correlated with the seafloor residuals suggesting that this is not the 

source of the problem.  

Figure 64 - Comparison between the bias presented on the bottom response (color coded by each area) with the bias 

inherited from the sphere calibration (magenta). 
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Although the ripple in the sphere MRA calibration does not match exactly the ripples in 

the final bottom response (Figure 64), there are some considerable similarities suggesting that this 

might be the source of the problem. This may be exacerbated by the mismatch in the size of FFT 

length for the sphere calibration and the seafloor subset. One possible solution, not tested, to avoid 

this effect might be using the same FFT length for the sphere calibration as for the subsets of the 

bottom. In summary, a deeper investigation is clearly needed to properly address what might be 

causing these residual ripples. 

  

Figure 65 – Minimal difference of the beam pattern response to the fitting curve in the frequency 

domain. 
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5. CONCLUSION 

The method presented in this thesis is based on an extension of previous techniques that 

have been developed progressively over time since the 1950s in an attempt to acquire absolute 

backscatter response from the seafloor. 

As part of this thesis, a new method has been developed and tested for acquiring calibrated 

seabed backscatter strength over a wide range of frequencies (45-450 kHz) the full range of grazing 

angles (90 to < 5) for a wide range of seabed types (muds to cobbles). These data were collected 

for the purpose of providing a reference data set, against which future backscatter observation from 

multibeam sonar systems can be cross-calibrated. 

To achieve the wide total bandwidth, the experiment employed four broad band split beam 

transducers and transceivers, each of which utilized FM pulses that swept through the available 

bandwidth within each transducer. Each transducer was calibrated against the modelled target 

strength of a precisely machined sphere in the standard manner reported by Foote et al. (1987). 

The sphere calibration provides the beam pattern and the corrections for the Maximum Response 

Axis (MRA) as a function of frequency for each transducer. 

The transducers were rigidly mounted on a suspended plate with a co-located orientation 

sensor. The plate was then deployed over a homogenous area of the seabed and the transducers 

activated in turn while being manually rotated over the full range of grazing and azimuth angles 

multiple times to have a good statistical collection of seabed backscatter intensity observations.  

The data collected is processed applying the sphere calibration parameters along with the 

compensations of the Transmission Losses (TL) and Ensonified Area to produce the reference data 

of the bottom of each site. 
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The approach implemented was an extension and combination of the FM work of Weber 

and Ward (2015), and the mechanically rotated CW approach of Eleftherakis et al., (2018).  A 

notable difference in the deployment geometry was the use of an anchored, rather than moving 

vessel, allowing simpler manual rotations. Successful application of this approach relies on the 

chosen site being suitably stable in time and homogenous in space. 

Sites were chosen based on archived multibeam bathymetry and backscatter data provided 

by the CHS. This was reprocessed and analyzed to identify suitable sites. To confirm the stability 

of the sites, reconnaissance EM2040 and EM710 bathymetry and backscatter data were acquired 

over the immediate calibration area. These could be utilized in a follow-on project to attempt full 

calibration. 

The net result of the described processing sequence was a measurement of the absolute 

bottom Sb response over a wide range of frequencies and grazing angles, suitable for use as a 

reference for cross calibration. The next step would be to collect the backscatter response of the 

same seafloor with an MBES, apply the compensations for TL and ensonified area and compare 

with the reference in the range of frequency operated by the MBES. The difference between the 

response obtained by the uncalibrated system and the reference will be the calibration parameters 

for such system. 

Although this thesis presented references for five different sites, a practical operating 

method would neither require multiple areas nor a known seafloor type as long as it is demonstrated 

to be homogeneous. Rather, a strategic analysis conducted by the interested survey institute would 

be crucial to determine how many and where the sites should be to benefit most for the calibration 

of the sonar systems of the fleet.  

The method seems to be reliable as four independent transducers had applied independent 

sphere calibration parameters and produced final results that revealed a smooth and continuous 

transition on the edge of the frequency range of each transducer in comparison to its neighbor 

indicating that the response is mostly consistent. 
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Recognized Limitations 

While the approach did produce usable results, some weaknesses were identified in the 

applied method that would benefit from future analysis. Additionally, a number of operational 

limitations were recognized that might be improved upon in future deployments. 

Weaknesses and limitations include: 

Imperfect handling of rapid frequency oscillations in the calibration. 

Driven by the need for a long FTT window for the calibration and the desire for a shorter 

FFT window for the seabed data processing, the mismatch in spectral resolution between the 

calibration and seabed data appears to have resulted in a small (~±1 dB) systematic ripple in the 

frequency trend in all the data collected.  

Sub-optimal choice of calibration sphere for the 333 kHz transducer 

This resulted in both calibration offsets and imperfect beam pattern measurement. It is 

believed to be a result of the high level of nulls and sloped inter-nulls in the modelled TS response 

of the 38.1 mm WC sphere. In hindsight, a smaller diameter sphere might have improved this. 

Limiting SNR for the altitudes employed.  

As part of the search for suitable sites, depths ranged from 15 to 55m. Subsequent analysis 

of the data indicate that for the lowest grazing angles and lowest backscatter sediment types, the 

data were compromised. Further investments in this method should consider the possibility of 

developing a plate that can be deployed closer to the seafloor both to avoid excessive TL and to 

narrow the required area to be homogeneous, mostly in areas with soft sediment type. 
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Imperfect calculation of the ensonified area. 

The typical simplifications used in narrower beam multibeam ensonified area calculations 

was employed herein. These are most sensitive at the highest grazing angles as the transition from 

pulse to beam-width limited area occurs. Apparent step-like features in the observed angular 

response in these regions suggest that a more sophisticated calculation of the true arcuate 

ensonified area might be useful. This is probably compounded by the difficulty of obtaining precise 

grazing angles at these near-normal-incidence geometries. 

Imperfect measurement of grazing angle near normal incidence 

Because of the limitations in phase detection near normal incidence, grazing angles under 

those geometries were calculated using just the transducer frame orientation. While this does allow 

full correction for both pitch and roll rotations, it does not account for seafloor slope. Inversely, 

for the lower grazing angle data, which utilized phase data, while the across-track slope is well 

defined (and inherently included the refracted ray path), it fails to properly account for any along 

track slope. 

An additional complication is that near nadir, the instantaneous ensonified area occupies a 

wide range of grazing angles (~5 degrees) both along and across-track, thereby unavoidably 

smearing the angular responses within the beam width. A higher definition is only possible for 

angles of incidence at which the echo envelope is long enough to distinguish angles within the 

phase that permit the creation of multiple subsets. 
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APPENDIX I 

Pictures of the bottom samples for each area. 
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Nautical Chart CHS 3441 - Haro Strait Boundary Pass and Satellite Channel with the location of each area. 
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AREA B (Prevost Passage) – Shell hash 
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AREA C (Van Isle) – Muddy sand 
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AREA D (Seapen Site) – Sand 
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AREA E (Miners Channel) – Cobbles 
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APPENDIX II 

MATLAB codes. 

EK80data_processor_app.m 

classdef EK80data_processor_app < matlab.apps.AppBase 

    

    % Properties that correspond to app components 

    properties (Access = public) 

        UIFigure                        matlab.ui.Figure 

        Panel                           matlab.ui.container.Panel 

        TransducerusedButtonGroup       matlab.ui.container.ButtonGroup 

        AlltransducersButton            matlab.ui.control.RadioButton 

        kHzButton                       matlab.ui.control.RadioButton 

        kHzButton_2                     matlab.ui.control.RadioButton 

        kHzButton_3                     matlab.ui.control.RadioButton 

        kHzButton_4                     matlab.ui.control.RadioButton 

        OperationLabel                  matlab.ui.control.Label 

        AngledistinctionEditFieldLabel  matlab.ui.control.Label 

        AngledistinctionEditField       matlab.ui.control.NumericEditField 

        MaximumDepthmEditFieldLabel     matlab.ui.control.Label 

        MaximumDepthmEditField          matlab.ui.control.NumericEditField 

        MinimumDepthmEditFieldLabel     matlab.ui.control.Label 

        MinimumDepthmEditField          matlab.ui.control.NumericEditField 

        AciditypHEditFieldLabel         matlab.ui.control.Label 

        AciditypHEditField              matlab.ui.control.NumericEditField 

        SoundspeedmsEditFieldLabel      matlab.ui.control.Label 

        SoundspeedmsEditField           matlab.ui.control.NumericEditField 

        TemperatureCEditFieldLabel      matlab.ui.control.Label 

        TemperatureCEditField           matlab.ui.control.NumericEditField 

        SalinityppmEditFieldLabel       matlab.ui.control.Label 

        SalinityppmEditField            matlab.ui.control.NumericEditField 

        InputParametersLabel            matlab.ui.control.Label 

        SelectfilesButton               matlab.ui.control.Button 

        Switch2                         matlab.ui.control.ToggleSwitch 

        Panel_2                         matlab.ui.container.Panel 

        PlotButton                      matlab.ui.control.Button 

         

        BeforeTargetEditFieldLabel      matlab.ui.control.Label 

        BeforeTargetEditField           matlab.ui.control.NumericEditField 

        AfterTargetEditFieldLabel       matlab.ui.control.Label 

        AfterTargetEditField            matlab.ui.control.NumericEditField 

  

        % Variable EK80_data 

        EK80_data; 

     end 
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    % Component initialization 

    methods (Access = private) 

         

        % Create UIFigure and components 

        function createComponents(app) 

             

            % Create UIFigure and hide until all components are created 

            app.UIFigure = uifigure('Visible', 'off'); 

            app.UIFigure.Position = [100 100 549 434]; 

            app.UIFigure.Name = 'UI Figure'; 

             

            % Create Panel 

            app.Panel = uipanel(app.UIFigure); 

            app.Panel.Position = [5 15 260 410]; 

             

            % Create Switch2 

            app.Switch2 = uiswitch(app.Panel, 'toggle'); 

            app.Switch2.Items = {'Bottom', 'Sphere'}; 

            app.Switch2.Orientation = 'horizontal'; 

            app.Switch2.FontSize = 14; 

            app.Switch2.FontWeight = 'bold'; 

            app.Switch2.FontColor = [0.851 0.3255 0.098]; 

            app.Switch2.Position = [107 308 45 20]; 

            app.Switch2.Value = 'Bottom'; 

             

            % Create TransducerusedButtonGroup 

            app.TransducerusedButtonGroup = uibuttongroup(app.Panel); 

            app.TransducerusedButtonGroup.AutoResizeChildren = 'off'; 

            app.TransducerusedButtonGroup.Title = 'Transducer used'; 

            app.TransducerusedButtonGroup.FontSize = 14; 

            app.TransducerusedButtonGroup.Position = [64 106 131 178]; 

             

            % Create AlltransducersButton 

            app.AlltransducersButton = 

uiradiobutton(app.TransducerusedButtonGroup); 

            app.AlltransducersButton.Text = 'All transducers'; 

            app.AlltransducersButton.Position = [11 131 102 22]; 

            app.AlltransducersButton.Value = true; 

             

            % Create kHzButton 

            app.kHzButton = uiradiobutton(app.TransducerusedButtonGroup); 

            app.kHzButton.Text = '#1'; 

            app.kHzButton.Position = [11 101 66 22]; 

             

            % Create kHzButton_2 

            app.kHzButton_2 = uiradiobutton(app.TransducerusedButtonGroup); 

            app.kHzButton_2.Text = '#2'; 

            app.kHzButton_2.Position = [11 71 66 22]; 

             

            % Create kHzButton_3 

            app.kHzButton_3 = uiradiobutton(app.TransducerusedButtonGroup); 

            app.kHzButton_3.Text = '#3'; 

            app.kHzButton_3.Position = [11 41 66 22]; 

             

            % Create kHzButton_4 

            app.kHzButton_4 = uiradiobutton(app.TransducerusedButtonGroup); 
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            app.kHzButton_4.Text = '#4'; 

            app.kHzButton_4.Position = [11 11 60 22]; 

             

            % Create OperationLabel 

            app.OperationLabel = uilabel(app.Panel); 

            app.OperationLabel.HorizontalAlignment = 'center'; 

            app.OperationLabel.FontSize = 16; 

            app.OperationLabel.FontWeight = 'bold'; 

            app.OperationLabel.Position = [42 361 176 22]; 

            app.OperationLabel.Text = 'Operation'; 

             

            % Create Panel_2 

            app.Panel_2 = uipanel(app.UIFigure); 

            app.Panel_2.Position = [270 15 250 410]; 

             

            % Create SalinityppmEditFieldLabel 

            app.SalinityppmEditFieldLabel = uilabel(app.Panel_2); 

            app.SalinityppmEditFieldLabel.HorizontalAlignment = 'right'; 

            app.SalinityppmEditFieldLabel.Position = [42 322 79 22]; 

            app.SalinityppmEditFieldLabel.Text = 'Salinity (ppm)'; 

             

            % Create SalinityppmEditField 

            app.SalinityppmEditField = uieditfield(app.Panel_2, 'numeric'); 

            app.SalinityppmEditField.Position = [177 322 40 22]; 

            app.SalinityppmEditField.Value = 30; 

             

            % Create TemperatureCEditFieldLabel 

            app.TemperatureCEditFieldLabel = uilabel(app.Panel_2); 

            app.TemperatureCEditFieldLabel.HorizontalAlignment = 'right'; 

            app.TemperatureCEditFieldLabel.Position = [42 292 98 22]; 

            app.TemperatureCEditFieldLabel.Text = 'Temperature (°C)'; 

             

            % Create TemperatureCEditField 

            app.TemperatureCEditField = uieditfield(app.Panel_2, 'numeric'); 

            app.TemperatureCEditField.Position = [177 292 40 22]; 

            app.TemperatureCEditField.Value = 11; 

             

            % Create SoundspeedmsEditFieldLabel 

            app.SoundspeedmsEditFieldLabel = uilabel(app.Panel_2); 

            app.SoundspeedmsEditFieldLabel.HorizontalAlignment = 'right'; 

            app.SoundspeedmsEditFieldLabel.Position = [42 262 107 22]; 

            app.SoundspeedmsEditFieldLabel.Text = 'Sound speed (m/s)'; 

             

            % Create SoundspeedmsEditField 

            app.SoundspeedmsEditField = uieditfield(app.Panel_2, 'numeric'); 

            app.SoundspeedmsEditField.Position = [177 262 40 22]; 

            app.SoundspeedmsEditField.Value = 1490; 

             

           % Create AciditypHEditFieldLabel 

            app.AciditypHEditFieldLabel = uilabel(app.Panel_2); 

            app.AciditypHEditFieldLabel.HorizontalAlignment = 'right'; 

            app.AciditypHEditFieldLabel.Position = [42 232 68 22]; 

            app.AciditypHEditFieldLabel.Text = 'Acidity (pH)'; 

             

            % Create AciditypHEditField 

            app.AciditypHEditField = uieditfield(app.Panel_2, 'numeric'); 
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            app.AciditypHEditField.Position = [177 232 40 22]; 

            app.AciditypHEditField.Value = 8; 

             

            % Create MinimumDepthmEditFieldLabel 

            app.MinimumDepthmEditFieldLabel = uilabel(app.Panel_2); 

            app.MinimumDepthmEditFieldLabel.HorizontalAlignment = 'right'; 

            app.MinimumDepthmEditFieldLabel.Position = [42 202 114 22]; 

            app.MinimumDepthmEditFieldLabel.Text = 'Minimum Depth  (m)'; 

             

            % Create MinimumDepthmEditField 

            app.MinimumDepthmEditField = uieditfield(app.Panel_2, 'numeric'); 

            app.MinimumDepthmEditField.Position = [177 202 40 22]; 

            app.MinimumDepthmEditField.Value = 5; 

             

            % Create MaximumDepthmEditFieldLabel 

            app.MaximumDepthmEditFieldLabel = uilabel(app.Panel_2); 

            app.MaximumDepthmEditFieldLabel.HorizontalAlignment = 'right'; 

            app.MaximumDepthmEditFieldLabel.Position = [42 172 111 22]; 

            app.MaximumDepthmEditFieldLabel.Text = 'MaximumDepth (m)'; 

             

            % Create MaximumDepthmEditField 

            app.MaximumDepthmEditField = uieditfield(app.Panel_2, 'numeric'); 

            app.MaximumDepthmEditField.Position = [177 172 40 22]; 

            app.MaximumDepthmEditField.Value = 10; 

             

             % Create BeforeTargetFieldLabel 

            app.BeforeTargetEditFieldLabel = uilabel(app.Panel_2); 

            app.BeforeTargetEditFieldLabel.HorizontalAlignment = 'right'; 

            app.BeforeTargetEditFieldLabel.Position = [42 142 99 22]; 

            app.BeforeTargetEditFieldLabel.Text = 'Before Target (m)'; 

             

            % Create BeforeTargetEditField 

            app.BeforeTargetEditField = uieditfield(app.Panel_2, 'numeric'); 

            app.BeforeTargetEditField.Position = [177 142 40 22];  

            app.BeforeTargetEditField.Value = 1.7; 

  

            % Create AfterTargetFieldLabel 

            app.AfterTargetEditFieldLabel = uilabel(app.Panel_2); 

            app.AfterTargetEditFieldLabel.HorizontalAlignment = 'right'; 

            app.AfterTargetEditFieldLabel.Position = [42 112 88 22]; 

            app.AfterTargetEditFieldLabel.Text = 'After Target (m)'; 

             

            % Create AfterTargetEditField 

            app.AfterTargetEditField = uieditfield(app.Panel_2, 'numeric'); 

            app.AfterTargetEditField.Position = [177 112 40 22]; 

            app.AfterTargetEditField.Value = 1; 

             

            % Create AngledistinctionEditFieldLabel 

            app.AngledistinctionEditFieldLabel = uilabel(app.Panel_2); 

            app.AngledistinctionEditFieldLabel.HorizontalAlignment = 'right'; 

            app.AngledistinctionEditFieldLabel.Position = [42 82 109 22]; 

            app.AngledistinctionEditFieldLabel.Text = 'Angle distinction 

(°)'; 

             

            % Create AngledistinctionEditField 
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            app.AngledistinctionEditField = uieditfield(app.Panel_2, 

'numeric'); 

            app.AngledistinctionEditField.Position = [177 82 40 22]; 

            app.AngledistinctionEditField.Value = 10; 

             

            % Create InputParametersLabel 

            app.InputParametersLabel = uilabel(app.Panel_2); 

            app.InputParametersLabel.HorizontalAlignment = 'center'; 

            app.InputParametersLabel.FontSize = 15; 

            app.InputParametersLabel.FontWeight = 'bold'; 

            app.InputParametersLabel.Position = [42 361 176 22]; 

            app.InputParametersLabel.Text = 'Input Parameters'; 

             

            % Create SelectfilesButton 

            app.SelectfilesButton = uibutton(app.Panel, 'push'); 

            app.SelectfilesButton.ButtonPushedFcn = createCallbackFcn(app, 

@SelectfilesButtonPushed, true); 

            app.SelectfilesButton.BackgroundColor = [0.5 0.8 0.3]; 

            app.SelectfilesButton.FontSize = 14; 

            app.SelectfilesButton.FontWeight = 'bold'; 

            app.SelectfilesButton.Position = [80 46 100 24]; 

            app.SelectfilesButton.Text = 'Select files'; 

             

            % Create PlotButton 

            app.PlotButton = uibutton(app.Panel_2, 'push'); 

            app.PlotButton.Text = 'Plot  >'; 

            app.PlotButton.BackgroundColor = [1 0.8 0.5]; 

            app.PlotButton.FontSize = 14; 

            app.PlotButton.FontWeight = 'bold'; 

            app.PlotButton.Position = [101 45 58 24]; 

            app.PlotButton.ButtonPushedFcn = createCallbackFcn(app, 

@PlotButtonPushed, true); 

             

             % Show the figure after all components are created 

            app.UIFigure.Visible = 'on'; 

        end 

    end 

     

    % Callbacks that handle component events 

    methods (Access = private) 

         

        % Button pushed function: SelectfilesButton 

        function [EK80_data]=SelectfilesButtonPushed(app, event) 

                app.EK80_data=Pressed_select_files(app,event); 

        end 

         

        % Button pushed function: PlotplotButton 

        function PlotButtonPushed(app, event) 

            Pressed_plot 

        end 

    end 

     

    % App creation and deletion 

    methods (Access = public) 

         

        % Construct app 
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        function app = EK80data_processor_app 

             

            % Create UIFigure and components 

            createComponents(app) 

             

            % Register the app with App Designer 

            registerApp(app, app.UIFigure) 

             

            if nargout == 0 

                clear app 

            end 

        end 

         

        % Code that executes before app deletion 

        function delete(app) 

             

            % Delete UIFigure when app is deleted 

            delete(app.UIFigure) 

        end 

    end 

end 
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Pressed_select_files.m 

% to be used with the app EK80data_processor_app 

function [EK80_data]=Pressed_select_files(app,~) 

%% get files 

  

filelocation = 'F:\Thesis\Data\Field_BC\12JUN\Calibration'; 

[fname,fpath,~] = uigetfile(strcat(filelocation,'\*.raw'),'Select raw 

files','MultiSelect','on'); 

  

if iscell(fname) 

    numfiles = size(fname,2); 

else 

    numfiles = 1; 

    if fname==0 

        disp('No files selected') 

        EK80_data=[]; 

        return 

    end 

end 

  

%% Parse data 

if strcmp(app.Switch2.Value,'Bottom') 

    if app.AlltransducersButton.Value % if All tc were selected 

        profile on 

        for Channel=1:4 

            depth_ini=app.MinimumDepthmEditField.Value; 

            depth_end=app.MaximumDepthmEditField.Value; 

            [EK80_data(Channel),~] = 

ParseEK80_data_extracts(fpath,fname,Channel,numfiles,depth_ini,depth_end); 

        end 

    else 

        Channel = [app.kHzButton.Value, app.kHzButton_2.Value, 

app.kHzButton_3.Value, app.kHzButton_4.Value]; 

        [~,Channel]=max(Channel); 

        depth_ini=app.MinimumDepthmEditField.Value; 

        depth_end=app.MaximumDepthmEditField.Value; 

        EK80_data = 

ParseEK80_1tc_extracts(fpath,fname,Channel,numfiles,depth_ini,depth_end); 

    end 

else % if app.Switch2.Value = 'Sphere'; 

    if app.AlltransducersButton.Value % if All tc were selected 

        disp('Bad attempt on Calibrating with ALL the transducers at the same 

time. Choose one at a time.') 

