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1. Introduction 

 

This chapter describes what motivated this investigation, 

defining the research goals and questions. Besides, it 

presents an overview of the research approach, 

highlighting the main results. Finally, it presents the 

outline of this document. 

1.1 Context and Motivation 

Internet of Things (IoT) is defined as a network of 'things' connected around the 

world, including everyday objects, devices, sensors, actuators, and any other devices 

connected over the Internet to other objects: in the physical or virtual world to achieve a 

specific goal  (SCHATTEN; ŠEVA; TOMIČIĆ, 2016) (WHITMORE; AGARWAL; 

XU, 2015) (CHARMONMAN; MONGKHONVANIT, 2015) (RISTESKA 

STOJKOSKA; TRIVODALIEV, 2017). 

The denomination of IoT presents the two terms “Internet” and “Things”, to 

represent that different application can share freely and on a global scale the sources of 

information (ATZORI; IERA; MORABITO, 2017). The first reflects a vision of 

communication, properly organized in the form of a generic network (i.e. the Internet, in 

the acronym IoT), the second tends to shift the focus to physical objects, the “things” to 

be connected (ARDITO; D’ADDA; MESSENI PETRUZZELLI, 2017)(ETZION; 

FOURNIER; ARCUSHIN, 2014). 

Internet of Everything (IoE) is a much broader concept (YANG; DI MARTINO; 

ZHANG, 2017), defined as:  

“a network of networks that brings together people, process, data, and things to 

make network connections more relevant and valuable than ever before” (EVANS, 

2012). 

 Our research interest in IoE expands the concept to people, business processes, 

and generated interactions, as there is great potential to be explored about extracting 

value from the interactions between sensors and actuators (human and non-humans) in 
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this complex computational environment  (FARAHZADI et al., 2017)  (IRSHAD, 

2016), where the Internet, becomes intrinsic to people's lives and ubiquitous through 

networked devices (KHODADADI; DASTJERDI; BUYYA, 2016)(IRSHAD, 2016), 

surrounding the beginning of a new paradigm defined as “IoE lifestyle”. 

Research on knowledge management has focused on understanding the complex 

relationships between data, information, and knowledge creation, and how they are 

impacted and benefited by the sources (or spaces) of data and information and the 

contexts in which they are analyzed and shared (PHILIP, 2018).  

Several paradigms based on the Internet and connecting multiple entities are 

under the IoE umbrella, such as the Internet of Things (IoT), the Internet of People 

(IoP), and Industrial Internet (II). For this thesis, we will consider all of them as a 

subdomain of IoE, as will be explained in Section 2.1.1.  

Following our research motivations, this thesis will delve deeper into the 

knowledge management approach for intelligent service evolution in IoE applications. 

The successful adoption of a particular technology depends on the 

comprehension of its use and features (AL-EMRAN et al., 2018). There is still a 

fragmented framework in IoE research: (1) A lack of consensus and new demands are 

unique to the IoE context (e.g., empowering people and providing intelligence services 

and insights through the collaboration of IoE enablers [sensors and actuators]); and (2) 

A lack of consideration for integration of IoE connections perspectives — the 

perspective of knowledge and type of data sources, the perspective of the observation 

(the context), and the perspective of infrastructure capabilities.  

In this thesis, the main contribution is to investigate research challenges in the 

IoE paradigm and a way forward in the classification of IoE knowledge enablers 

(sensors and actuators) to support the identification of critical knowledge flows that lead 

to actionable intelligence in IoE applications. A systematic literature review of existing 

IoE and IoT taxonomies was conducted, and from this, a knowledge-based IoE 

taxonomy was developed which provides a consistent picture of IoE systems and their 

constituents (i.e., IoE sensors and actuators characterized in knowledge processes, 

observations, and network characteristics). Additionally, a systematic literature review 

of smart sensors in IoE and IoT was conducted, and from this, 18 smartness 
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requirements were defined to evaluate and rank knowledge in IoE smart sensors and 

actuators. 

Additionally, the focus is leveraging awareness of intelligence sources in IoE 

application, considering IoE enablers and observation capabilities (WHITMORE; 

AGARWAL; XU, 2015). This thesis proposes integrating service science and 

knowledge management research to support the e-governance of IoE applications for 

intelligence service evolution. For this, to support awareness of information sources, the 

IoEKnowledge-based taxonomy was developed: 18 dimensions distributed in 4 

categories are organized to support awareness of the IoE context. From a practical 

standpoint, this work demonstrated the IoE Knowledge-based taxonomy's practical 

applicability and its evolution in a web-based knowledge management system: the IoE 

Database (IoEDB). Moreover, an IoE Integrated Knowledge Management (KM) Model 

is proposed to guide service evolution and knowledge management in IoE applications. 