         

    else 

        Channel = [app.kHzButton.Value, app.kHzButton_2.Value, 

app.kHzButton_3.Value, app.kHzButton_4.Value]; 

        [~,Channel]=max(Channel); 

        depth_ini=app.MinimumDepthmEditField.Value; 

        depth_end=app.MaximumDepthmEditField.Value; 

        EK80_data = 

ParseEK80_1tc_extracts(fpath,fname,Channel,numfiles,depth_ini,depth_end); 

        %         EK80_data = ParseEK80(fpath,fname,Channel,numfiles); 
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    end 

end 

  

% save EK80_data variable to a file 

% save('C:\Users\Public\Documents\Simrad\EK80\Data\Field_BC\Mat 

files\05JUN_CH4.mat','EK80_data'); 

  

display('Insert the parameters and press buttom to Plot') 

end 
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ParseEK80_data_extracts.m 

function [EK80Data,TWTT] = 

ParseEK80_data_extracts(fpath,fname,Channels,numfiles,depth_ini,depth_end) 

% Read and parse EK80 file 

%   Input: 

%           filename                = location of .RAW file 

%   Output: 

%           NMEA                    = position strings 

%           configdata              = EK80 configuration data 

%           echogram_SP             = approximate sound pressure 

%           echogram_time           = time stamps 

%           echogram_MF            = match filtered data 

%           echogram_phi_along      = along track EPA 

%           echogram_phi_across     = across track EPA 

%           echogram_phi_analysis   = radial EPA 

%           fs                      = sampling frequency 

  

  

npingsmax = 1e6; 

if numfiles > 1 

    pings=zeros(1,numfiles); % prealocating 

    sampledata = cell(1,numfiles); 

    NMEA_concat = cell(1,numfiles); 

    for i = 1:numfiles 

         

        filename = [fpath fname{1,i}]; 

         

        [configdata,filterdatavec,sampledatamat,NMEA] = 

readrawEK80(filename,npingsmax,i,Channels); % ChannelID); 

        pings(i) = size(sampledatamat,2); 

        sampledata(i) = {sampledatamat(Channels,:)}; 

        NMEA_concat(i) = {NMEA}; 

    end 

     

    sampledatamat = [sampledata{:}]; 

    NMEA = [NMEA_concat{:}]; 

    clear sampledata; clear NMEA_concat; 

else 

    filename = [fpath fname]; 

    [configdata,filterdatavec,sampledatamat,NMEA] = 

readrawEK80(filename,npingsmax,1,Channels); % ChannelID); 

    sampledatamat=sampledatamat(Channels,:); % included on 19SEP2019 

    pings = size(sampledatamat,2); 

end 

  

%% Prealocate variables 

npings = size(sampledatamat,2); 

totalpingno = 0; 

notempty=0; 

columns=2001; 

  

for pingno = 1:npings 
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    if (~isempty(sampledatamat(1,pingno).complexsamples)) % is there 

data in current ping? 

        notempty=notempty+1; 

    end 

end 

  

echogram_time = zeros(1,notempty); 

echogram_MF = zeros(notempty,columns); 

echogram_phi_along = zeros(notempty,columns); 

echogram_phi_across = zeros(notempty,columns); 

echogram_idx_ini = zeros(1,notempty); 

heave = zeros(1,notempty); 

roll = zeros(1,notempty); 

pitch = zeros(1,notempty); 

heading = zeros(1,notempty); 

  

%% read in complex data, transducer and environment data for current 

ping 

  

for pingno = 1:npings 

    clc 

    home 

    disp(['Parsing Ping no: ' int2str(pingno) ' / ' int2str(npings)]); 

    disp(['Transducer: ' 

configdata.transceivers(Channels).channels.transducer.TransducerName]); % 

ChannelID]) ; 

     

    if (~isempty(sampledatamat(1,pingno).complexsamples)) % is there 

data in current ping? 

         

        % read in/get transceiver data 

        transceiver = 

gettransceiver(configdata,filterdatavec,sampledatamat,1,Channels,pingno,1); 

         

        clear yrx 

         

        % current ping data 

        sampledata  = sampledatamat(1,pingno); 

         

        % sum of quandrants for current ping 

        yrx = sum(sampledata.complexsamples,2); 

         

        % split aperature calculation 

        y_fore = sum(sampledata.complexsamples(:,3:4),2)/2; 

        y_aft = sum(sampledata.complexsamples(:,1:2),2)/2; 

        y_star = (sampledata.complexsamples(:,1) + 

sampledata.complexsamples(:,4))/2; 

        y_port = sum(sampledata.complexsamples(:,2:3),2)/2; 

         

        clear sampledata.complexsamples 

         

        % create tx signal 

        [~,ytx]=createtx(transceiver); 

         

        %% match filter 
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        if (transceiver.iscw) 

            yc = yrx; 

        else 

             

            % apply match filter 

            yrx_match = conv(yrx,flipud(conj(ytx)))/norm(ytx)^2; 

            y_fore_match = conv(y_fore,flipud(conj(ytx)))/norm(ytx)^2; 

            y_aft_match = conv(y_aft,flipud(conj(ytx)))/norm(ytx)^2; 

            y_star_match = conv(y_star,flipud(conj(ytx)))/norm(ytx)^2; 

            y_port_match = conv(y_port,flipud(conj(ytx)))/norm(ytx)^2; 

             

            % filter delay 

            delay_match = length(ytx); 

             

            % remove filter delay from data 

            yc = yrx_match(delay_match:end); 

            yf = y_fore_match(delay_match:end); 

            ya = y_aft_match(delay_match:end); 

            ys = y_star_match(delay_match:end); 

            yp = y_port_match(delay_match:end); 

             

            clear yrx_match y_fore_match y_aft_match y_star_match 

y_port_match 

            clear y_fore y_aft  y_star y_port 

        end 

         

        %% apply secondary filter 

         

        %[B,A] = butter(11,[45/62.5 90/62.5]); 

        %yc = filtfilt(B,A,double(yc)); 

         

        %% calculate split-beam angles 

        phi_along = 

angle(yf.*conj(ya))*180/pi/(transceiver.alongfactor*transceiver.fnom/transcei

ver.fc) ;% 14FEB2020 % must be verified 

        phi_across = 

angle(ys.*conj(yp))*180/pi/(transceiver.athwfactor*transceiver.fnom/transceiv

er.fc) ;% 14FEB2020 

         

        %% bottom detection 

        if 

strcmp(configdata.transceivers(Channels).channels.transducer.TransducerName,'

ES333-7C') 

            TS = movmean(20*log10(abs(yc)),[10 10],2,'omitnan'); % TS - 

2TL = EL - SL 

        else 

            TS = movmean(20*log10(abs(yc)),[10 

10],2,'omitnan')+40*log10((1:length(yc))'*750/transceiver.fsdec); % TS - 2TL 

= EL - SL 

        end 

        [~,TWTT]= 

max(TS(max(1,round(depth_ini/750*transceiver.fsdec)):min(round(depth_end/750*

transceiver.fsdec),size(TS,1)))); 

         

        %% extract 
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        extract_ini = 

max(round(depth_ini/750*transceiver.fsdec),TWTT+round(depth_ini/750*transceiv

er.fsdec)-floor(columns/2)); 

        extract_end = 

min(size(TS,1),min(round(depth_end/750*transceiver.fsdec),TWTT+round(depth_in

i/750*transceiver.fsdec)+floor(columns/2))); 

        yc = [yc(extract_ini:extract_end);NaN(columns-

extract_end+extract_ini-1,1)];% pad with NaN if extract limit is less than 

2001 

         

        %% save data 

        length_yc=length(yc); 

        totalpingno = totalpingno+1; 

        configdata.pulse_length(totalpingno)=sampledata.pulselength; % 

included on 31/Jan/2020 

        echogram_time(totalpingno) = sampledata.time; 

        echogram_MF(totalpingno,1:length_yc) = yc; 

        echogram_idx_ini(totalpingno) = extract_ini; 

        clear yc 

        clear yrx 

        echogram_phi_along(totalpingno,1:length_yc) =  

[phi_along(extract_ini:extract_end);NaN(length_yc-extract_end+extract_ini-

1,1)]; 

        clear phi_along 

        echogram_phi_across(totalpingno,1:length_yc) =  

[phi_across(extract_ini:extract_end);NaN(length_yc-extract_end+extract_ini-

1,1)]; 

        clear phi_across 

        heave(totalpingno) = sampledatamat(1,pingno).heave; 

        roll(totalpingno) = sampledatamat(1,pingno).roll; 

        pitch(totalpingno) = sampledatamat(1,pingno).pitch; 

        heading(totalpingno) = sampledatamat(1,pingno).heading; 

    end 

end 

if totalpingno > 0 

    fs = 1/sampledata.sampleinterval; 

     

    %% Clear exceeded data 

    del_c=sum(echogram_MF)==0; 

    echogram_MF(:,del_c) = []; 

    echogram_phi_along(:,del_c) = []; 

    echogram_phi_across(:,del_c) = []; 

     

    del_l = sum(echogram_MF,2)==0; 

    echogram_time(:,del_l) = []; 

    echogram_MF(del_l,:) = []; 

    echogram_phi_along(del_l,:) = []; 

    echogram_phi_across(del_l,:) = []; 

    echogram_idx_ini(:,del_l) = []; 

    heave(:,del_l) = []; 

    roll(:,del_l) = []; 

    pitch(:,del_l) = []; 

    heading(:,del_l) = []; 

     

    %% Create EK80Data variable 

    EK80Data.fs = fs; 
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    EK80Data.NMEA = NMEA; 

    EK80Data.configdata = configdata; 

    EK80Data.configdata.angle_sensitivity = 

transceiver.alongfactor*transceiver.fc/transceiver.fnom; 

    EK80Data.echogram_time = echogram_time; 

    EK80Data.echogram_MF = echogram_MF; 

    EK80Data.idx_ini = echogram_idx_ini; 

     

    clear echogram_MF 

    EK80Data.echogram_phi_along = echogram_phi_along; 

    clear echogram_phi_along 

    EK80Data.echogram_phi_across = echogram_phi_across; 

    clear echogram_phi_across 

    EK80Data.motion.heave = heave; 

    EK80Data.motion.roll = roll; 

    EK80Data.motion.pitch = pitch; 

    EK80Data.motion.grazing = 90-sqrt(roll.^2+pitch.^2); 

    EK80Data.motion.heading = heading; 

    EK80Data.file_info.pings = pings; 

    EK80Data.auto_tx= (conv(ytx,flipud(conj(ytx)))); 

     

end 

end 
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ParseEK80_1tc_extracts.m  

function [EK80Data] = 

ParseEK80_1tc_extracts(fpath,fname,Channels,numfiles,depth_ini,depth_end) 

% there is no actual difference from the ParseEK80_data_extracts except 

when calling 

% "sampledata(channels,pingno)". Here it is called 

"sampledata(1,pingno)", instead. 

  

% Read and parse EK80 file 

%   Input: 

%           filename                = location of .RAW file 

%   Output: 

%           NMEA                    = position strings 

%           configdata              = EK80 configuration data 

%           echogram_SP             = approximate sound pressure 

%           echogram_time           = time stamps 

%           echogram_MF            = match filtered data 

%           echogram_phi_along      = along track EPA 

%           echogram_phi_across     = across track EPA 

%           echogram_phi_analysis   = radial EPA 

%           fs                      = sampling frequency 

  

  

npingsmax = 1e6; 

  

if numfiles > 1 

    sampledata = []; 

    NMEA_concat = []; 

    pings=zeros(1,numfiles); % prealocating 

    for i = 1:numfiles 

         

        filename = [fpath fname{1,i}]; 

        [configdata,filterdatavec,sampledatamat,NMEA] = 

readrawEK80(filename,npingsmax,i,Channels); 

        pings(i) = size(sampledatamat,2); 

        sampledata = [sampledata sampledatamat(Channels,:)]; 

        NMEA_concat = [NMEA_concat NMEA]; 

         

    end 

    sampledatamat = sampledata; 

    NMEA = NMEA_concat; 

    clear sampledata; clear NMEA_concat; 

else 

    filename = [fpath fname]; 

    [configdata,filterdatavec,sampledatamat,NMEA] = 

readrawEK80(filename,npingsmax,1,Channels); % ChannelID); 

    sampledatamat=sampledatamat(Channels,:); 

    pings = size(sampledatamat,2); 

end 

%% Prealocate variables 

npings = size(sampledatamat,2); 

totalpingno = 0; 

% Channels=1; 
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notempty=0; 

% columns=zeros(1,npings); 

columns=2001; 

  

for pingno = 1:npings 

     

    if (~isempty(sampledatamat(1,pingno).complexsamples)) % is there 

data in current ping? 

        notempty=notempty+1; 

    end 

end 

echogram_time = zeros(1,npings); 

echogram_MF = zeros(npings,columns); 

echogram_idx_ini = zeros(1,npings); 

echogram_phi_along = zeros(npings,columns); 

echogram_phi_across = zeros(npings,columns); 

echogram_phi_analysis = zeros(npings,columns); 

heave = zeros(1,npings); 

roll = zeros(1,npings); 

pitch = zeros(1,npings); 

heading = zeros(1,npings); 

%% read in complex data, transducer and environment data for current 

ping 

  

for pingno = 1:npings 

    if (~isempty(sampledatamat(1,pingno).complexsamples)) % is there 

data in current ping? 

         

        % read in/get transceiver data 

        transceiver = 

gettransceiver(configdata,filterdatavec,sampledatamat,1,Channels,pingno,1); 

         

        clear yrx 

         

        % current ping data 

        sampledata  = sampledatamat(1,pingno); 

         

        % current environment data 

        %         envdata = sampledata.env; 

         

        % sum of quandrants for current ping 

        yrx = sum(sampledata.complexsamples,2); 

         

        % split aperature calculation 

        y_fore = sum(sampledata.complexsamples(:,3:4),2)/2; 

        y_aft = sum(sampledata.complexsamples(:,1:2),2)/2; 

        y_star = (sampledata.complexsamples(:,1) + 

sampledata.complexsamples(:,4))/2; 

        y_port = sum(sampledata.complexsamples(:,2:3),2)/2; 

         

        % complex samples for coherance 

        % complex = sampledata.complexsamples; 

        clear sampledata.complexsamples 

         

        % create tx signal 

        [~,ytx]=createtx(transceiver); 
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        %% match filter 

         

        if (transceiver.iscw) 

            yc = yrx; 

        else 

            % apply match filter 

            yrx_match = conv(yrx,flipud(conj(ytx)))/norm(ytx)^2; % 

yrx_match = conv(yrx,(conj(ytx)))/norm(ytx)^2; 

            y_fore_match = conv(y_fore,flipud(conj(ytx)))/norm(ytx)^2; 

            y_aft_match = conv(y_aft,flipud(conj(ytx)))/norm(ytx)^2; 

            y_star_match = conv(y_star,flipud(conj(ytx)))/norm(ytx)^2; 

            y_port_match = conv(y_port,flipud(conj(ytx)))/norm(ytx)^2; 

             

            % filter delay 

            delay_match = length(ytx); 

             

            % remove filter delay from data 

            yc = yrx_match(delay_match:end); 

            yf = y_fore_match(delay_match:end); 

            ya = y_aft_match(delay_match:end); 

            ys = y_star_match(delay_match:end); 

            yp = y_port_match(delay_match:end); 

            clear yrx_match(delay_match:end) 

y_fore_match(delay_match:end) y_aft_match(delay_match:end) 

y_star_match(delay_match:end) y_port_match(delay_match:end) 

            clear y_fore y_aft y_port y_star 

        end 

         

        %% apply secondary filter 

         

        %[B,A] = butter(11,[45/62.5 90/62.5]); 

        %yc = filtfilt(B,A,double(yc)); 

         

        %% calculate split-beam angles 

        phi_along = 

angle(yf.*conj(ya))*180/pi/(transceiver.alongfactor*transceiver.fnom/transcei

ver.fc) ;% 14FEB2020 % must be verified 

        phi_across = 

angle(ys.*conj(yp))*180/pi/(transceiver.athwfactor*transceiver.fnom/transceiv

er.fc) ;% 14FEB2020 

         

        %% combine angles 

        phi_analysis = sqrt(phi_along.^2+phi_across.^2); 

         

        %% bottom detection 

        if 

strcmp(configdata.transceivers(Channels).channels.transducer.TransducerName,'

ES333-7C') 

            TS = movmean(20*log10(abs(yc)),[10 10],2,'omitnan'); % TS - 

2TL = EL - SL 

        else 

            TS = movmean(20*log10(abs(yc)),[10 

10],2,'omitnan')+40*log10((1:length(yc))'*750/transceiver.fsdec); % TS - 2TL 

= EL - SL 

        end 



138 

 

        [~,TWTT]= 

max(TS(round(depth_ini/750*transceiver.fsdec):min(round(depth_end/750*transce

iver.fsdec)))); 

         

        %% extract 

        extract_ini = 

max(round(depth_ini/750*transceiver.fsdec),TWTT+round(depth_ini/750*transceiv

er.fsdec)-1000); 

        extract_end = 

min(round(depth_end/750*transceiver.fsdec),TWTT+round(depth_ini/750*transceiv

er.fsdec)+1000); 

        yc = [yc(extract_ini:extract_end);NaN(columns-

extract_end+extract_ini-1,1)];% pad with NaN if extract limit is less than 

2001 

         

        %% save data 

         

        totalpingno = totalpingno+1; 

        echogram_time(totalpingno) = sampledata.time; 

        echogram_MF(totalpingno,1:length(yc)) = yc; 

        echogram_idx_ini(totalpingno) = extract_ini; 

         

        echogram_phi_along(totalpingno,1:length(yc)) = 

[phi_along(extract_ini:extract_end);NaN(length(yc)-extract_end+extract_ini-

1,1)];; 

        echogram_phi_across(totalpingno,1:length(yc)) = 

[phi_across(extract_ini:extract_end);NaN(length(yc)-extract_end+extract_ini-

1,1)];; 

        echogram_phi_analysis(totalpingno,1:length(yc)) = 

[phi_analysis(extract_ini:extract_end);NaN(length(yc)-

extract_end+extract_ini-1,1)];; 

        heave(totalpingno) = sampledatamat(1,pingno).heave; 

        roll(totalpingno) = sampledatamat(1,pingno).roll; 

        pitch(totalpingno) = sampledatamat(1,pingno).pitch; 

        heading(totalpingno) = sampledatamat(1,pingno).heading; 

    end 

end 

if totalpingno > 0 

    fs = 1/sampledata.sampleinterval; 

    %% Clear exceeded data 

    del_c=sum(echogram_MF)==0; 

    echogram_MF(:,del_c) = []; 

    echogram_phi_along(:,del_c) = []; 

    echogram_phi_across(:,del_c) = []; 

    echogram_phi_analysis(:,del_c) = []; 

     

    del_l = sum(echogram_MF,2)==0; 

    echogram_time(:,del_l) = []; 

    echogram_MF(del_l,:) = []; 

    echogram_idx_ini(:,del_l) = []; 

    echogram_phi_along(del_l,:) = []; 

    echogram_phi_across(del_l,:) = []; 

    echogram_phi_analysis(del_l,:) = []; 

    heave(:,del_l) = []; 

    roll(:,del_l) = []; 

    pitch(:,del_l) = []; 
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    heading(:,del_l) = []; 

     

    %% Create EK80Data variable 

    EK80Data.fs = fs; 

    EK80Data.NMEA = NMEA; 

    EK80Data.configdata = configdata; 

    EK80Data.configdata.angle_sensitivity = 

transceiver.alongfactor*transceiver.fc/transceiver.fnom; 

    EK80Data.echogram_time = echogram_time; 

    EK80Data.echogram_MF = echogram_MF; 

    clear echogram_MF 

    EK80Data.idx_ini = echogram_idx_ini; 

    EK80Data.echogram_phi_along = echogram_phi_along; 

    clear echogram_phi_along 

    EK80Data.echogram_phi_across = echogram_phi_across; 

    clear echogram_phi_across 

    EK80Data.echogram_phi_analysis = echogram_phi_analysis; 

    clear echogram_phi_analysis 

    EK80Data.motion.heave = heave; 

    EK80Data.motion.roll = roll; 

    EK80Data.motion.pitch = pitch; 

    EK80Data.motion.grazing = 90-sqrt(roll.^2+pitch.^2); 

    EK80Data.motion.heading = heading; 

    EK80Data.file_info.pings = pings; 

    EK80Data.auto_tx= (conv(ytx,flipud(conj(ytx)))); 

end 

end 
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Pressed_plot.m 

%% import variables 

  

sal = app.SalinityppmEditField.Value; 

temp = app.TemperatureCEditField.Value; 

ss = app.SoundspeedmsEditField.Value; 

acid = app.AciditypHEditField.Value; 

depth_ini=app.MinimumDepthmEditField.Value; 

depth_end=app.MaximumDepthmEditField.Value; 

width=app.AngledistinctionEditField.Value; 

plate_Off=[0,0,0]; % offset of the plate 

  

if isprop(app,'EK80_data') % verify if EK80_data is already created 

EK80_data=app.EK80_data;%app.EK80_data 

end 

if isempty(EK80_data) 

    filelocation = 'C:\Users\ivanb\OneDrive\Documentos\MATLAB\EK80_data 

Parsed 

files';%'C:\Users\Public\Documents\Simrad\EK80\Data\Field_BC\12JUN\Calibratio

n'; %\05JUN'; 

load(uigetfile(strcat(filelocation,'\*.mat'),'Select compiled EK80_data 

file','MultiSelect','off')); 

end 

  

if strcmp(app.Switch2.Value,'Bottom') 

    if app.AlltransducersButton.Value % if All tc were selected 

        Plot_bottom 

    else 

        Channels = [app.kHzButton.Value, app.kHzButton_2.Value, 

app.kHzButton_3.Value, app.kHzButton_4.Value]; 

        [~,Channels]=max(Channels); 

%         Plot_1Tc % not created 

    end 

else % if app.Switch2.Value = 'Sphere'; 

    if app.AlltransducersButton.Value % if All tc were selected 

        disp('Bad attempt on Calibrating with ALL the transducers at the 

same time. Choose one at a time.')         

    else 

        Channels = [app.kHzButton.Value, app.kHzButton_2.Value, 

app.kHzButton_3.Value, app.kHzButton_4.Value]; 

        [~,Channels]=max(Channels); 

        Plot_sphere 

    end 

end 
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Plot_bottom.m 

for Channels=1:4 

    %% preliminary variables 

    win_obs = 2^6-1; % so the FFT will have 64 (2^6) counts of data 

    allow_HD = true;% true; % True for High Definition (subsets) | False for 

MRA only 

    gr_from_phase = true; % True to use grazing from phase ramp | False to 

use from MRU + beam 

    Gr_diflim = 4; % Limit of difference between Grazing from phase and Gr 

from MRU+beam 

    roll_min = 4.1; % minimum roll to look for a zero crossing 

    cut_low_Gr=5; % when GR from MRU and phase are too different, consider 

only MRU 

    sites={'A - 09JUN mud';'B - 10JUN#3 shellhash';'C - 12JUN muddy sand';'D 

- 08JUN sand';'E - 10JUN#2 cobbles';... 

        'NH - 27AUG - Mouth';'NH - 27AUG - Maine';'NH - 29AUG - J1 

Lighthouse';'NH - 29AUG - J2';'NH - 29AUG - J3 low BS';'NH - 29AUG - J4 high 

BS'}; 

    % 1- 09JUN mud 55m ss=1491 t=12 

    % 2- 10JUN#3 shellhash 44m ss=1487 t=11 

    % 3- 12JUN muddy sand 14m ss=1487 t=12 

    % 4- 08JUN sand 17m ss=1491 t=12 

    % 5- 10JUN#2 cobbles 25m ss=1487 t=11 

    site = sites{5}; 

    correct_beam_angle=false; % created to analyse errors on the beam angle 

    refine_beam_pattern = true; % do not use beam pattern correction near 

nadir (n_fft<3) 

%     plots=zeros(1,20);  

    plots=ones(1,20); % select if all or none plots should be created 

    %     plots(18:20)=1; % select which plots shoud be created 

     

    clear FFT_bottom fft_bottom_ping ranges grazing_actual 

    EK80_data(Channels).echogram_MF(EK80_data(Channels).echogram_MF==0)=NaN; 

    depth_ini_idx = EK80_data(Channels).idx_ini'-1; 

    numpings = size(EK80_data(Channels).echogram_MF,1); 

    numsamples = size(EK80_data(Channels).echogram_MF,2)+max(depth_ini_idx); 

    sensitivity = EK80_data(Channels).configdata.angle_sensitivity; 

     

    % correct TL for plotting 

    r = (1:numsamples)/EK80_data(Channels).fs*750; 

    r_tvg = ((0:size(EK80_data(Channels).echogram_MF,2)-

1)+repmat(depth_ini_idx,1,size(EK80_data(Channels).echogram_MF,2)))/EK80_data

(Channels).fs*750; 

    phase_angle = 5; % define the angle to select the extract of the phase 

ramp 

     

    if 

strcmp(EK80_data(1).configdata.transceivers(1).channels.transducer.Transducer

Name,'ES70-7C') 

        color_plot=[.9,.1,.1 ; 1,.6,.1 ; .1,.1,.9 ; 0,.9,.6]; 

    else 

        color_plot=[.1,.1,.9 ; 1,.6,.1 ; .9,.1,.1 ; 0,.9,.6]; 

    end 
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    TVG_40 = 40*log10(r_tvg);% + 2*absorp.*r; % 2*TL 

    TS = movmean(20*log10(abs(EK80_data(Channels).echogram_MF)),[10 

10],2,'omitnan'); % TS - 2TL = EL - SL 

    TS = TS + TVG_40;% TL will be applied after bottom detection 

    %% Select the calibration files 

    % use the following samples to test the script 

    %     load('SAMPLE_Calib_12_06_ES200-7C.mat') 

    % load the files created after the sphere calibration 

    if 

strcmp(EK80_data(Channels).configdata.transceivers(Channels).channels.transdu

cer.TransducerName,'ES70-7C') 

        load('autotxNormal_Calib_MF_12JUN_ES70-7C.mat') 

        fstart = 45; fstop = 95; 

    elseif 

strcmp(EK80_data(Channels).configdata.transceivers(Channels).channels.transdu

cer.TransducerName,'ES120-7C') 

        load('autotxNormal_Calib_MF_12JUN_ES120-7C.mat') 

        fstart = 90; fstop = 170; 

    elseif 

strcmp(EK80_data(Channels).configdata.transceivers(Channels).channels.transdu

cer.TransducerName,'ES200-7C') 

        load('autotxNormal_Calib_MF_12JUN_ES200-7C.mat') 

        fstart = 160; fstop = 260; 

    elseif 

strcmp(EK80_data(Channels).configdata.transceivers(Channels).channels.transdu

cer.TransducerName,'ES333-7C') 

        load('autotxNormal_Calib_MF_12JUN_ES333-7C.mat') 

        fstart = 280; fstop = 450; 

    end 

    %% Bottom detection 

    mag_dev = 0*pi/180; 

    heading=EK80_data(Channels).motion.heading*pi/180 + mag_dev; % including 

a magnetic declination 

    pitch=EK80_data(Channels).motion.pitch*pi/180; 

    roll=EK80_data(Channels).motion.roll*pi/180; 

    grazing = 90- atan(sqrt(tan(roll).^2+tan(pitch).^2))*180/pi; 

     

    [TS_bottom,TWTT]= max(TS,[],2); 

     

    range=zeros(numpings,3); 

    range(:,3)=(TWTT+depth_ini_idx)/EK80_data(Channels).fs*750; 

    footprint = repmat(plate_Off,numpings,1)+range; 

    foot_print=zeros(3,numpings); 

     

    %% Rotation matrix - to find the N and E coordinates and depths 

     

    for nn=1:numpings 

        rotz = [ cos(heading(nn))  -sin(heading(nn))   0 ; ... 

            sin(heading(nn))  cos(heading(nn))  0 ; ... 

            0              0          1 ] ; 

         

        roty = [ cos(pitch(nn))  0  sin(pitch(nn)) ; ... 

            0        1       0       ; ... 

            -sin(pitch(nn))   0  cos(pitch(nn)) ] ; 
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        rotx = [  1           0                 0          ; ... 

            0   cos(roll(nn))  sin(roll(nn))  ; ... 

            0   -sin(roll(nn))  cos(roll(nn)) ] ; 

         

        rot3d = rotz*roty*rotx ; 

         

        foot_print(:,nn)=rot3d*footprint(nn,:)'; 

    end 

    %% Reduce noise 

    keep = (foot_print(3,:)>mean(foot_print(3,:))-

1*std(foot_print(3,:))&foot_print(3,:)<mean(foot_print(3,:))+1*std(foot_print

(3,:)))'; % Keeping only 68.27% of depths 

    keep(grazing==90)=0; 

    pings_selected = 1:numpings; 

    pings_rejected = pings_selected(~keep); 

    pings_selected=pings_selected(keep); 

    %% Phase Detection 

    target_idx = TWTT+depth_ini_idx; 

     

    range_ini_bottom = 

max(depth_ini_idx'+1,floor(r(target_idx).*sin((grazing)*pi/180)./sin(min(90,(

grazing+3))*pi/180)/750*EK80_data(Channels).fs))-depth_ini_idx'; 

    range_end_bottom = 

min(depth_ini_idx'+size(EK80_data(Channels).echogram_MF,2)-

1,floor(r(target_idx).*sin((grazing)*pi/180)./sin(max(0.1,(grazing-

3))*pi/180)/750*EK80_data(Channels).fs))-depth_ini_idx'; 

     

    range_ini_phase = ones(1,numpings); 

    range_end_phase = ones(1,numpings); 

    depth_bottom = foot_print(3,:); 

    depth_phase = zeros(1,numpings); 

    zero_phase_m = zeros(1,numpings); 

    n_fft = zeros(1,numpings); 

    FFT_bottom = cell(size(pings_selected)); 

    FFT_bottom_uncor = cell(size(pings_selected)); 

    beam_angles = cell(size(pings_selected)); 

    for ii=pings_selected 

        % for each ping: 

        % - smooth the phase across and find zero-crossing 

        % - find the window and the subsets to be analysed 

        % - find the grazing angle associated to the zero-crossing 

        % - when there is no zero-crossing (near nadir), use grazing from MRU 

        % - FFT of the subsets 

        clc;disp(['Calculating ping #' int2str(ii) '/' int2str(numpings)]) 

        if grazing(ii)<70 

            apurar=1; 

        end 

        

smooth_phi=atan2(movmean(sind(EK80_data(Channels).echogram_phi_across(ii,:)*s

ensitivity),[100],'omitnan'),... 

            

movmean(cosd(EK80_data(Channels).echogram_phi_across(ii,:)*sensitivity),[100]

,'omitnan'))*180/pi/sensitivity; %(23^2/sensitivity); 

        % weighted version (didn't show much difference, hence it is not 

used): 
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        %           

smooth_phi=atan2(movmean(sind(EK80_data(Channels).echogram_phi_across(ii,:)*s

ensitivity).*abs(EK80_data(Channels).echogram_Rx(ii,:)),[200],'omitnan'),... 

        %               

movmean(cosd(EK80_data(Channels).echogram_phi_across(ii,:)*sensitivity).*abs(

EK80_data(Channels).echogram_Rx(ii,:)),[200],'omitnan'))*180/pi/(23^2/sensiti

vity); 

        %           

smooth_phi_MF=atan2(movmean(sind(EK80_data(Channels).echogram_phi_across(ii,:

)*sensitivity).*abs(EK80_data(Channels).echogram_MF(ii,:)),[100],'omitnan'),.

.. 

        %               

movmean(cosd(EK80_data(Channels).echogram_phi_across(ii,:)*sensitivity).*abs(

EK80_data(Channels).echogram_MF(ii,:)),[100],'omitnan'))*180/pi/(23^2/sensiti

vity); 

        if EK80_data(Channels).motion.roll(ii)>roll_min && 

smooth_phi(range_ini_bottom(ii))>0 

            

[~,zero_phase_idx]=find(smooth_phi(range_ini_bottom(ii):range_end_bottom(ii))

<0,1); 

        elseif EK80_data(Channels).motion.roll(ii)<-roll_min && 

smooth_phi(range_ini_bottom(ii))<0 

            

[~,zero_phase_idx]=find(smooth_phi(range_ini_bottom(ii):range_end_bottom(ii))

>0,1); 

        else % if there is no phase detection 

            zero_phase_idx = find(1>2); % just to create an empty response 

        end 

         

        if ~isempty(zero_phase_idx)&allow_HD % if there is zero-crossing % 

use 1==0 to force only amplitude detection 

            win_shift = floor((win_obs+1)/2); 

            range_ini_phase(ii) = 

max(1,min(length(r),floor((r(depth_ini_idx(ii)+zero_phase_idx+range_ini_botto

m(ii)-

1).*sin((grazing(ii))*pi/180)./sin((grazing(ii)+phase_angle)*pi/180))/750*EK8

0_data(Channels).fs)-depth_ini_idx(ii))-floor(.4*win_obs)); %24MAY/2020 

included offset (.4 * win_obs) to get the peak at high grazings 

            range_end_phase(ii) = 

max(range_ini_phase(ii)+win_obs+1,min(size(EK80_data(Channels).echogram_MF,2)

,floor((r(depth_ini_idx(ii)+zero_phase_idx+range_ini_bottom(ii)-

1).*sin((grazing(ii))*pi/180)./sin((grazing(ii)-

phase_angle)*pi/180))/750*EK80_data(Channels).fs)-depth_ini_idx(ii))); 

            zero_phase_m(ii) = r(zero_phase_idx+range_ini_bottom(ii)-

1+depth_ini_idx(ii)); 

            depth_phase(ii) = -zero_phase_m(ii) * sin (grazing(ii)*pi/180); 

             

            if 

~isempty(find(isnan(EK80_data(Channels).echogram_phi_across(ii,range_ini_phas

e(ii)+1:end)),1)) 

                

nan_idx=find(isnan(EK80_data(Channels).echogram_phi_across(ii,range_ini_phase

(ii)+1:end)),1)+range_ini_phase(ii)-1; 

                range_end_phase(ii) = min(range_end_phase(ii),nan_idx); 

            end 
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            n_fft(ii) = floor((range_end_phase(ii) - win_shift - 

range_ini_phase(ii))./win_shift); 

            range_end_phase(ii) = range_ini_phase(ii) + win_shift + n_fft(ii) 

* win_shift ; 

             

            %% More efficient FFT (previous approach has been deleted) 

            subset_ini = range_ini_phase(ii)+win_shift*((1:n_fft(ii))-1); 

            subset_end = subset_ini+win_obs; 

            subset_idx = zeros(win_obs+1,n_fft(ii)); 

            for sub=1:n_fft(ii) 

                subset_idx(:,sub) = 

(subset_ini(sub):subset_ini(sub)+win_obs); 

            end 

            beam_angle = 

mean(smooth_phi(subset_idx),(n_fft(ii)==1)+1,'omitnan'); % (n_fft(ii)==1)+1 

is used to go through columns or rows based on the numbers of subsets 

            if correct_beam_angle 

                beam_angle = beam_angle*1.05; 

            end 

             

            corr_r = r(subset_idx+depth_ini_idx(ii)).^2; 

            MF = EK80_data(Channels).echogram_MF(ii,:); 

            range_subset = 

r(range_ini_phase(ii)+win_shift*(1:n_fft(ii))+depth_ini_idx(ii)); 

            Fdomain = (0:win_obs)*EK80_data(Channels).fs/win_obs; 

             

            % Tc 70 kHz 

            if 

EK80_data(Channels).configdata.transceivers(Channels).channels.transducer.Fre

quency==70000 

                fft_bottom_ping = (fft(MF(subset_idx).*corr_r)); 

                fstart = 45; fstop = 95; 

                FFT_auto = 

fft(EK80_data(Channels).auto_tx(floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2))); 

                 

                % for 120kHz 

            elseif 

EK80_data(Channels).configdata.transceivers(Channels).channels.transducer.Fre

quency==120000 

                fft_bottom_ping =         (fft(MF(subset_idx).*corr_r)); 

                fstart = 90; fstop = 170; 

                FFT_auto = 

fft(EK80_data(Channels).auto_tx(floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2))); 

                 

                % Tc 200kHz 

            elseif 

EK80_data(Channels).configdata.transceivers(Channels).channels.transducer.Fre

quency==200000 

                fft_bottom_ping = fftshift(fft(MF(subset_idx).*corr_r),2-

(n_fft(ii)>1)); 

                Fdomain = Fdomain +125000; 

                fstart = 160; fstop = 260; 
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                FFT_auto = 

fftshift(fft(EK80_data(Channels).auto_tx(floor(length(EK80_data(Channels).aut

o_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2))),1); 

                 