This approach leverages awareness of intelligence sources in IoE applications, 

considering IoE enablers and observation capabilities, through a KM strategy. 

1.2 Problem Definition and Research Question 

Value creation from IoE solutions is complex since it embodies human and non-

human sensors and actuators, in a cyber-physical environment, networked in 

heterogeneous platforms with diverse systems characteristics. Moreover, tacit 

knowledge from humans, explicit knowledge in data sources, and implicit knowledge in 

AI (artificial intelligence) and data analysis are intertwined, in distinct interactions for 

its realization. 

Unlike traditional systems, IoE applications enable: 

• Smart sensors and actuators (things and people) as intelligent nodes in 

IoE relevant connections.  

• Observation facilities and monitorability in wide deployment of sensing 

infrastructure for smart applications. 

• Data analytics and AI transparency in support of decision-making 

processes. 
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• Processes and intelligent services evolution through a value co-creation 

process. 

My investigation in this research seeks to be more comprehensive in the sense of 

knowledge management in IoE applications and identifying knowledge flows between 

people (as human sensors) and things (cyber-physical sensors) in IoE applications. 

Our motivation to investigate and contribute to the understanding and evolution 

of the IoE paradigm is therefore supported by following defined problems: 

1) The transformation of the Internet from a communication network to a 

control network embedded directly into the physical world and the advent of 

the digital society demands preparedness to obtain benefits from the IoE 

lifestyle. (General) 

2) IoE and KM can leverage each other for creating intelligent ecosystems by 

combining emergent IoE enablers (sensors and actuators) and KM processes.  

But it demands awareness of IoE context and a specific IoE KM Model. 

(Specific) 

Benefiting from the IoE lifestyle demands more than a technological perspective 

since IoE solutions usually cover collaboration of people and things in machine-to-

people (M2P), machine-to-machine (M2M), and people-to-people (P2P) connections for 

knowledge sharing, a pervasive observation context, ubiquitous communication 

alongside the design of a complete solution. Thus, this thesis is conducted in a 

multidisciplinary way. 

This evolution is now considered an evolution centered on many actors 

(“everything”), that is, on the creation of networks of people, data, things – contributing 

for intelligent services in the IoE paradigm.  

With the expansion to the IoE paradigm, people are sensors and actuators, with 

intelligent capabilities (competencies). However, there is still a need to evolve research 

to address the collaboration and the knowledge flows specificities in the IoE scenario. 

The thesis seeks to answer the following research question:  

How a knowledge-based strategy to address knowledge flows in M2M, P2P, and 

M2P interactions assists in enhanced intelligent services in IoE applications? 
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1.3 Research Goal 

The main objective of this work is to propose an approach for knowledge 

management in the IoE context with a focus on knowledge flows between human and 

non-humans’ intelligent sensors, collaborating for knowledge creation and collective 

intelligence. 

Regarding IoE comprehensive view, in addition to presenting existing 

challenges, with this work, the proposed artifacts should be: 

• Generic enough, at a higher level of abstraction, to support their collaborative 

evolution regarding dynamics and characteristics of the IoE paradigm.  

• Flexible enough to be extended and evolved so that it continues to represent 

the IoE paradigm. 

• Adaptable enough so that it can be instantiated more concretely in the different 

applications applied in the IoE environment. 

Thus, to address knowledge flows between M2M, P2P, and M2P interactions, 

the objective of this thesis can be broken down and better detailed in the following sub-

objectives: 

▪ Investigate a common ground and research gaps in IoE research and 

explore the relationship between IoE and Knowledge Management 

(KM). 

▪ Create a taxonomy to classify and identify IoE enablers, to support IoE 

knowledge identification. 

▪ Create an IoE Integrated Knowledge Management Model (regarding IoE, 

Service Science, and KM). 

▪ Develop a web-based collaborative environment to support IoE 

Knowledge Management, the proposed IoE Database.  

▪ Validate and evaluate the artifacts in distinct IoE domains (ranking 

knowledge in IoE crowd applications, ranking knowledge in smart 

sensors and validate the proposed taxonomy with 50 IoE applications to 

prove its quality attributes and identify research challenges. 
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▪ Validate the IoE Integrated Knowledge Management Model. 

Therefore, this work aims at minimizing the complexity of the IoE paradigm and 

encouraging researchers in distinct fields, users, and society while maximizing its 

expressiveness and benefits for connected society and collective intelligence.  

This thesis depicts IoE’s applications as a set of IoE enablers that support IoE 

experiences such as knowledge, sensors, observations, and technological capabilities. 

This approach supports the understanding and definition of fine-grained IoE 

characteristics.  

To clarify the objective described above, this research will address the following 

research questions (RQ): 

RQ1: How to apply knowledge management (KM) strategy in the context of IoE 

with a focus on collective intelligence and knowledge flows between M2M, P2P, and 

M2P interactions? 