                % 333 kHz 

            elseif 

EK80_data(Channels).configdata.transceivers(Channels).channels.transducer.Fre

quency==333000 

                fft_bottom_ping = (fft(MF(subset_idx).*corr_r)); 

                Fdomain=Fdomain+250000; 

                fstart = 280; fstop = 450; 

                FFT_auto = 

fft(EK80_data(Channels).auto_tx(floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2))); 

            end 

            %% Correct FFT for beam pattern 

            [~,b] = 

max(calib_file.beam_pattern.beam_angle>=min(max(calib_file.beam_pattern.beam_

angle),abs(beam_angle')),[],2); 

            beam_pattern = calib_file.beam_pattern.correction(:,b); 

            beam_pattern = 

interp1(calib_file.beam_pattern.freq_domain,beam_pattern,Fdomain,'linear'); 

            if refine_beam_pattern & n_fft(ii)<3 

                beam_pattern = zeros(size(fft_bottom_ping)); 

            end%             beam_pattern = 0; 

             

            if n_fft(ii)==1 

                

fft_bottom_ping_uncor=20*log10(abs(fft_bottom_ping'./FFT_auto)); 

                

fft_bottom_ping=20*log10(abs(fft_bottom_ping'./FFT_auto))+beam_pattern'; 

            else 

                

fft_bottom_ping_uncor=20*log10(abs(fft_bottom_ping./FFT_auto)); 

                

fft_bottom_ping=20*log10(abs(fft_bottom_ping./FFT_auto))+beam_pattern; 

            end 

            %% Find the actual grazing angles, considering the slope of the 

seafloor 

            if beam_angle(1)>0 

                th1 = find(beam_angle<beam_angle(1)-1.5,1); 

            else 

                th1 = find(beam_angle>beam_angle(1)+1.5,1); 

            end 

            r0 = range_subset(th1:end); 

            r1 = range_subset(1:end-th1+1); 

            th = abs(beam_angle(th1:end) - beam_angle(1:end-th1+1)); 

             

            if ~isempty(th) 

                actual_gr = [zeros(1,th1-1) , asin(r0 .* sind(th) ./ 

sqrt(r1.^2 + r0.^2 - 2.* r1 .* r0 .*cosd(th)))*180/pi]; 



147 

 

                actual_gr(1:min(th1-1,length(beam_angle)-th1+1)) = 

actual_gr(th1:min(th1-1,length(beam_angle)-th1+1)+th1-1)+th(1:min(th1-

1,length(beam_angle)-th1+1)); 

                actual_gr(actual_gr==0)= actual_gr(th1)-

beam_angle(actual_gr==0)+beam_angle(th1); 

                 

                if roll(ii)>0 

                    gr_MRU = grazing(ii)+beam_angle; 

                else % roll(ii)<0 

                    gr_MRU = grazing(ii)-beam_angle; 

                end 

            else 

                actual_gr = grazing(ii)-beam_angle; 

                 

                if roll(ii)>0 

                    gr_MRU = grazing(ii)+beam_angle; 

                else 

                    gr_MRU = grazing(ii)-beam_angle; 

                end 

            end 

             

            if ~exist('grazing_actual','var') 

                grazing_actual = actual_gr; 

                MRU_gr = gr_MRU; 

                flag_amp = 1==0; 

                ranges = range_subset; 

            else 

                grazing_actual = [grazing_actual actual_gr]; 

                MRU_gr = [MRU_gr gr_MRU]; 

                flag_amp = [flag_amp 1==0]; 

                ranges = [ranges range_subset]; 

            end 

            if n_fft(ii) == 1 

                apurar=1; 

            end 

        else % if there is no zero-crossing 

            %% FFT for Amplitude detection 

            actual_gr = grazing(ii); 

            n_fft(ii) = 1; 

            if ~exist('grazing_actual','var') 

                grazing_actual = actual_gr; 

                ranges = r(target_idx(ii)); 

                MRU_gr = actual_gr; 

                flag_amp = 1==1; 

            else 

                grazing_actual = [grazing_actual actual_gr]; 

                ranges = [ranges r(target_idx(ii))]; 

                MRU_gr = [MRU_gr actual_gr]; 

                flag_amp = [flag_amp 1==1]; 

            end 

             

            Fdomain = (0:win_obs)*EK80_data(Channels).fs/win_obs; 

             

            % Tc 70 kHz 
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            if 

EK80_data(Channels).configdata.transceivers(Channels).channels.transducer.Fre

quency==70000 

                corr_r = r(target_idx(ii)-

round(win_obs/2):target_idx(ii)+floor(win_obs/2)).^2; 

                fft_bottom_ping = 

fft(EK80_data(Channels).echogram_MF(ii,max(1,min(2001-win_obs,TWTT(ii)-

round(win_obs/2))):max(win_obs+1,min(TWTT(ii)+floor(win_obs/2),size(EK80_data

(Channels).echogram_MF,2)))).*corr_r)'; 

                fstart = 45; fstop = 95; 

                FFT_auto = 

fft(EK80_data(Channels).auto_tx(floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2))); 

                 

                % for 120kHz 

            elseif 

EK80_data(Channels).configdata.transceivers(Channels).channels.transducer.Fre

quency==120000 

                corr_r = r(target_idx(ii)-

round(win_obs/2):target_idx(ii)+floor(win_obs/2)).^2; 

                fft_bottom_ping = 

fft(EK80_data(Channels).echogram_MF(ii,max(1,min(2001-win_obs,TWTT(ii)-

round(win_obs/2))):max(win_obs+1,min(TWTT(ii)+floor(win_obs/2),size(EK80_data

(Channels).echogram_MF,2)))).*corr_r)'; 

                fstart = 90; fstop = 170; 

                FFT_auto = 

fft(EK80_data(Channels).auto_tx(floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2))); 

                 

                % Tc 200kHz 

            elseif 

EK80_data(Channels).configdata.transceivers(Channels).channels.transducer.Fre

quency==200000 

                corr_r = r(target_idx(ii)-

round(win_obs/2):target_idx(ii)+floor(win_obs/2)).^2; 

                fft_bottom_ping = 

fftshift(fft(EK80_data(Channels).echogram_MF(ii,max(1,min(2001-

win_obs,TWTT(ii)-

round(win_obs/2))):max(win_obs+1,min(TWTT(ii)+floor(win_obs/2),size(EK80_data

(Channels).echogram_MF,2)))).*corr_r),2)'; 

                Fdomain = Fdomain +125000; 

                fstart = 160; fstop = 260; 

                FFT_auto = 

fftshift(fft(EK80_data(Channels).auto_tx(floor(length(EK80_data(Channels).aut

o_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2)))); 

                 

                % 333 kHz 

            elseif 

EK80_data(Channels).configdata.transceivers(Channels).channels.transducer.Fre

quency==333000 

                corr_r = r(target_idx(ii)-

round(win_obs/2):target_idx(ii)+floor(win_obs/2)).^2; 
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                fft_bottom_ping = 

fft(EK80_data(Channels).echogram_MF(ii,max(1,min(2001-win_obs,TWTT(ii)-

round(win_obs/2))):max(win_obs+1,min(TWTT(ii)+floor(win_obs/2),size(EK80_data

(Channels).echogram_MF,2)))).*corr_r)'; 

                Fdomain=Fdomain+250000; 

                fstart = 280; fstop = 450; 

                FFT_auto = 

fft(EK80_data(Channels).auto_tx(floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data(Channels).auto_tx)/2)-

floor(win_obs/2))); 

            end 

             

            fft_bottom_ping=20*log10(abs(fft_bottom_ping./FFT_auto)); 

            fft_bottom_ping_uncor=fft_bottom_ping; 

             

            beam_angle=0; 

        end 

        %% FFT bottom 

        FFT_bottom{ii} = fft_bottom_ping; 

        FFT_bottom_uncor{ii} = fft_bottom_ping_uncor; 

        beam_angles{ii} = beam_angle; 

    end 

    FFT_bottom = [FFT_bottom{:}]; 

    FFT_bottom_uncor = [FFT_bottom_uncor{:}]; 

    beam_angles = [beam_angles{:}]; 

    %% Absorption (frequency dependent) 

    absorp_r = (abscoef_freq(temp,sal,ranges',acid,ss,Fdomain).*ranges')'; 

     

    %% Correction for Scattered Area 

    theta_3dB = calib_file.beam_pattern.bp_3dB*pi/180; 

    theta_3dB(theta_3dB==0)=max(theta_3dB); 

    theta_3dB = 

interp1(calib_file.beam_pattern.freq_domain,theta_3dB,Fdomain,'spline'); 

     

    % normal incidence, long pulse 

    % Area_normal = pi*tand(theta_3dB').^2 * ranges.^2 ; 

     

    % normal incidence, short pulse 

    % Area = pi* c * PL * r 

     

    % Oblique incidence 

    % Area_slant = 2*beam_pattern * r * c * PL / (2* sin(grazing)) % the 

beam_pattern 

    % is multiplied by 2 because beam_pattern was defined as the angle from 

the MRA to the -3dB 

     

    PL = (win_obs+1)/EK80_data(Channels).fs* ss; % PL is the length of the 

subset. It will be divided by 2 to calculate the area. 

    if ~gr_from_phase 

        grazing_actual = MRU_gr; % when there is too much noise in the actual 

grazing calculation 

    else 

        grazing_actual((grazing_actual - MRU_gr)>Gr_diflim) = 

MRU_gr((grazing_actual - MRU_gr)>Gr_diflim)+Gr_diflim; 

        grazing_actual((grazing_actual - MRU_gr)<-Gr_diflim) = 

MRU_gr((grazing_actual - MRU_gr)<-Gr_diflim)-Gr_diflim; 
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    end 

     

    Area_normal = (tan(2*theta_3dB') * ranges).^2 ; 

    Area_slant = tan(theta_3dB') * (2 * ranges * PL/2 ./ 

cosd(grazing_actual)); % PL is divided by 2 due to TWTT 

     

    Area = min(Area_slant,Area_normal); 

     

    %% Interpolation of Frequency domains and aplication of calibration 

    

F_calib=calib_file.calibration.freq_domain(find(calib_file.calibration.freq_d

omain>=fstart,1):find(calib_file.calibration.freq_domain>=fstop,1)); 

    calibration = 

movmean(calib_file.calibration.correction(find(calib_file.calibration.freq_do

main>=fstart,1)-1:find(calib_file.calibration.freq_domain>=fstop-5,1)),[50]); 

    calibration = [calibration repmat(calibration(end),1,length(F_calib)-

length(calibration))]; 

    calibration = interp1(F_calib,calibration,Fdomain/1000,'spline'); 

     

    FFT_bottom = FFT_bottom +... % logarithmic scale 

        2*absorp_r - ... 

        

EK80_data(Channels).configdata.transceivers(Channels).channels.transducer.Gai

n(1)... 

        + calibration' - 10*log10(Area); 

     

    %% Echograms 

    if plots(1)==1 

        % mounting the echogram again 

        echogram = 

NaN(floor(max(r_tvg,[],'all')/750*EK80_data(Channels).fs)+1,numpings); 

        for ii=1:numpings 

            echogram(depth_ini_idx(ii):depth_ini_idx(ii)-

1+size(EK80_data(Channels).echogram_MF,2),ii) = TS(ii,:); 

        end 

         

        figure(1) 

        subplot(4,1,Channels) 

        imagesc(1:numpings,r,echogram) 

        hold on 

        %         plot(range(:,3),'c.','MarkerSize',4.5) 

        hold off 

         

        map1 = [zeros(101,1),   zeros(101,1),  (.3:.7/100:1)';... 

            zeros(101,1),   (0:.9/100:.9)',  (1:-.01:0)'.^.5;... 

            (0:.01:1)'.^.5,  ones(101,1)*.9,   zeros(101,1);... 

            ones(101,1),    (.9^2:-.9^2/100:0)'.^.5,   zeros(101,1);... 

            (1:-.7/100:.3)',  zeros(101,1),    zeros(101,1)  ]; 

         

        colormap(map1) 

         

        colorbar('eastoutside') 

        ylabel('range (m)') 

        xlabel('Ping #') 

        title(['Echogram - ', ... 
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EK80_data(1).configdata.transceivers(Channels).channels.transducer.Transducer

Name]) 

        set(gca,'Ydir','reverse') 

        clear echogram 

        caxis([-100 50]) 

    end 

     

    %% TS 

    if plots(3)==1 

        figure(3) 

        if Channels==1 

            clf; 

        end 

        subplot(2,4,Channels) 

        plot(1:numpings,TS_bottom,'Color',[.8 .8 .8]) 

        hold on 

        TS_select = TS_bottom; 

        TS_select(~keep) = NaN; 

        plot((1:numpings),TS_select,'b') 

        plot([1 numpings],[min(TS_select) min(TS_select)],'Color',[.8 .8 

.8],'LineStyle',':') 

        title(['TS at Fc-

',num2str(EK80_data(Channels).configdata.transceivers(Channels).channels.tran

sducer.Frequency/1000),' kHz']) 

        axis([1 numpings max(TS_bottom)-40 max(TS_bottom)+5]) 

        hold off 

        %% Depth 

        subplot(2,4,Channels+4) 

        plot(pings_rejected,-foot_print(3,~keep),'.','Color',[.7 .7 

.7],'MarkerSize',12) 

        hold on 

        plot(pings_selected,-foot_print(3,keep),'b.') 

        plot(depth_phase,'r.') 

        xlabel('ping number') 

        ylabel('Depth - Amplitude (blue) | Phase (red)') 

        axis([1 numpings -round(mean(foot_print(3,:))/5)*5-5 0]) 

        hold off 

    end 

    %% All depths 

    cum_nfft=cumsum(n_fft)+floor(n_fft/2); 

    cum_nfft_real=cumsum(n_fft); 

    depth_phase(depth_phase==0)=NaN; 

     

    if plots(4)==1 

        figure(4) 

        if Channels==1 

            clf; 

        end 

        subplot(4,1,Channels) 

        plot(-ranges.*sind(MRU_gr),'.','Color',[.5 .2 .8]) 

        hold on 

        plot(cum_nfft,depth_phase,'r.','MarkerSize',20) 

        plot(cum_nfft,-foot_print(3,:),'b.') 

        plot(cum_nfft(pings_rejected),-foot_print(3,~keep),'.','Color',[.7 .7 

.7],'MarkerSize',12) 
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        amp_detect = -foot_print(3,pings_selected).*flag_amp; 

        amp_detect(amp_detect==0)=NaN; 

         

        plot(cum_nfft(pings_selected),amp_detect,'b+') 

        xlabel('Subset number') 

        title('Depth - Amplitude (blue) | Phase (MRA red and purple) - blue 

crosses indicate there was only amplitude detection') 

        axis([1 cum_nfft(end) mean(depth_phase(depth_phase>-100))*1.1 0]) 

        hold off 

    end 

    %% Bottom 2D 

    if plots(5)==1 

        figure(5) 

        if Channels==1 

            clf; 

        end 

        subplot(2,2,Channels) 

        plot(ranges.*cosd(MRU_gr), -ranges.*sind(MRU_gr),'.','Color',[.5 .2 

.8]) % all phase detection subsets 

        hold on 

        plot(r(target_idx).*cosd(grazing),-r(target_idx).*sind(grazing),'b.') 

%amplitude detection 

        plot(r(target_idx(pings_rejected)).*cosd(grazing(pings_rejected)),-

r(target_idx(pings_rejected)).*sind(grazing(pings_rejected)),'.','Color',[.7 

.7 .7],'MarkerSize',12) % rejected amplitude detection 

        plot(zero_phase_m.*cosd(grazing),depth_phase,'r.') % phase detection 

        ylabel('depth') 

        xlabel('Horizontal distance') 

        title('2D Bottom - Amplitude (blue) | Phase (MRA red and purple)') 

        axis([0 -2*mean(depth_phase(depth_phase>-100)) 

mean(depth_phase(depth_phase>-100))*1.1 mean(depth_phase(depth_phase>-

100))*.9]) 

        hold off 

    end 

    %% Footprint and Attitude 

    % plot the points on the seafloor to see how close to a MBES swath, the 

tilt on the plate was performed 

    if plots(6)==1 

        figure(6) 

        if Channels==1 

            clf; 

        end 

        subplot(2,4,Channels) 

        scatter(foot_print(1,:),foot_print(2,:),'b.') 

        title({['Footprint'];... 

            

[EK80_data(1).configdata.transceivers(Channels).channels.transducer.Transduce

rName, ' | Area: ',site]}) 

        axis('equal') 

        axis([-200 200 -200 200]) 

        xlabel('x range (m)') 

        ylabel('y range (m)') 

         

        %% plot Attitude 

        % roll 
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        subplot(6,4,Channels+12) 

        plot(1:numpings,EK80_data(Channels).motion.roll) 

        ylabel('Roll') 

        axis([1 numpings -90 90]) 

        yticks(-90:30:90) 

         

        % pitch 

        subplot(6,4,Channels+16) 

        plot(1:numpings,EK80_data(Channels).motion.pitch) 

        ylabel('Pitch') 

        axis([1 numpings -90 90]) 

        yticks(-90:30:90) 

         

        % heading 

        subplot(6,4,Channels+20) 

        plot(1:numpings,EK80_data(Channels).motion.heading) 

        ylabel('Heading') 

        xlabel('ping number') 

        axis([1 numpings 0 360]) 

        yticks(0:60:360) 

    end 

     

    %% 3D footprint 

    heads = repelem((heading(pings_selected)*180/pi),n_fft(pings_selected)); 

    flag_phases = repelem(~flag_amp,n_fft(pings_selected)); 

    heads = heads(flag_phases); 

    rolls = 

repelem((roll(pings_selected)./abs(roll(pings_selected))).*(~flag_amp),n_fft(

pings_selected)); 

    rolls_ping = roll./abs(roll); 

    if plots(7)==1 

        figure(7) 

        if Channels==1 

            clf; 

        end 

        subplot(2,2,Channels) 

        plot3(foot_print(1,~keep),foot_print(2,~keep),-

foot_print(3,~keep),'.','Color',[.7 .7 .7],'MarkerSize',12) 

        hold on 

        plot3(foot_print(1,pings_selected),foot_print(2,pings_selected),-

foot_print(3,pings_selected),'b.') 

        plot3(-

ranges(flag_phases).*cosd(MRU_gr(flag_phases)).*sind(heads).*rolls(flag_phase

s),ranges(flag_phases).*cosd(MRU_gr(flag_phases)).*cosd(heads).*rolls(flag_ph

ases), -ranges(flag_phases).*sind(MRU_gr(flag_phases)),'.','Color',[.5 .2 

.8]) % all phase detection subsets 

        zlabel('depth') 

        xlabel('Horizontal distance (m)') 

        

title({[EK80_data(Channels).configdata.transceivers(Channels).channels.transd

ucer.TransducerName,' - 3D footprint '];['Amplitude (blue) | Phase (purple) | 

Rejected (gray)']})% | Zero-crossing (red)']}) 

        axis([-40 40 -40 40 mean(depth_phase(depth_phase>-100))*1.1 0]) 

        grid on 

        view(35,50) 

        hold off 
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    end 

     

    %% Plot Phase 

    % Plot_phase % not developed 

     

    %% Analyse FFT of the bottom 

    % Need to adopt a proper method to get the mean and std of Intensity 

    % (Rayleig distribution) 

    [grazing_sorted,sort_idx]= sort(grazing_actual); 

    FFT_BS = zeros(win_obs+1,90); 

    FFT_BS_unc = zeros(win_obs+1,90); 

    pos_std_BS = zeros(win_obs+1,90); 

    std_BS = zeros(win_obs+1,90); 

    neg_std_BS = zeros(win_obs+1,90); 

     

    for gg=1:90 

        if sum(grazing_actual>(gg-1)&grazing_actual<=gg)>0 

            FFT_BS(:,gg) = 

10*log10(mean(10.^((FFT_bottom(:,grazing_actual>(gg-

1)&grazing_actual<=gg)/10)),2,'omitnan')); 

            pos_std_BS(:,gg) =  

10*log10(+1*std(10.^((FFT_bottom(:,grazing_actual>(gg-

1)&grazing_actual<=gg)/10)),0,2,'omitnan')+mean(10.^((FFT_bottom(:,grazing_ac

tual>(gg-1)&grazing_actual<=gg)/10)),2,'omitnan')); 

            std_BS(:,gg) =  std(10.^((FFT_bottom(:,grazing_actual>(gg-

1)&grazing_actual<=gg)/10)),0,2,'omitnan'); 

            neg_std_BS(:,gg) =  10*log10(-

1*std(10.^((FFT_bottom(:,grazing_actual>(gg-

1)&grazing_actual<=gg)/10)),0,2,'omitnan')+mean(10.^((FFT_bottom(:,grazing_ac

tual>(gg-1)&grazing_actual<=gg)/10)),2,'omitnan')); 

            FFT_BS_unc(:,gg) = 

10*log10(mean(10.^(FFT_bottom_uncor(:,grazing_actual>(gg-

1)&grazing_actual<=gg)/10),2,'omitnan')); 

        else 

            FFT_BS(:,gg) = NaN; 

            pos_std_BS(:,gg) = NaN; 

            neg_std_BS(:,gg) =  NaN; 

            FFT_BS_unc(:,gg) = NaN; 

            std_BS(:,gg) = NaN; 

        end 

    end 

     

    FFT_BS(:,1:cut_low_Gr)=NaN; 

    pos_std_BS(:,1:cut_low_Gr)=NaN; 

    neg_std_BS(:,1:cut_low_Gr)=NaN; 

    FFT_BS_unc(:,1:cut_low_Gr)=NaN; 

    absorp_r = absorp_r(:,sort_idx); 

    %% Final plot of the BOTTOM BS 

    if plots(8)==1 

        figure(8) 

        if Channels==1 

            clf; 

        end 

        hold on 

        plot3((1:90),... 
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repmat(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')))/1000,90,1),... 

            

movmean(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,

'last')),:),[1],2,'omitnan'),'.','MarkerEdgeColor',color_plot(Channels,:))%,'

Linewidth',2) 

        hold on 

        grid on 

        xlabel('Grazing Angle') 

        ylabel('Frequency') 

        zlabel('BS (dB)') 

        title({['Site ',site];['BS (dB)- Angular and frequency response']}) 

        if Channels == 1 

            axis([0 90 0 450 -inf inf]) 

            max_BS = 

max(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'las

t')),:),[],'all'); 

            zlim([-50 0]) 

        end 

        yticks([0,45,70,120,200,333,450]) 

        xticks([0 30 60 90]) 

        view(110,35) 

        set(gca,'xdir','reverse') 

    end 

    %% Final plot of the BOTTOM BS - Freq trend 

    if plots(8)==11 

        figure(28) 

        if Channels==1 

            clf; 

        end 

        hold on 

         

        

plot3(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1

,'last')))/1000,... 

            

repmat((1:90),size(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/

1000<=fstop,1,'last')))/1000,2),1),... 

            

movmean(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,

'last')),:),[1],2,'omitnan'),'Color',color_plot(Channels,:))%,'Linewidth',2) 

        hold on 

        grid on 

        ylabel('Grazing Angle') 

        xlabel('Frequency') 

        zlabel('BS (dB)') 

        title('BS (dB)- Frequency trend') 

        if Channels == 1 

            axis([0 450 0 90 -inf inf]) 

            max_BS = 

max(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'las

t')),:),[],'all'); 

            zlim([(floor(max_BS/5)+1)*5-25 (floor(max_BS/5)+1)*5]) 

        end 

         



156 

 

        xticks([0,45,70,120,200,333,450]) 

        yticks([0 30 60 90]) 

        view(100+90,30) 

        set(gca,'ydir','reverse') 

        set(gca,'xdir','reverse') 

    end 

    %% Plot uncorrected FFT 

    if plots(9)==1 

        figure(9) 

        if Channels==1 

            clf 

        end 

        subplot(211) 

        FFT_bottom_uncor_sort = FFT_bottom_uncor(:,sort_idx); 

        plot3(grazing_sorted,... 

            

repmat(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')))/1000,length(grazing_sorted),1),... 

            

movmean(FFT_bottom_uncor_sort(floor(find(Fdomain/1000>=fstart,1):find(Fdomain

/1000<=fstop,1,'last')),:),[1],2,'omitnan'),'.','Color',color_plot(Channels,:

),'MarkerSize',1)%,'Linewidth',2) 

        hold on 

        grid on 

        xlabel('Grazing Angle') 

        ylabel('Frequency') 

        zlabel('BS (dB)') 

        title({['Site ',site];['Uncorrected BS']}) 

         

        if Channels == 1 

            axis([0 90 0 450 -inf inf]) 

            max_BS = 

max(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'las

t')),:),[],'all'); 

            zlim([-100 0]) 

        end 

         

        yticks([0,45,70,120,200,333,450]) 

        xticks([0 30 60 90]) 

        view(110,35) 

        set(gca,'xdir','reverse') 

         

        % corrected BS 

        subplot(212) 

        FFT_bottom_sort = FFT_bottom(:,sort_idx); 

        plot3(grazing_sorted,... 

            

repmat(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')))/1000,length(grazing_sorted),1),... 

            

movmean(FFT_bottom_sort(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<

=fstop,1,'last')),:),[1],2,'omitnan'),'.','Color',color_plot(Channels,:),'Mar

kerSize',1)%,'Linewidth',2) 

        hold on 

        grid on 

        xlabel('Grazing Angle') 
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        ylabel('Frequency') 

        zlabel('BS (dB)') 

        title('Corrected BS (dB)- Angular and frequency response') 

        yticks([0,45,70,120,200,333,450]) 

        xticks([0 30 60 90]) 

        if Channels == 1 

            axis([0 90 0 450 -inf inf]) 

            max_BS = 

max(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'las

t')),:),[],'all'); 

            zlim([-100 0]) 

        end 

         

        view(110,35) 

        set(gca,'xdir','reverse') 

    end 

    %% uncorrected FTT (only corrected for range and beam pattern)    if 

plots(4)==1 

    if plots(10)==1 

        figure(10) 

        if Channels==1 

            clf; 

        end 

         

        subplot(221) 

        plot3((1:90),... 

            

repmat(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')))/1000,90,1),... 

            

movmean(FFT_BS_unc(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fsto

p,1,'last')),:),[1],2,'omitnan'),'Color',color_plot(Channels,:))%,'Linewidth'

,2) 

        hold on 

        grid on 

        xlabel('Grazing Angle') 

        ylabel('Frequency') 

        title('UNCORRECTED TS - Angular and frequency response') 

        axis([0 90 0 450 -inf inf]) 

        yticks([0,45,70,120,200,333,450]) 

        set(gca,'xdir','reverse') 

        if Channels == 1 

            max_BS = 

max(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'las

t')),:),[],'all'); 

            zlim([(floor(max_BS/5)+1)*5-25 (floor(max_BS/5)+1)*5]) 

        end 

        view(100,30) 

         

        subplot(222) 

        plot3(grazing_sorted,... 

            

repmat(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')))/1000,size(grazing_sorted,2),1),... 
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10*log10(Area(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'

last')),sort_idx)),'Color',color_plot(Channels,:))%,'Linewidth',2) 

        hold on 

        grid on 

        xlabel('Grazing Angle') 

        ylabel('Frequency') 

        title('Correction for Area (dB)') 

        set(gca,'ydir','reverse') 

        axis([0 90 0 450 -inf inf]) 

        yticks([0,45,70,120,200,333,450]) 

         

        subplot(223) 

        plot(calib_file.calibration.freq_domain,... 

            calib_file.calibration.correction,'Color',[.8 .8 

.8])%,'Linewidth',2) 

        hold on 

        

plot(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,

'last')))/1000,... 

            

calibration(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'la

st'))),'Color',color_plot(Channels,:),'Linewidth',2) 

        grid on 

        ylabel('Calibration') 

        xlabel('Frequency') 

        title('MRA - Correction from Sphere Calibration (dB)') 

        axis([0 450 0 50]) 

        xticks([0,45,70,120,200,333,450]) 

         

        subplot(224) 

        

plot3(calib_file.beam_pattern.freq_domain(find(calib_file.beam_pattern.freq_d

omain/1000>=fstart,1):find(calib_file.beam_pattern.freq_domain/1000<=fstop,1,

'last'))/1000,... 

            

repmat(calib_file.beam_pattern.beam_angle,size(calib_file.beam_pattern.freq_d

omain(find(calib_file.beam_pattern.freq_domain/1000>=fstart,1):find(calib_fil

e.beam_pattern.freq_domain/1000<=fstop,1,'last')),2),1),... 

            

calib_file.beam_pattern.correction(find(calib_file.beam_pattern.freq_domain/1

000>=fstart,1):find(calib_file.beam_pattern.freq_domain/1000<=fstop,1,'last')

,:),... 

            'Color',color_plot(Channels,:)) 

        hold on 

        grid on 

        ylabel('Angle within the Beam') 

        xlabel('Frequency') 

        title('Beam-Pattern Correction from Sphere Calibration (dB)') 

        axis([0 450 -inf inf]) 

        xticks([0,45,70,120,200,333,450]) 

    end 

    %% Reverse angle x freq 

    if plots(11)==1 

        figure(11) 

        if Channels==1 
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            clf; 

        end 

         

        subplot(211) 

        plot3(grazing_sorted,... 

            

repmat(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')))/1000,size(grazing_sorted,2),1),... 

            

2*absorp_r(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last'),:)

,'Color',color_plot(Channels,:)) 

        hold on 

        grid on 

        xlabel('Grazing Angle') 

        ylabel('Frequency') 

        title('Correction for absorption (dB)') 

        axis([0 90 0 450 -inf inf]) 

        yticks([0,45,70,120,200,333,450]) 

        set(gca,'ydir','reverse') 

        set(gca,'xdir','reverse') 

         

        subplot(212) 

        

abs_plot=(abscoef_freq(temp,sal,(min(ranges):5:max(ranges))',acid,ss,(45:4:45

0)*1000).*(min(ranges):5:max(ranges))')'; 

        

plot3((45:4:450),repmat((min(ranges):5:max(ranges)),size((45:4:450),2),1),2*a

bs_plot,'Color',[.2 .8 .2]) 

        ylabel('Range (m)') 

        xlabel('Frequency') 

        title('Correction for absorption (dB)') 

        view(40,40) 

        xticks([45 70 120 200 333 450]) 

        grid on 

    end 

    %% Histogram 

    if plots(12)==1 

        figure(12) 

        if Channels==1 

            clf; 

        end 

         

        subplot(4,1,Channels) 

        histogram(grazing_sorted,(1:90)) 

        hold on 

        histogram(grazing,(1:90)) 

        hold off 

        title(['Histogram of Grazing angles for ',... 

            

EK80_data(1).configdata.transceivers(Channels).channels.transducer.Transducer

Name]) 

        axis([0 90 0 30]) 

    end 

    %% Standard deviation of BS 

    std_BS_dB =  pos_std_BS-FFT_BS; 

    if plots(13)==1 
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        figure(13) 

        if Channels==1 

            clf; 

        end 

         

        subplot(211) 

        plot3((1:90),... 

            

repmat(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')))/1000,90,1),... 

            

movmean(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,

'last')),:),[2 2],2,'omitnan'),'Color',[.8 .8 .8])%,'Linewidth',2) 

[1/Channels Channels/4 abs(sin(Channels))] 

        hold on 

        plot3((1:90),... 

            

repmat(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')))/1000,90,1),... 

            ...        

movmean(2*std_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')),:)+FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fs

top,1,'last')),:),[2 2],2,'omitnan')','--

','Color',color_plot(Channels,:))%,'Linewidth',2) 

            

movmean(pos_std_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fsto

p,1,'last')),:),[2 2],2,'omitnan'),'Color',min([1 1 

1],color_plot(Channels,:)+.2),'Linewidth',2) 

        hold on 

        plot3((1:90),... 

            

repmat(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')))/1000,90,1),... 

            ...       movmean(-

2*std_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last'

)),:)+FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'l

ast')),:),[2 2],2,'omitnan'),'--

','Color',color_plot(Channels,:))%,'Linewidth',2) 

            

movmean(neg_std_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fsto

p,1,'last')),:),[2 2],2,'omitnan'),'Color',max([0 0 

0],color_plot(Channels,:)-.4),'Linewidth',2) 

         

        grid on 

        xlabel('Grazing Angle') 

        ylabel('Frequency') 

        zlabel('BS (dB)') 

        title('BS (dB)- 1std confidence interval') 

        axis([0 90 0 450 -inf inf]) 

        yticks([0,45,70,120,200,260]) 

        yticks([0,45,70,120,200,333,450]) 

        xticks([0 30 60 90]) 

        view(100,30) 

        set(gca,'xdir','reverse') 

         

        % only STD 



161 

 

        subplot(212) 

        %     if Channels==1 

        %         clf; 

        %     end 

        plot3((1:90),... 

            

repmat(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')))/1000,90,1),... 

            

std_BS_dB(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last

')),:),'Color',color_plot(Channels,:),'Linewidth',1) 

        hold on 

        grid on 

        xlabel('Grazing Angle') 

        ylabel('Frequency') 

        zlabel('dB') 

        title('10*log[ (1*std+mean) / mean]') 

        axis([0 90 0 450 -inf inf]) 

        yticks([0,45,70,120,200,260]) 

        yticks([0,45,70,120,200,333,450]) 

        xticks([0 30 60 90]) 

        view(100,30) 

        zlim([0 7]) 

        set(gca,'xdir','reverse') 

    end 

    %% Compare grazing from MRU x phase 

    if plots(14)==1 

        figure(14) 

        if Channels==1 

            clf; 

        end 

        subplot(4,1,Channels) 

        plot(grazing_actual,'b') 

        hold on 

        plot(MRU_gr,'r') 

        

plot(cum_nfft(pings_selected),grazing(pings_selected),'+','MarkerSize',4,'Col

or',[.8 .3 .3]) 

        plot(cum_nfft,90-abs(roll)*180/pi,'.','Color',[.2 .1 

.8],'LineWidth',1) 

        axis([1 cum_nfft(end) 0 90]) 

        title('Grazing by: Phase (blue)  |  MRU + beam (red)  |  MRU at MRA 

(cross)  |  90-roll (dark blue)') 

        hold off 

        xlabel('Ping#') 

        ylabel('Grazing') 

    end 

    %% 

    if plots(15)==1 

        figure(15) 

        subplot(2,2,Channels) 

        plot(ranges,grazing_actual,'b.','MarkerSize',1) 

        hold on 

        plot(ranges,MRU_gr,'r.','MarkerSize',1) 

        hold off 
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        title(['Grazing by: Phase ramp (blue)  |  MRU (red) |  ', ... 

            

EK80_data(1).configdata.transceivers(Channels).channels.transducer.Transducer

Name]) 

        xlabel('Target Range') 

    end 

    %% 

    if plots(16)==1 

        figure(16) 

        subplot(2,2,Channels) 

        plot(MRU_gr,MRU_gr,'b',MRU_gr,grazing_actual,'r.','MarkerSize',1) 

        xlabel('Gr from MRU+beam') 

        ylabel('Gr from Phase ramp') 

        

title(EK80_data(Channels).configdata.transceivers(Channels).channels.transduc

er.TransducerName) 

    end 

    %% Comparing BS with win_obs =  win_obs, 128, 256 counts 

    if plots(17)==1 

        figure(17) 

        plot3((1:90),... 

            

repmat(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,

1,'last')))/1000,90,1),... 

            

movmean(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,

'last')),:),[2 2],2,'omitnan'),... 

            'Color',[(256-win_obs)/256 0.5 63/win_obs])%,'Linewidth',2) 

        hold on 

        grid on 

        xlabel('Grazing Angle') 

        ylabel('Frequency') 

        zlabel('BS (dB)') 

        title(['BS (dB) site: ',site])%darker for larger win-obs') 

         

        if Channels == 1 

            axis([0 90 0 450 -inf inf]) 

            max_BS = 

max(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'las

t')),:),[],'all'); 

            zlim([(floor(max_BS/5)+1)*5-25 (floor(max_BS/5)+1)*5]) 

        end 

        yticks([0,45,70,120,200,333,450]) 

        xticks([0 30 60 90]) 

        view(100,30) 

        set(gca,'xdir','reverse') 

    end 

    %% Plot freq response for Grazing = 20, 40, 60, 89 

    if plots(18)==1 

        figure(18) 

        

plot(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,

'last')))/1000,... 

            

(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last')
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),20)),'Color',[(256-win_obs)/256 0 

63/win_obs],'LineStyle',':')%,'Linewidth',2) 

        hold on 

        

plot(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,

'last')))/1000,... 

            

(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last')

),40)),'Color',[(256-win_obs)/256 0 63/win_obs],'LineStyle','-

.')%,'Linewidth',2) 

        

plot(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,

'last')))/1000,... 

            

(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last')

),60)),'Color',[(256-win_obs)/256 0 63/win_obs],'LineStyle','--

','Linewidth',1) 

        

plot(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,

'last')))/1000,... 

            

(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last')

),89)),'Color',[(256-win_obs)/256 0 63/win_obs],'Linewidth',2) 

         

        xlabel('Frequency') 

        zlabel('BS (dB)') 

        title('BS (dB)- Frequency response for Gr = [20, 40, 60, 89] - 

thinner to thicker lines') 

        axis([45 450 -inf inf]) 

        xticks([0,45,70,120,200,333,450]) 

        if Channels == 1 

            max_BS = 

max(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'las

t')),:),[],'all'); 

            zlim([(floor(max_BS/5)+1)*5-25 (floor(max_BS/5)+1)*5]) 

        end 

    end 

    %% plot several freq response curves 

    if plots(19)==1 

        figure(19) 

        kk=floor((0:19)*89/19)+1; 

        for kk1=1:length(kk) 

            subplot(4,5,kk1) 

            

plot(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,

'last')))/1000,... 

                

(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last')

),kk(kk1))),'.','Color',[(256-win_obs)/256 0 63/win_obs])%,'Linewidth',2) 

            hold on 

            

errorbar(Fdomain(:,floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fsto

p,1,'last')))/1000,... 

                

(FFT_BS(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last')

),kk(kk1))),... 
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std_BS_dB(floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last

')),kk(kk1)),'.','Color',[(256-win_obs)/256 0 63/win_obs])%,'Linewidth',2) 

            if kk1==1 

                xlabel('kHz') 

                ylabel('dB') 

            end 

            title(['Gr=',num2str(kk(kk1))]) 

            xlim([45 450]) 

            ylim([-50 0]) 

        end 

    end 

    %% plot Mean BS with error bar for several angular response curves 

    if plots(20)==1 

        figure(20) 

        

kk2=floor(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last')); 

        for kk=1:length(kk2) 

            %     subplot(floor(length(kk2)/5)+1,5,kk) 

            subplot(4,length(kk2),(Channels-1)*length(kk2)+kk) 

            plot((1:90),... 

                (FFT_BS(kk2(kk),:)),'.','Color',[(256-win_obs)/256 0 

63/win_obs])%,'Linewidth',2) 

            errorbar((1:90),... 

                (FFT_BS(kk2(kk),:)),... 

                std_BS_dB(kk2(kk),:),'.','Color',[(256-win_obs)/256 0 

63/win_obs])%,'Linewidth',2) 

            set(gca,'xdir','reverse') 

            if kk==1 

                xlabel('Gr') 

                ylabel('dB') 

            end 

            title(['f = ',num2str(round(Fdomain(kk2(kk))/1000)),'kHz']) 

            ylim([-50 0]) 

            xlim([0 90]) 

             

        end 

    end 

    %% Store absolute response of seafloor 

    Bottom_BS(Channels).site = site; 

    Bottom_BS(Channels).Tc_name = 

EK80_data(Channels).configdata.transceivers(Channels).channels.transducer.Tra

nsducerName; 

    Bottom_BS(Channels).BS = 

FFT_BS(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last'),:); 

    Bottom_BS(Channels).Fdomain = 

Fdomain(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last')); 

    Bottom_BS(Channels).Grazing = (1:90); 

    Bottom_BS(Channels).std = 

std_BS_dB(find(Fdomain/1000>=fstart,1):find(Fdomain/1000<=fstop,1,'last'),:); 

    Bottom_BS(Channels).param.win_obs = win_obs; 

    Bottom_BS(Channels).param.allow_HD = allow_HD; 

    Bottom_BS(Channels).param.gr_from_phase = gr_from_phase; 

    Bottom_BS(Channels).param.Gr_diflim = Gr_diflim; 

    Bottom_BS(Channels).param.roll_min = roll_min; 

    Bottom_BS(Channels).param.cut_low_Gr = cut_low_Gr; 
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end 

  

%% Save absolute response of seafloor 

% remove the comment to save the file 

% save(site,'Bottom_BS') % save the whole variable Bottom_BS with the name of 

the indicated site 
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Plot_sphere.m 

%% preliminary coeff 

numpings = size(EK80_data(1).echogram_MF,1); 

depth_ini_idx = EK80_data.idx_ini'-1; 

numsamples = size(EK80_data(1).echogram_MF,2)+max(depth_ini_idx); 

% correct TL for plotting 

r = (1:numsamples)/EK80_data(1).fs*750; 

fc = 

EK80_data(1).configdata.transceivers(Channels).channels.transducer.Frequency; 

% 200000;%22000; % center frequency 

r_tvg = ((0:size(EK80_data(1).echogram_MF,2)-

1)+repmat(depth_ini_idx,1,size(EK80_data(1).echogram_MF,2)))/EK80_data.fs*750

; 

  

absorp = zeros(numpings,size(EK80_data(1).echogram_MF,2)); 

for ii=1:numpings 

    absorp(numpings,:) = 

abscoef(temp,sal,r_tvg(ii,:),acid,ss,fc).*r_tvg(ii,:); 

end 

TL_2x = 40*log10(r_tvg) + 2*absorp; 

TS_semi_cor = 20*log10(abs(EK80_data(1).echogram_MF)) + TL_2x; 

%% Plot 

figure(1) 

  

% echogram 

subplot(211) 

r_tvg2=r_tvg'; 

normal_TS = ((TS_semi_cor-

mean(TS_semi_cor,'all','omitnan'))/(max(TS_semi_cor,[],'all')-

min(TS_semi_cor,[],'all')))'; 

scatter(repelem((1:numpings),1,size(r_tvg,2)),r_tvg2(:),[],normal_TS(:),

'filled','s') 

colorbar 

map1 = [zeros(101,1),   zeros(101,1),  (.3:.7/100:1)';... 

    zeros(101,1),   (0:.9/100:.9)',  (1:-.01:0)'.^.5;... 

    (0:.01:1)'.^.5,  ones(101,1)*.9,   zeros(101,1);... 

    ones(101,1),    (.9^2:-.9^2/100:0)'.^.5,   zeros(101,1);... 

    (1:-.7/100:.3)',  zeros(101,1),    zeros(101,1)  ]; 

  

colormap(map1) 

xlabel('Ping #') 

ylabel('Range (m)') 

axis([1 numpings 1 min(3*depth_end,max(r_tvg2,[],'all'))]) 

%size(TS_uncor,2) 

title(['Sphere detection - ', ... 

    

EK80_data(1).configdata.transceivers(Channels).channels.transducer.Transducer

Name]) 

set(gca,'Ydir','reverse','Color',[.1 0 .3]) 

hold on 

  

[TS_sphere,TWTTsphere]= max(TS_semi_cor,[],2); 

[~,TWTTsphere_linear]= max(TS_semi_cor,[],2,'linear'); 
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keep = (TS_sphere>max(TS_sphere)-10); 

keep = keep&(abs(TS_sphere-mean(TS_sphere))<2*std(TS_sphere)); 

pings_selected = 1:numpings; 

pings_selected=pings_selected(keep); 

range=zeros(3,numpings); 

range(3,:)=(TWTTsphere+depth_ini_idx)/EK80_data.fs*750; 

plot(pings_selected,range(3,keep),'c') 

hold off 

  

% targets xy 

T_along=EK80_data.echogram_phi_along(TWTTsphere_linear); 

T_across=EK80_data.echogram_phi_across(TWTTsphere_linear); 

T_phi=EK80_data.echogram_phi_analysis(TWTTsphere_linear); 

  

XY_TS_phi=[T_along(keep),T_across(keep),TS_sphere(keep),T_phi(keep)]; 

  

subplot(234) 

scatter(XY_TS_phi(:,1),... % along track - axis X 

    XY_TS_phi(:,2),... % across track - axis Y 

    20,... %size of the circle on the plot 

    XY_TS_phi(:,3),'LineWidth',2) % colorcode based on Target Strength 

colorbar('southoutside') 

xlabel('Along-Track') 

ylabel('Across-Track') 

axis([-5 5 -5 5]) 

axis('equal') 

  

% smoothed version of beam forming 

fit_beam=fit(XY_TS_phi(:,4),XY_TS_phi(:,3),'poly2'); 

max_fit=feval(fit_beam,roots(polyder(coeffvalues(fit_beam)))); 

  

fit_beam_3db=fit(XY_TS_phi(:,4),XY_TS_phi(:,3)-max_fit+3,'poly2'); % fit 

-3dB 

std_beam=predint(fit_beam,XY_TS_phi(:,4),0.95,'observation','off'); 

[sorted_X,sort_idx]=sort(XY_TS_phi(:,4)); 

std_beam=std_beam(sort_idx,:); % reorganizing the order 

  

% 2D beam pattern collapsed in elevation angles 

subplot(2,3,5) 

scatter(XY_TS_phi(:,4),... % elevation angle (phi) - axis X 

    XY_TS_phi(:,3),... % beam strength - axis Y 

    2,... %size of the circle on the plot 

    XY_TS_phi(:,3),'LineWidth',.5) % colorcode based on Target Strength 

colorbar('southoutside') 

hold on 

plot([0  3.5],[max_fit max_fit],'r') % max of fit 

plot([0  3.5],[max_fit-3 max_fit-3],'r') % -3dB of max of fit 

hold off 

ylabel('TS') 

xlabel('Elevation angle') 

legend off 

  

% histogram for elevation angle 

subplot(2,3,6) 

histogram(XY_TS_phi(:,4),50) 
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xlabel('Elevation angle') 

ylabel('Histogram') 

axis([0 max(XY_TS_phi(:,4)) 0 25]) 

  

%% Plot beam pattern of FM pulse 

figure(2) 

plot(fit([XY_TS_phi(:,1),XY_TS_phi(:,2)],... 

    XY_TS_phi(:,3),'poly23')) % fit surface 

alpha(0.5) 

shading interp 

hold on 

% plot together with the points 

plot3(XY_TS_phi(:,1),... % along track - axis X 

    XY_TS_phi(:,2),... % across track - axis Y 

    XY_TS_phi(:,3),'.') 

hold off 

title('Beam pattern of Chirp') 

xlabel('Along-Track') 

ylabel('Across-Track') 

zlabel('Uncor TS (dB)') 

axis equal 

view(2) 

caxis([max(XY_TS_phi(:,3))-3 max(XY_TS_phi(:,3))]) 

%% Call Plot_fft_sphere cript 

Plot_fft_sphere 
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Plot_fft_sphere.m 

% Fast Fourier Transform of the MF signal of the sphere 

% Script called by Plot_sphere 

  

%% New FFT Sphere using original scripts (EK80_data) 

% load the correspondent model TS for the site 

load('Model_June12.mat') 

% load('Model_May16.mat') 

  

before_target = floor(app.BeforeTargetEditField.Value 

/750*EK80_data.fs); 

after_target = floor(app.AfterTargetEditField.Value /750*EK80_data.fs); 

win_obs = min(length(EK80_data.auto_tx),after_target+before_target); 

  

FFT_sphere=zeros(win_obs+1,numpings); 

  

beam_angle = zeros(1,numpings); 

  

Fdomain = (0:win_obs)*EK80_data.fs/win_obs; 

  

% 70 kHz 

if 

EK80_data.configdata.transceivers(Channels).channels.transducer.Frequency==70

000 

    for ii=1:numpings 

        corr_r = ((TWTTsphere(ii)-before_target + depth_ini_idx(ii) : 

TWTTsphere(ii)+ depth_ini_idx(ii)+after_target)*750/EK80_data.fs)'.^2; 

        FFT_sphere(:,ii) = 

(fft(EK80_data.echogram_MF(ii,max(1,min(size(EK80_data.echogram_MF,2)-

win_obs,TWTTsphere(ii)-

before_target)):max(win_obs+1,min(TWTTsphere(ii)+after_target,size(EK80_data.

echogram_MF,2))))'.*corr_r)); 

        beam_angle(ii) = 

EK80_data.echogram_phi_analysis(ii,TWTTsphere(ii)); 

    end 

    FFT_sphere = flip(FFT_sphere); 

    fstart = 45; fstop = 95; 

    FFT_auto = fft(EK80_data.auto_tx(floor(length(EK80_data.auto_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data.auto_tx)/2)-

floor(win_obs/2))); 

     

    % for 120kHz 

elseif 

EK80_data.configdata.transceivers(Channels).channels.transducer.Frequency==12

0000 

    for ii=1:numpings 

        corr_r = ((TWTTsphere(ii)-before_target + depth_ini_idx(ii) : 

TWTTsphere(ii)+ depth_ini_idx(ii)+after_target)*750/EK80_data.fs)'.^2; 

        FFT_sphere(:,ii) = 

(fft(EK80_data.echogram_MF(ii,max(1,min(size(EK80_data.echogram_MF,2)-

win_obs,TWTTsphere(ii)-

before_target)):max(win_obs+1,min(TWTTsphere(ii)+after_target,size(EK80_data.

echogram_MF,2))))'.*corr_r)); 
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        beam_angle(ii) = 

EK80_data.echogram_phi_analysis(ii,TWTTsphere(ii)); 

    end 

    FFT_sphere = flip(FFT_sphere);%/length(FFT_sphere); 

    fstart = 90; fstop = 170; 

    FFT_auto = fft(EK80_data.auto_tx(floor(length(EK80_data.auto_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data.auto_tx)/2)-

floor(win_obs/2))); 

     

    % for tc 200kHz 

elseif 

EK80_data.configdata.transceivers(Channels).channels.transducer.Frequency==20

0000 

    for ii=1:numpings 

        corr_r = ((TWTTsphere(ii)-before_target + depth_ini_idx(ii) : 

TWTTsphere(ii)+ depth_ini_idx(ii)+after_target)*750/EK80_data.fs)'.^2; % 

correction for range in linear domain, not dB 

        FFT_sphere(:,ii) = 

fftshift(fft(EK80_data.echogram_MF(ii,max(1,min(size(EK80_data.echogram_MF,2)

-win_obs,TWTTsphere(ii)-

before_target)):max(win_obs+1,min(TWTTsphere(ii)+after_target,size(EK80_data.

echogram_MF,2))))'.*corr_r)); 

        beam_angle(ii) = 

EK80_data.echogram_phi_analysis(ii,TWTTsphere(ii)); 

    end 

    FFT_sphere = flip(FFT_sphere);%/length(FFT_sphere); 

    Fdomain = Fdomain + Fdomain(end)/2; 

    fstart = 160; fstop = 260; 

    FFT_auto = 

fftshift(fft(EK80_data.auto_tx(floor(length(EK80_data.auto_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data.auto_tx)/2)-

floor(win_obs/2)))); 

     

    % 333 kHz 

elseif 

EK80_data.configdata.transceivers(Channels).channels.transducer.Frequency==33

3000 

    for ii=1:numpings 

        corr_r = ((TWTTsphere(ii)-before_target + depth_ini_idx(ii) : 

TWTTsphere(ii)+ depth_ini_idx(ii)+after_target)*750/EK80_data.fs)'.^2; 

        FFT_sphere(:,ii) = 

(fft(EK80_data.echogram_MF(ii,max(1,min(size(EK80_data.echogram_MF,2)-

win_obs,TWTTsphere(ii)-

before_target)):max(win_obs+1,min(TWTTsphere(ii)+after_target,size(EK80_data.

echogram_MF,2))))'.*corr_r)); 

        beam_angle(ii) = 

EK80_data.echogram_phi_analysis(ii,TWTTsphere(ii)); 

    end 

    Fdomain=Fdomain+Fdomain(end); 

    FFT_sphere = flip(FFT_sphere); 

    fstart = 280; fstop = 450; 

    FFT_auto = fft(EK80_data.auto_tx(floor(length(EK80_data.auto_tx)/2)-

floor(win_obs/2):win_obs+floor(length(EK80_data.auto_tx)/2)-

floor(win_obs/2))); 

end 
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absorp_r=zeros(win_obs+1,numpings); 

for ii=1:numpings 

    absorp_r(:,ii) = abscoef_freq(temp,sal,(TWTTsphere(ii)+ 

depth_ini_idx(ii))*750/EK80_data.fs,acid,ss,Fdomain)*(TWTTsphere(ii)+ 

depth_ini_idx(ii))*750/EK80_data.fs; 

end 

  

% FFT_sphere is now Backscatter Strength in dB 

% BS_dB = EL - SL + 2TL - A_dB 

% BS_dB = 20log10(MF) - Gain + 2*(20*log10(r) + abs*r) - 10*log10(A) ; 

  

FFT_sphere = 20*log10(abs(FFT_sphere./FFT_auto)) +... % logarithmic 

scale 

    2*absorp_r - ... 

    

EK80_data.configdata.transceivers(Channels).channels.transducer.Gain(1); 

  

%% Narrowing the sample to the selected pings only 

% variable keep is a boolean defined on mother script 

% Before/After target: ES70(-1.5:1.5) ES120(-0.5:1) ES200(-.15:.7) 

keep_ftt = 

(std(FFT_sphere,1,'omitnan')<3*std(std(FFT_sphere,1,'omitnan'),'omitnan')+mea

n(std(FFT_sphere,1,'omitnan'),'omitnan')|std(FFT_sphere,1,'omitnan')>-

3*std(std(FFT_sphere,1,'omitnan'),'omitnan')+mean(std(FFT_sphere,1,'omitnan')

,'omitnan')); 

keep = logical(keep.*keep_ftt'); 

FFT_sphere = FFT_sphere(:,keep); 

beam_angle = beam_angle(keep); 

%% Plot the absortion in terms of Freq 

figure(30) 

plot(Fdomain/1000,absorp_r(:,1),'Linewidth',2) 

title('Correction for (Absortion times range) as a function of 

frequency') 

xlabel('Frequency') 

ylabel('Correction (dB)') 

  

%% Plot FFT 

figure(31) 

plot3(Fdomain/1000,... 

    repmat(beam_angle,size(Fdomain,2),1),... 

    FFT_sphere) 

hold on 

  

plot3(Model.out.freq,... % freq domain of Model 

    zeros(1,size(Model.out.TS,2)),... % boresight angle = 0 

    Model.out.TS,'b','LineWidth',1) 

hold off 

  

title(['FFT from -',num2str(app.BeforeTargetEditField.Value),'m to +' 

num2str(app.AfterTargetEditField.Value), 'm of the target, all pings']) 

xlabel('Freq kHz') 

ylabel('Beam angle wrt Boresight') 

zlabel('FFT') 

xlim([fstart fstop]) 

view(0,0) 
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%% Plot MF extract 

figure(32) 

for ii=pings_selected((1:50)*floor(length(pings_selected)/50)) 

    clc;disp(ii) 

     

    plot3((1 :1 +  before_target+after_target)*750/EK80_data.fs,... 

        

repmat(EK80_data.echogram_phi_analysis(ii,TWTTsphere(ii)),size(Fdomain,2),1),

... 

        

smooth(20*log10(abs(EK80_data.echogram_MF(ii,max(1,min(size(EK80_data.echogra

m_MF,2)-win_obs,TWTTsphere(ii)-

before_target)):max(win_obs+1,min(TWTTsphere(ii)+after_target,size(EK80_data.

echogram_MF,2)))))),20)) 

    hold on 

end 

hold off 

title('Smooth MF extract of a few pings') 

xlabel('Range') 

ylabel('Beam angle') 

zlabel('dB') 

  

%% Beam pattern 

[sorted_angle,sort_idx]= sort(beam_angle); 

sorted_FFT_sphere = FFT_sphere(:,sort_idx); 

sorted_FFT_sphere = [flip(sorted_FFT_sphere,2) sorted_FFT_sphere]; 

sorted_angle2 = [-flip(sorted_angle,2) sorted_angle]; 

angles = (0:0.1:7); 

y_fit = zeros(length(Fdomain),length(angles)); 

  

% Correction for beam pattern 

pattern_corr = zeros(length(Fdomain),length(angles)); % correction to 

take effect only for the FFT 

beam_pattern_3dB = zeros(1,length(Fdomain)); 

beam_pattern_4dB = zeros(1,length(Fdomain)); 

  

for ii=1:length(Fdomain) 

    FFT_fit = polyfit(sorted_angle2',sorted_FFT_sphere(ii,:)'...%,2); 

        +max(movmean(sorted_FFT_sphere,[10 10],1),[],'all')-

max(movmean(sorted_FFT_sphere(ii,:),[10 10],1)),2); 

    y_fit(ii,:) = polyval(FFT_fit,angles); 

    pattern_corr(ii,:) = max(y_fit(ii,:))-y_fit(ii,:); % 

numpings+1:end); 

    if ~isempty(angles(find(pattern_corr(ii,:)>3,1))) 

        beam_pattern_3dB(ii) = angles(find(pattern_corr(ii,:)>3,1)); 

    end 

     

    if ~isempty(angles(find(pattern_corr(ii,:)>4,1))) 

        beam_pattern_4dB(ii) = angles(find(pattern_corr(ii,:)>4,1)); 

    end 

end 

  

%% correction of the beam pattern 

pattern_corr(isnan(pattern_corr))=0; 

FFT_sphere(:,sort_idx) = FFT_sphere(:,sort_idx) + 

interp1(angles,pattern_corr',sorted_angle,'spline')'; 
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%% Interpolation of Frequency domains 

FFT_sphere2 = interp1(Fdomain/1000,FFT_sphere,Model.out.freq,'spline'); 

figure(34) 

plot3(Model.out.freq,... 

    repmat(beam_angle,size(Model.out.freq,2),1),... 

    FFT_sphere2) 

hold on 

  

plot3(Model.out.freq,... % freq domain of Model 

    zeros(1,size(Model.out.TS,2)),... % boresight angle = 0 

    Model.out.TS,'b','LineWidth',1) 

hold off 

title('Interpolated corrected for beam pattern FFT') 

xlabel('Freq kHz') 

ylabel('Beam angle wrt Boresight') 

zlabel('FFT') 

xlim([fstart fstop]) 

view(0,0) 

  

%% Annalysis of nulls of the model 

figure(35) 

plot(Model.out.freq(1:end-1),abs((Model.out.TS(2:end)-

Model.out.TS(1:end-1)))) 

  

% smooth the nulls data 

nulls_model = [abs(Model.out.TS(2:end)-Model.out.TS(1:end-1))<.1,0==1]; 

nulls_model(1:end-1)=nulls_model(1:end-1).*nulls_model(2:end); 

nulls_model(1:end-1)=nulls_model(1:end-1).*nulls_model(2:end); 

nulls_model(2:end)=nulls_model(1:end-1).*nulls_model(2:end); 

nulls_model(2:end)=nulls_model(1:end-1).*nulls_model(2:end); 

if Channels==3 % null from 382:384 kHz for the ES333 

    nulls_model(1:end-1)=nulls_model(1:end-1).*nulls_model(2:end); 

    nulls_model(2:end)=nulls_model(1:end-1).*nulls_model(2:end); 

    nulls_model(2:end)=nulls_model(1:end-1).*nulls_model(2:end); 

else 

    if Channels==4 % null from 382:384 kHz for the ES333 

        nulls_model(2938:2955)=logical(false); 

        for nn=1:17 

            nulls_model(1:end-1)=nulls_model(1:end-

1).*nulls_model(2:end); 

        end 

    end 

end 

hold on 

plot(Model.out.freq,Model.out.TS,'Linewidth',2) 

plot(Model.out.freq,Model.out.TS.*(nulls_model)) 

hold off 

title('Nulls that will be not considered to calibrate') 

xlabel('Freq kHz') 

ylabel('Ideal TS') 

  

%% Difference from the model 

figure(36) 

angle = 3.5; % only responses from elevation angle within will be 

averaged 



174 

 

  

subplot(311) 

% hold on 

plot(Model.out.freq,... % plot the mean 

    

mean(FFT_sphere2(:,beam_angle<angle),2),'r',Model.out.freq,Model.out.TS,'b') 

hold on 

% plot the std 

% std is normal (index 1) when there is more than 30 observations, 

% it considers N-1 when less than 30 obs (index 0) 

plot(Model.out.freq, mean(FFT_sphere2(:,beam_angle<angle),2)... 

    

+1.98*std(FFT_sphere2(:,beam_angle<angle),min(1,floor(sum(beam_angle<angle)/3

0)),2),'r-.',...%'--')%... 

    Model.out.freq, mean(FFT_sphere2(:,beam_angle<angle),2)... 

    -

1.98*std(FFT_sphere2(:,beam_angle<angle),min(1,floor(sum(beam_angle<angle)/30

)),2),'r-.') 

hold off 

title(['Mean response of the MRA (<',num2str(angle),'deg), ', 

num2str(sum(beam_angle<angle)) ' pings used']) %, (std = 

',num2str(mean(std(FFT_sphere2(find(fstart*1000<Fdomain,1):find(fstop*1000<Fd

omain,1),beam_angle<angle),min(1,floor(sum(beam_angle<angle)/30)),2))),')']) 

xlabel('Freq (kHz)') 

ylabel('Uncalibrated BS (dB)') 

xlim([fstart fstop]) 

  

calib_BS = (Model.out.TS'-

10*log10(mean(10.^(FFT_sphere2(:,beam_angle<angle)/10),2,'omitnan'))).*nulls_

model'; 

edges = logical(nulls_model - [1==1,nulls_model(1:end-

1).*nulls_model(2:end)].*[nulls_model(1:end-1).*nulls_model(2:end),1==1]); % 

used to find the edges to interpolate 

edges(1)= true; % to assure the inicial and final values will be 

interpolated 

edges(end)= true; 

calib_BS = 

~nulls_model.*interp1(Model.out.freq(edges),calib_BS(edges),Model.out.freq)+c

alib_BS'; % interpolation of the gaps 

nulls_model2 = logical(interp1(Model.out.freq,nulls_model+1-

1,Fdomain/1000,'linear','extrap')); 

edges2 = logical(nulls_model2 - [1==1,nulls_model2(1:end-

1).*nulls_model2(2:end)].*[nulls_model2(1:end-1).*nulls_model2(2:end),1==1]); 

% used to find the edges to interpolate 

pattern_corr = pattern_corr.*nulls_model2'; 

pattern_interp = 

~nulls_model2'.*interp1(Fdomain(edges2),pattern_corr(edges2,:),Fdomain);% 

interpolation of the gaps 

pattern_interp(isnan(pattern_interp))=0; 

pattern_corr=pattern_interp+pattern_corr; 

  

beam_pattern_3dB = beam_pattern_3dB.*nulls_model2; 

pattern_interp = 

~nulls_model2.*interp1(Fdomain(edges2),beam_pattern_3dB(edges2),Fdomain);% 

interpolation of the gaps 

pattern_interp(isnan(pattern_interp))=0; 



175 

 

beam_pattern_3dB=pattern_interp+beam_pattern_3dB; 

beam_pattern_4dB = beam_pattern_4dB.*nulls_model2; 

pattern_interp = 

~nulls_model2.*interp1(Fdomain(edges2),beam_pattern_4dB(edges2),Fdomain);% 

interpolation of the gaps 

pattern_interp(isnan(pattern_interp))=0; 

beam_pattern_4dB=pattern_interp+beam_pattern_4dB; 

  

subplot(312) 

plot(Model.out.freq,calib_BS,'r') 

hold on 

plot(Model.out.freq,calib_BS,'r.') 

title('Difference to be used to calibrate') 

xlabel('Freq (kHz)') 

xlim([fstart fstop]) 

ylabel('Calibration factor (dB)') 

  

subplot(313) 

plot(Model.out.freq,FFT_sphere2+calib_BS','r') 

hold on 

plot(Model.out.freq,Model.out.TS,'b','Linewidth',2) 

hold off 

title('All calibrated responses') 

xlabel('Freq (kHz)') 

ylabel('Calibrated BS (dB)') 

xlim([fstart fstop]) 

  

%% Beam pattern plot 

figure(33) 

plot3(angles,repmat(Fdomain/1000,size(angles,2),1), ... 

    -pattern_corr) 

legend off 

title('Beam Pattern of different frequencies') 

xlabel('Beam angle wrt Boresight') 

ylabel('Freq kHz') 

zlabel('FFT') 

axis([angles(1) angles(end) fstart fstop -inf inf]) 

set(gca,'Ydir','reverse') 

view(0,0) 

%% Save calibration file 

calib_file.tc = 

EK80_data.configdata.transceivers(Channels).channels.transducer.TransducerNam

e; 

calib_file.fstart = fstart*1000; 

calib_file.fstop = fstop*1000; 

calib_file.calibration.freq_domain = Model.out.freq; 

calib_file.calibration.correction = calib_BS; 

calib_file.beam_pattern.beam_angle = angles; 

calib_file.beam_pattern.freq_domain = Fdomain ; 

calib_file.beam_pattern.correction = pattern_corr; 

calib_file.beam_pattern.bp_3dB = beam_pattern_3dB; 

calib_file.beam_pattern.bp_4dB = beam_pattern_4dB; 

  

%% Save calib files 

% save(['Sample_Calib_MF_',EK80_data.NMEA(2).text.text(18:19),'_', 

EK80_data.NMEA(2).text.text(21:22),'_',... 
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%     

EK80_data.configdata.transceivers(Channels).channels.transducer.TransducerNam

e,'.mat'],... 

%     'calib_file') 

  

% Tank files 

% save(['Tank_autotxNormal_Calib_MF_16MAY_',... 

%     

EK80_data.configdata.transceivers(Channels).channels.transducer.TransducerNam

e,'.mat'],... 

%     'calib_file') 
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readrawEK80.m 

% Reading EK80 raw data file 

% Simrad, Lars Nonboe Andersen, 10/10-13 

% clear all; close all; 

% addpath(genpath('C:\Users\pscor\OneDrive\Documents\MATLAB\EK80')) 

% filelocation = 'Z:\users\weidner.elizabeth\EK80'; 

% [fname,fpath,~] = uigetfile(strcat(filelocation,'\*.raw'),'Select raw 

files'); 

% fname = [fpath fname]; 

% npingsmax = 1e6; 

  

function [configdata,filterdatavec,sampledatamat,NMEA] = 

readrawEK80(fname,npings,file,ChannelID) 

  

headerlength = 12; % Bytes in datagram header 

pingno = 0; 

pingtime = 0; 

nmeaidx = 0; % added EW 6/13 

  

fid = fopen(fname,'r'); 

if (fid==-1) 

    error('Could not open file'); 

else 

    pingno = 0; 

     

    while(1) 

         

        dglength = fread(fid,1,'int32'); 

         

        if (feof(fid)) 

            break 

        end 

         

        dgheader = readdgheader(fid); 

        %       dgheader.type % LIZ 

        switch (dgheader.type) 

             

            case 'XML0' % XML datagram 

                xmldata = readxmldata(fid,dglength-headerlength); 

                xmldata = parseXML(xmldata); 

                %                xmldata.Name %LIZ 

                switch (xmldata.Name) 

                     

                    case 'Configuration' % Configuration XML data 

                        configdata = parseconfxmlstruct(xmldata); 

                        %                         nchannels = 

length(configdata.transceivers); 

                         

                    case 'Environment' % Environment XML data 

                        envdata = parseenvxmlstruct(xmldata); 

                         

                    case 'Parameter' % Sampledata parameter data 

                        if (dgheader.datetime~=pingtime) 
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                            pingtime = dgheader.datetime; 

                            pingno = pingno+1; 

                             

                            clc 

                            home 

                            disp(['Reading file: ' int2str(file) ' from 

' configdata.transceivers(ChannelID).channels.transducer.TransducerName   ]); 

% ChannelID]) ; 

                            disp(fname); 

                            disp(['Ping no: ' int2str(pingno)]); 

                            %                             disp(['Time: ' 

datestr(dgheader.datetime)]); 

                        end 

                         

                        prmdata = parseprmxmlstruct(xmldata); 

                         

                end 

                 

            case 'FIL1' % Filter datagram 

                filterdata = readfilterdata(fid); 

                if ~exist('filterdatavec','var') 

                    filterdatavec(1,filterdata.stage) = filterdata; 

                else 

                    idx = 

find(strcmp(filterdata.channelid,{filterdatavec(:,1).channelid})); 

                    if isempty(idx) 

                        

filterdatavec(size(filterdatavec,1)+1,filterdata.stage) = filterdata; 

                    else 

                        filterdatavec(idx,filterdata.stage) = 

filterdata; 

                    end 

                end 

                 

            case 'NME0' % NMEA datagram 

                nmea = readtextdata(fid,dglength-headerlength); 

                nmeaidx = nmeaidx + 1; %added EW 6/13 

                NMEA(nmeaidx).text = nmea; % added EW 6/13 

                NMEA(nmeaidx).time = dgheader.datetime; % added EW 6/13 

                 

            case 'TAG0' % Annotation datagram 

                annotation = readtextdata(fid,dglength-headerlength); 

                 

            case 'MRU0' % Motion data 

                motiondata = readmotiondata(fid); 

                 

            case {'RAW0','RAW3'} % Sample datagram 

                 

                if (dgheader.datetime~=pingtime) 

                    pingtime = dgheader.datetime; 

                    pingno = pingno+1; 

                end 

                 

                sampledata = readsampledata(fid,dgheader.type); 

                if (dgheader.type=='RAW0') 

                    channelno = sampledata.channelno; 
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                else 

                    channels = [configdata.transceivers(:).channels]; 

                    channelno   = 

find(strcmp(deblank(sampledata.channelid),{channels.ChannelId})); 

  

                    if (~exist('motiondata')) 

                        motiondata.heave    = 0; 

                        motiondata.roll     = 0; 

                        motiondata.pitch    = 0; 

                        motiondata.heading  = 0; 

                    end 

                     

                    sampledata  = 

mergesampledata(envdata,motiondata,prmdata,sampledata); 

  

                end 

                sampledata.time                 = dgheader.datetime; 

                 

                sampledatamat(channelno,pingno) = sampledata; 

                 

            otherwise 

                error(strcat('Unknown datagram ''',dgheader.type,''' in 

file')); 

        end 

         

        dglength = fread(fid,1,'int32'); 

         

        if (pingno>npings) 

            break 

        end 

    end 

     

    fclose(fid); 

end 

  

disp(strcat('Finished reading file')); 

  

end 
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gettransceiver.m 

function transceiver = 

gettransceiver(configdata,filterdatavec,sampledatamat,sampledatamatnum,transc

eiverno,pingno,chan) 

%        transceiver = 

gettransceiver(configdata,filterdatavec,sampledatamat,1       ,        

Channels,     pingno,1); 

  

%  

sampledata                  = sampledatamat(sampledatamatnum,pingno); 

  

transceiver.iscw            = ~logical(sampledata.pulseform); 

  

if transceiver.iscw 

    transceiver.fstart          = 

configdata.transceivers(transceiverno).channels.transducer.Frequency; 

    transceiver.bw              = 0; 

else 

    transceiver.fstart          = sampledata.frequency; 

    transceiver.bw              = 

sampledata.sweep*sampledata.pulselength; 

end 

  

transceiver.pulselength     = sampledata.pulselength; 

transceiver.txpower         = sampledata.transmitpower; 

transceiver.soundspeed      = 

sspeed(sampledata.env.temp,sampledata.env.sal,sampledata.env.depth); 

  

transceiver.slope           = sampledata.slope;%/100; 

transceiver.gain            = 

configdata.transceivers(transceiverno).channels(chan).transducer.Gain; 

transceiver.gain            = transceiver.gain(end); 

transceiver.fnom            = 

configdata.transceivers(transceiverno).channels(chan).transducer.Frequency; 

transceiver.alongnom        = 

configdata.transceivers(transceiverno).channels(chan).transducer.BeamWidthAlo

ngship; 

transceiver.athwnom         = 

configdata.transceivers(transceiverno).channels(chan).transducer.BeamWidthAth

wartship; 

transceiver.psinom          = 

configdata.transceivers(transceiverno).channels(chan).transducer.EquivalentBe

amAngle; 

transceiver.alongfactor     = 

configdata.transceivers(transceiverno).channels(chan).transducer.AngleSensiti

vityAlongship; % included on 17SEP2019 

transceiver.athwfactor     = 

configdata.transceivers(transceiverno).channels(chan).transducer.AngleSensiti

vityAthwartship; % included on 17SEP2019 

  

transceiver.fstop           = transceiver.fstart+transceiver.bw; 

transceiver.fc              = (transceiver.fstart+transceiver.fstop)/2; 
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transceiver.rximpedance     = 1e3;%5e3; %5.4e3 

transceiver.ztrd            = 75; 

transceiver.fs              = 1.5e6; % determine the sample rate to 

build the Tx signal 

% transceiver.fs              = 1e6; % testing different frequency 

samples 

  

% transceiver.stage1          = filterdatavec(sampledatamatnum,1).coeff; 

% transceiver.stage2          = filterdatavec(sampledatamatnum,2).coeff; 

transceiver.stage1          = filterdatavec(transceiverno,1).coeff; 

transceiver.stage2          = filterdatavec(transceiverno,2).coeff; 

  

% transceiver.dec_fpga        = filterdatavec(sampledatamatnum,1).dec; 

% transceiver.dec_pc          = filterdatavec(sampledatamatnum,2).dec; 

transceiver.dec_fpga        = filterdatavec(transceiverno,1).dec; 

transceiver.dec_pc          = filterdatavec(transceiverno,2).dec; 

  

transceiver.fsdec           = 

round(transceiver.fs/transceiver.dec_fpga/transceiver.dec_pc); 

transceiver.sampleinterval  = 1/transceiver.fsdec; 

  

transceiver.vrsplit         = 

transceiver.rximpedance/(transceiver.rximpedance+transceiver.ztrd); 

  

  

end 
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createtx.m 

function [tx,ytx] = createtx(transceiver) 

  

wbt.fs = transceiver.fs; 

wbt.dt = 1/wbt.fs; 

  

ztrd = transceiver.ztrd; 

  

% Create tx signal 

  

tx.amp  = sqrt((transceiver.txpower/4)*(2*ztrd)); 

  

tx.t  = (0:wbt.dt:transceiver.pulselength-wbt.dt)'; 

tx.nt = length(tx.t); 

  

nwtx    = 2*floor(transceiver.slope*tx.nt); 

wtxtmp  = hann(nwtx); 

nwtxh   = round(nwtx/2); 

wtx     = [wtxtmp(1:nwtxh); ones(tx.nt-nwtx,1); wtxtmp(nwtxh+1:end)]; 

  

tx.sig = 

tx.amp*chirp(tx.t,transceiver.fstart,transceiver.pulselength,transceiver.fsto

p).*wtx; 

  

tx.df   = (transceiver.fstop-transceiver.fstart)/tx.nt; 

tx.f    = (0:tx.nt-1)*tx.df + transceiver.fstart; 

  

% Stage 1 - FPGA filter 

  

b_fpga      = transceiver.stage1; 

  

tx.filfpga      = conv(tx.sig/max(abs(tx.sig)),b_fpga); 

tx.filfpgadec   = downsample(tx.filfpga,transceiver.dec_fpga); 

% tx.filfpgadec   = downsample(tx.filfpga,1); % keep the same signal 

  

% Stage 2 - PC filter 

  

b_pc = transceiver.stage2; 

  

tx.filpc        = conv(tx.filfpgadec,b_pc); 

% tx.filpcdec     = downsample(tx.filpc,transceiver.dec_pc); 

tx.filpcdec     = downsample(tx.filpc,1); % keep the same signal 

  

  

% ytx_org = tx.sig; 

ytx = tx.filpcdec; 

end 
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sspeed.m 

function c = sspeed(t,s,d) 

% c = sspeed(t,s,d); 

% Calculates sound speed in m/s as a function of temperature, t, 

% salinity, s, and depth, d. 

  

if (s==0) 

    % Freshwater 

    c = 1402.388 + 5.03711*t - 0.0580852*t^2 + 0.3342e-3*t^3 - 0.1478e-

5*t^4 + 0.315e-8*t^5; 

else 

    % Salt water 

    c = 1448.96 + 4.591*t - 0.05304*t.^2 + 2.374e-4*t.^3 ... 

        + 1.34*(s-35) + 0.0163.*d + 1.675e-7*d.^2 ... 

        - 0.01025*t.*(s-35) - 7.139e-13*t.*d.^3; 

end 
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xmlreadstring.m 

function [parseResult,p] = xmlreadstring(stringToParse,varargin) 

%XMLREADSTRING Modified XMLREAD function to read XML data from a string. 

% Author: Luis Cantero. 

% The MathWorks. 

  

p = locGetParser(varargin); 

locSetEntityResolver(p,varargin); 

locSetErrorHandler(p,varargin); 

  

% Parse and return. 

parseStringBuffer = java.io.StringBufferInputStream(stringToParse); 

parseResult = p.parse(parseStringBuffer); 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function p = locGetParser(args) 

  

p = []; 

for i=1:length(args) 

    if isa(args{i},'javax.xml.parsers.DocumentBuilderFactory') 

        javaMethod('setValidating',args{i},locIsValidating(args)); 

        p = javaMethod('newDocumentBuilder',args{i}); 

        break; 

    elseif isa(args{i},'javax.xml.parsers.DocumentBuilder') 

        p = args{i}; 

        break; 

    end 

end 

  

if isempty(p) 

    parserFactory = javaMethod('newInstance',... 

        'javax.xml.parsers.DocumentBuilderFactory'); 

         

    javaMethod('setValidating',parserFactory,locIsValidating(args)); 

    %javaMethod('setIgnoringElementContentWhitespace',parserFactory,1); 

    %ignorable whitespace requires a validating parser and a content 

model 

    p = javaMethod('newDocumentBuilder',parserFactory); 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function tf=locIsValidating(args) 

  

tf=any(strcmp(args,'-validating')); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function locSetEntityResolver(p,args) 

  

for i=1:length(args) 

    if isa(args{i},'org.xml.sax.EntityResolver') 

        p.setEntityResolver(args{i}); 

        break; 
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    end 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function locSetErrorHandler(p,args) 

  

for i=1:length(args) 

    if isa(args{i},'org.xml.sax.ErrorHandler') 

        p.setErrorHandler(args{i}); 

        break; 

    end 

end 
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readxmldata.m 

% Reading EK80 raw data file XML data 

% Simrad, Lars Nonboe Andersen, 10/10-10 

% 

% modified by TW: 1/6/2015 

%     getting this error:[Fatal Error] :13:17: Content is not allowed in 

trailing section. 

%     modifying this to get rid of content after the last > 

%       added the following two lines: 

%           idx = strfind(textdata,'>'); 

%           textdata = textdata(1:idx(end)); 

  

function xmldata = readxmldata(fid,length) 

% length in bytes 

  

textdata = char(fread(fid,length,'char')'); 

  

idx = strfind(textdata,'>'); 

textdata = textdata(1:idx(end)); 

  

[parseResult,p] = xmlreadstring(textdata); 

  

xmldata = parseResult; 
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readtextdata.m 

% Reading EK80 raw data file text data 

% Simrad, Lars Nonboe Andersen, 10/10-13 

  

function textdata = readtextdata(fid,length) 

% length in bytes 

  

textdata.text = char(fread(fid,length,'char')'); 
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readsampledata.m 

% Reading EK80 raw data file sample data 

% Simrad, Lars Nonboe Andersen, 10/10-13 

  

function sampledata = readsampledata(fid,rawx) 

  

if strcmp(rawx,'RAW0') 

     

    sampledata.channelno                = fread(fid,1,'int16'); 

    sampledata.mode_low                 = fread(fid,1,'int8'); 

    sampledata.mode_high                = fread(fid,1,'int8'); 

    sampledata.mode                     = 256*sampledata.mode_high + 

sampledata.mode_low; 

    sampledata.transducerdepth          = fread(fid,1,'float32'); 

    sampledata.frequency                = fread(fid,1,'float32'); 

    sampledata.transmitpower            = fread(fid,1,'float32'); 

    sampledata.pulselength              = fread(fid,1,'float32'); 

    sampledata.bandwidth                = fread(fid,1,'float32'); 

    sampledata.sampleinterval           = fread(fid,1,'float32'); 

    sampledata.soundspeed               = fread(fid,1,'float32'); 

    sampledata.absorptioncoefficient    = fread(fid,1,'float32'); 

    sampledata.heave                    = fread(fid,1,'float32'); 

    sampledata.roll                     = fread(fid,1,'float32'); 

    sampledata.pitch                    = fread(fid,1,'float32'); 

    sampledata.temperature              = fread(fid,1,'float32'); 

    sampledata.heading                  = fread(fid,1,'float32'); 

    sampledata.transmitmode             = fread(fid,1,'int8'); 

    sampledata.pulseform                = fread(fid,1,'int8'); 

    sampledata.slope                    = fread(fid,1,'int8'); 

    sampledata.spare1                   = char(fread(fid,1,'char')'); 

    sampledata.sweep                    = fread(fid,1,'float32'); 

     

elseif strcmp(rawx,'RAW3') 

    sampledata.channelid                = char(fread(fid,128,'char')'); 

    sampledata.mode_low                 = fread(fid,1,'int8'); 

    sampledata.mode_high                = fread(fid,1,'int8'); 

    sampledata.mode                     = 256*sampledata.mode_high + 

sampledata.mode_low; 

    sampledata.spare1                   = char(fread(fid,2,'char')'); 

else  

     

    error(strcat('Unknown sample datagram ''',rawx,''' in file')); 

  

end 

  

sampledata.offset                   = fread(fid,1,'int32'); 

sampledata.count                    = fread(fid,1,'int32'); 

if (sampledata.mode_low<4) 

    power                           = 

fread(fid,sampledata.count,'int16'); 

    sampledata.complexsamples.power                = 

power*10*log10(2)/256;         %LIZ 

    if (sampledata.mode_low==3) 
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        angle                       = fread(fid,[2 

sampledata.count],'int8'); 

        sampledata.complexsamples.angle            = angle(1,:) + 

angle(2,:)*256;   %LIZ 

        sampledata.complexsamples.alongship        = angle(2,:)';                   

%LIZ 

        sampledata.complexsamples.athwartship      = angle(1,:)';                   

%LIZ 

    end 

elseif (sampledata.mode_low==8) 

    ncomplex                        = sampledata.mode_high; 

    complexsamples                  = 

fread(fid,2*ncomplex*sampledata.count,'float32=>single'); 

    complexsamples                  = reshape(complexsamples,[2 ncomplex 

sampledata.count]); 

    sampledata.complexsamples       = 

(squeeze(complex(complexsamples(1,:,:),complexsamples(2,:,:)))).'; % is there 

a way to improve this line? 

else 

    error('Unknown sample mode'); 

end 
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readmotiondata.m 

% Read EK80 raw data file motion datagram 

% Simrad, Lars Nonboe Andersen, 10/10-13 

  

function motiondata = readmotiondata(fid) 

  

motiondata.heave    = fread(fid,1,'float32'); 

motiondata.roll     = fread(fid,1,'float32'); 

motiondata.pitch    = fread(fid,1,'float32'); 

motiondata.heading  = fread(fid,1,'float32'); 

  

end 
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readfilterdata.m 

% Read EK80 raw data file filter datagram 

% Simrad, Lars Nonboe Andersen, 10/10-13 

  

function filterdata = readfilterdata(fid) 

  

filterdata.stage = fread(fid,1,'int16'); 

  

filterdata.channelno = fread(fid,1,'int16'); 

  

filterdata.channelid = char(fread(fid,128,'char')'); 

  

filterdata.ncoeff = fread(fid,1,'uint16'); 

filterdata.dec = fread(fid,1,'uint16'); 

  

coeff = fread(fid,2*filterdata.ncoeff,'float32=>single'); 

coeff = reshape(coeff,[2 filterdata.ncoeff]); 

coeff = (squeeze(complex(coeff(1,:),coeff(2,:)))).'; 

  

filterdata.coeff = coeff; 

  

end 
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readdgheader.m 

% Reading EK80 raw data file datagram header 

% Simrad, Lars Nonboe Andersen, 10/10-13 

  

function dgheader = readdgheader(fid) 

  

dgheader.type = char(fread(fid,4,'char')'); 

  

dgheader.lowdatetime = fread(fid,1,'uint32'); 

dgheader.highdatetime = fread(fid,1,'uint32'); 

  

dgheader.datetime = NTTime2Mlab(dgheader.highdatetime*2^32 + 

dgheader.lowdatetime); 
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parseXML.m 

function theStruct = parseXML(tree) 

% PARSEXML Convert XML DOM to a MATLAB structure. 

  

% Recurse over child nodes. This could run into problems 

% with very deeply nested trees. 

try 

    removeIndentNodes( tree.getChildNodes ); 

    theStruct = parseChildNodes(tree); 

catch 

    error('Unable to parse XML DOM'); 

end 

  

  

% ----- Subfunction PARSECHILDNODES ----- 

function children = parseChildNodes(theNode) 

% Recurse over node children. 

children = []; 

if theNode.hasChildNodes 

    childNodes = theNode.getChildNodes; 

    numChildNodes = childNodes.getLength; 

    allocCell = cell(1, numChildNodes); 

     

    children = struct(             ... 

        'Name', allocCell, 'Attributes', allocCell,    ... 

        'Data', allocCell, 'Children', allocCell); 

     

    for count = 1:numChildNodes 

        theChild = childNodes.item(count-1); 

        children(count) = makeStructFromNode(theChild); 

    end 

end 

  

% ----- Subfunction MAKESTRUCTFROMNODE ----- 

function nodeStruct = makeStructFromNode(theNode) 

% Create structure of node info. 

  

nodeStruct = struct(                        ... 

    'Name', char(theNode.getNodeName),       ... 

    'Attributes', parseAttributes(theNode),  ... 

    'Data', '',                              ... 

    'Children', parseChildNodes(theNode)); 

  

if any(strcmp(methods(theNode), 'getData')) 

    nodeStruct.Data = char(theNode.getData); 

else 

    nodeStruct.Data = ''; 

end 

  

% ----- Subfunction PARSEATTRIBUTES ----- 

function attributes = parseAttributes(theNode) 

% Create attributes structure. 
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attributes = []; 

if theNode.hasAttributes 

    theAttributes = theNode.getAttributes; 

    numAttributes = theAttributes.getLength; 

    allocCell = cell(1, numAttributes); 

    attributes = struct('Name', allocCell, 'Value', ... 

        allocCell); 

     

    for count = 1:numAttributes 

        attrib = theAttributes.item(count-1); 

        attributes(count).Name = char(attrib.getName); 

        attributes(count).Value = char(attrib.getValue); 

    end 

end 

  

% ----- Subfunction REMOVEINDENTNODES ----- 

function removeIndentNodes( childNodes ) 

  

numNodes = childNodes.getLength; 

remList = []; 

for i = numNodes:-1:1 

    theChild = childNodes.item(i-1); 

    if (theChild.hasChildNodes) 

        removeIndentNodes(theChild.getChildNodes); 

    else 

        if ( theChild.getNodeType == theChild.TEXT_NODE && ... 

                ~isempty(char(theChild.getData()))         && ... 

                all(isspace(char(theChild.getData())))) 

            remList(end+1) = i-1; % java indexing 

        end 

    end 

end 

for i = 1:length(remList) 

    childNodes.removeChild(childNodes.item(remList(i))); 

end 
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parseprmxmlstruct.m 

% Parse Parameter XML data to a Parameter Matlab structure 

% Simrad, Lars Nonboe Andersen, 10/10-13 

  

function prm = parseprmxmlstruct(xmldata) 

  

nattributes = length(xmldata.Children(1).Attributes); 

  

for i = 1:nattributes 

    prmxml.(xmldata.Children(1).Attributes(i).Name) = 

xmldata.Children(1).Attributes(i).Value; 

end 

  

prm.channelid       = prmxml.ChannelID; 

prm.channelmode     = str2double(prmxml.ChannelMode); 

prm.txpower         = str2double(prmxml.TransmitPower); 

prm.pulseform       = str2double(prmxml.PulseForm); 

prm.pulselength     = str2double(prmxml.PulseDuration); 

prm.slope           = str2double(prmxml.Slope); 

if prm.slope == 0 

    prm.fstart          = str2double(prmxml.Frequency); 

    prm.fstop           = str2double(prmxml.Frequency); 

else 

    %prm.bandwidth       = str2double(prmxml.BandWidth); 

    prm.fstart          = str2double(prmxml.FrequencyStart); 

    prm.fstop           = str2double(prmxml.FrequencyEnd); 

end 

prm.sampleinterval  = str2double(prmxml.SampleInterval); 

prm.transducerdepth = 4.42; 
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parseenvxmlstruct.m 

% Parse Environment XML data to an Environment Matlab structure 

% Simrad, Lars Nonboe Andersen, 10/10-13 

  

function env = parseenvxmlstruct(xmldata) 

  

nattributes = length(xmldata.Attributes); 

  

for i = 1:nattributes, 

    envxml.(xmldata.Attributes(i).Name) = xmldata.Attributes(i).Value; 

end 

  

%env.temp    = str2num(envxml.Temperature); 

env.temp    = 20; 

env.sal     = 35; 

env.depth   = 35; 

env.acid    =8; 

 

  



197 

 

parseconfxmlstruct.m 

% Parse Configuration XML data to a Configuration Matlab structure 

% Simrad, Lars Nonboe Andersen, 10/10-13 

  

function config = parseconfxmlstruct(xmldata) 

  

% Header 

  

headeridx = find(strcmp({xmldata.Children.Name},'Header')); 

headerxml = xmldata.Children(headeridx); 

  

nattributes = length(headerxml.Attributes); 

  

for i = 1:nattributes, 

    header.(headerxml.Attributes(i).Name) = 

headerxml.Attributes(i).Value; 

end 

  

transceiversidx = find(strcmp({xmldata.Children.Name},'Transceivers')); 

transceiversxml = xmldata.Children(transceiversidx); 

  

ntransceivers = length(transceiversxml.Children); 

  

for i = 1:ntransceivers, 

    transceiverxml = transceiversxml.Children(i); 

    transceivers(i).id =  transceiverxml.Name; 

    nattributes = length(transceiverxml.Attributes); 

    for j = 1:nattributes, 

        transceivers(i).(transceiverxml.Attributes(j).Name) = 

transceiverxml.Attributes(j).Value; 

    end 

     

    channelsxml = transceiverxml.Children; 

    nchannels = length(channelsxml.Children); 

    channels = []; 

    for j = 1:nchannels, 

        channelxml = channelsxml.Children(j); 

        channels(j).Name = channelxml.Name; 

        nattributes = length(channelxml.Attributes); 

        for k = 1:nattributes, 

            channels(j).(channelxml.Attributes(k).Name) = 

channelxml.Attributes(k).Value; 

        end 

         

        transducer = []; 

        transducerxml = channelxml.Children; 

        nattributes = length(transducerxml.Attributes); 

        for m = 1:nattributes, 

            transducer.(transducerxml.Attributes(m).Name) = 

transducerxml.Attributes(m).Value; 

        end 

        channels(j).transducer = transducer; 

    end 
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    transceivers(i).channels = channels; 

end 

  

configxml.header = header; 

configxml.transceivers = transceivers; 

  

% Header 

config.header.TimeBias = str2num(configxml.header.TimeBias); 

  

% Transceivers 

for i = 1:ntransceivers, 

    config.transceivers(i).SerialNumber = 

str2num(configxml.transceivers(i).SerialNumber); 

    nchannels = length(configxml.transceivers(i).channels); 

    channels = []; 

    for j = 1:nchannels, 

        channels(j).ChannelId = 

configxml.transceivers(i).channels(j).ChannelID; 

        %        channels(j).ChannelId = 

configxml.transceivers(i).channels(j).ChannelIdLong; 

        transducer = []; 

        transducer.AngleSensitivityAlongship    = 

str2num(configxml.transceivers(i).channels(j).transducer.AngleSensitivityAlon

gship); 

        transducer.AngleSensitivityAthwartship  = 

str2num(configxml.transceivers(i).channels(j).transducer.AngleSensitivityAthw

artship); 

        transducer.BeamWidthAlongship           = 

str2num(configxml.transceivers(i).channels(j).transducer.BeamWidthAlongship); 

        transducer.BeamWidthAthwartship         = 

str2num(configxml.transceivers(i).channels(j).transducer.BeamWidthAthwartship

); 

        transducer.EquivalentBeamAngle          = 

str2num(configxml.transceivers(i).channels(j).transducer.EquivalentBeamAngle)

; 

        transducer.Frequency                    = 

str2num(configxml.transceivers(i).channels(j).transducer.Frequency); 

        transducer.Gain                         = 

str2num(configxml.transceivers(i).channels(j).transducer.Gain); 

        transducer.TransducerName               = 

configxml.transceivers(i).channels(j).transducer.TransducerName; 

        channels(j).transducer = transducer; 

    end 

    config.transceivers(i).channels = channels; 

end 
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NTTime2Mlab.m 

function mtime=NTTime2Mlab(NTTime) 

% NTTime2Mlab - converts from NT time to matlab serial time as returned 

from datenum 

%   mtime=NTTime2Mlab(NTTime) - Converts the NTTime vector containing 

time in NT format 

%                               to matlab serial time.Output can be used 

directly into datestr 

% Ruben Patel IMR 

  

  

import java.util.GregorianCalendar; 

import java.util.TimeZone; 

import java.text.SimpleDateFormat; 

import java.sql.Timestamp; 

  

cal = GregorianCalendar; 

  

NT_START_CAL=GregorianCalendar(1601, 0, 1); 

GMT = TimeZone.getTimeZone('GMT'); 

NT_START_CAL.setTimeZone(GMT); 

NT_START_DATE= -

11644473600000.0;%NT_START_CAL.get(NT_START_CAL.MILLISECOND); 

OUT_DATE_FORMAT = SimpleDateFormat('dd-MMM-yyyy HH:mm:ss'); 

OUT_DATE_FORMAT.setTimeZone(GMT); 

for i=1:length(NTTime) 

    mlabMilli=(NTTime(i)/10000.0)+NT_START_DATE; 

    date = Timestamp(mlabMilli); 

    cal.setTime(date); 

    

mtime(i)=datenum(cal.get(cal.YEAR),cal.get(cal.MONTH)+1,cal.get(cal.DAY_OF_MO

NTH),cal.get(cal.HOUR_OF_DAY),cal.get(cal.MINUTE),cal.get(cal.SECOND)+date.ge

tNanos*1e-9); 

end 
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mergesampledata.m 

function sampledata  = mergesampledata(env,motion,prm,sampledata) 

  

% sampledata.temp     = env.temp; 

% sampledata.sal      = env.sal; 

% sampledata.depth    = env.depth; 

% sampledata.acid     = env.acid; 

sampledata.env        = env; 

  

sampledata.heave    = motion.heave; 

sampledata.roll     = motion.roll; 

sampledata.pitch    = motion.pitch; 

sampledata.heading  = motion.heading; 

  

sampledata.channelid        = prm.channelid; 

sampledata.transmitmode     = prm.channelmode; 

sampledata.transmitpower    = prm.txpower; 

sampledata.pulseform        = prm.pulseform; 

sampledata.pulselength      = prm.pulselength; 

sampledata.slope            = prm.slope; 

sampledata.sweep            = (prm.fstop-prm.fstart)/prm.pulselength; 

sampledata.frequency        = prm.fstart; 

sampledata.sampleinterval   = prm.sampleinterval; 

sampledata.transducerdepth  = prm.transducerdepth; 
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abscoef_freq.m 

function a = abscoef_freq(t,s,d,ph,c,Fdomain) 

% Gives the absortion coefficient for each frequency of the Fdomain 

% Calculates absorption coefficient in dB/m as a function of 

temperature, t, 

% salinity, s, depth, d, acidity, p, and sound speed, c. 

  

% Absorption coefficient 

  

Fdomain = Fdomain/1e3; 

  

a1 = (8.86./c)*10.^(0.78*ph-5); 

p1 = 1; 

f1 = 2.8*(s/35).^0.5.*10.^(4-1245./(t+273)); 

  

a2 = 21.44.*(s./c).*(1+0.025*t); 

p2 = 1 - 1.37e-4*d + 6.62e-9.*d.^2; 

f2 = 8.17*10.^(8-1990./(t+273))./(1+0.0018*(s-35)); 

  

p3 = 1 - 3.83e-5*d + 4.9e-10*d.^2; 

  

a3l = 4.937e-4 - 2.59e-5*t + 9.11e-7*t.^2 - 1.5e-8*t.^3; 

a3h = 3.964e-4 - 1.146e-5*t + 1.45e-7*t.^2 - 6.5e-10*t.^3; 

a3 = a3l.*(t<=20) + a3h.*(t>20); 

  

a = Fdomain.^2.*( a1.*p1.*f1./(f1.^2+Fdomain.^2) + 

a2.*p2.*f2./(f2.^2+Fdomain.^2) + a3.*p3 ); 

  

a = a/1e3; 
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abscoef.m 

function a = abscoef(t,s,d,ph,c,f) 

% Calculates absorption coefficient in dB/m as a function of 

temperature, t, 

% salinity, s, depth, d, acidity, p, and sound speed, c. 

  

% Absorption coefficient 

  

f = f/1e3; 

  

a1 = (8.86./c)*10.^(0.78*ph-5); 

p1 = 1; 

f1 = 2.8*(s/35).^0.5.*10.^(4-1245./(t+273)); 

  

a2 = 21.44.*(s./c).*(1+0.025*t); 

p2 = 1 - 1.37e-4*d + 6.62e-9.*d.^2; 

f2 = 8.17*10.^(8-1990./(t+273))./(1+0.0018*(s-35)); 

  

p3 = 1 - 3.83e-5*d + 4.9e-10*d.^2; 

  

a3l = 4.937e-4 - 2.59e-5*t + 9.11e-7*t.^2 - 1.5e-8*t.^3; 

a3h = 3.964e-4 - 1.146e-5*t + 1.45e-7*t.^2 - 6.5e-10*t.^3; 

a3 = a3l.*(t<=20) + a3h.*(t>20); 

  

a = f.^2.*( a1.*p1.*f1./(f1.^2+f.^2) + a2.*p2.*f2./(f2.^2+f.^2) + a3.*p3 

); 

  

a = a/1e3; 
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