RQ2: How to promote service enhancement and evolution in the IoE context to 

deliver greater value to connected society? 

RQ3: How to identify and evaluate (rank) knowledge sources in the IoE 

context? 

These contributions were communicated in scientific forums from 2020 to 2022, 

through scientific publications, described below and summarized in Table 1. 

Table 1- Research Questions 

RQ Title Published in 

RQ1 and RQ2 Internet of Everything (IoE) Taxonomies: A Survey and a 

Novel Knowledge-based Taxonomy 

MDPI Sensors 

2021 

RQ1 and RQ3 Towards a taxonomy for ranking knowledge in Internet of 

Everything 

CSCWD 2021 

RQ1 A collaborative approach to support interoperability and 

awareness of the Internet of Everything (IoE) enablers 

ICHMS 2021 

RQ1 and RQ3 Relatório Técnico: Internet of Everything (IoE) Taxonomy PESC 

Publications 

RQ1 and RQ3 An approach for intelligence evaluation in smart sensors CSCWD 2022 

(accepted) 

 

The thesis is based on the three premises below. 
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1. Collective intelligence is dynamically created by knowledge sharing within 

the IoE context. 

2. The perceived value of IoE applications arises from the use of intelligent 

services. 

3. Service design benefits from understanding enablers identification in the IoE 

environment. 

1.4 Methodology 

Design Science Research (DSR) is the problem-oriented research paradigm that 

operationalizes Design Science. Design Science aims at the guided use of technology 

through principles and guidelines too high-level to guide practice (ALTURKI; GABLE; 

BANDARA, 2011; BASKERVILLE; PRIES-HEJE; VENABLE, 2009) (PEFFERS et 

al., 2007). Although DSR artifacts approach research (theory) with practice, it does not 

seek the optimal solution, but the satisfactory solution for a specific problem related to 

human goals. 

HEVNER et al. (HEVNER et al., 2004), proposed a set of criteria to support the 

execution of DSR in the information systems research field.  Figure 1 shows a set of 

following criteria to be adopted by researchers in search of a solution. 

1. The specific problem is identified and outlined. 

2. The problem is expressed as a set of specific requirements. 

3. In the systems world, the specific requirements are abstracted and translated 

to a general problem. 

4. A general solution is then developed based on a set of general requirements. 

5. The general and specific requirements are compared (2 and 4). 

6. A search is done for the specific components that will provide an effective 

instance of a solution to the general requirements. 

7. An instance of the specific solution is built and deployed in the social system, 

thus changing the specific problem, allowing learning to be derived, and starting the 

cycle again. 
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This thesis applies the Soft Design Science Research (SDSR) methodology in 

the development of the proposed artifacts. The referred methodology involves concepts 

of Design Science Research (DSR) (DRESCH; LACERDA; ANTUNES, 2014) and the 

Soft Design Science Research (SDSR) methodology (BASKERVILLE; PRIES-HEJE; 

VENABLE, 2009) (a research approach to artifact design in the area of information 

systems design). The SDSR design process involves forming hypotheses, experimenting 

with artifacts (construction), and comparing the results (evaluation) in a projecting loop 

(construction ↔ evaluation) until the usefulness of the artifact is obtained and validated.  

 

Figure 1 - Design Science Research 

 

The methodology was applied in each design phase of this research execution. 

1. Specific problem 

The first step of the SDSR methodology is the definition of the specific problem. 

It takes place in the real world. In the first step of the method, a specific problem is 

defined and outlined. To clarify the definition of the specific problem, the following 

problem-specific questions (SP) were developed and will be answered in the Conclusion 

of this thesis. 

SP1: How IoE and KM can leverage each other for creating intelligent IoE 

ecosystems? 
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SP2: How to identify knowledge flows between sensors and actuators in P2P, 

P2M and M2M interactions? 

SQ3: How to support the evolution of smart services in IoE using a KM 

strategy? 

2. Explanation of the Specific Problem 

This step also occurs in the real world. In this step, the problem is detailed 

through a set of requirements. The following requirements (SR) have been defined to 

address the specific issue. This step allows the construction and execution of the artifact 

for evaluation. 

SR1: Identify and characterize the sources of knowledge in IoE applications 

contemplating human-machine knowledge. (Aiming to address problem SP2). 

SR2: Create a model/mechanism/process for Knowledge Management in IoE 

applications (aiming to address the problem SP1 and SP3). 

3. General Problem 

This step takes place in the abstract world in which the requirements of the 

specific problem are systematically generalized into a general problem adopting 

technical and social dimensions. In this step, a specific problem will be transformed into 

a general problem. From this generalization, a class of problems is defined that will 

guide the research in the literature to be developed in Chapters 2 and 3. 

General: 

GP1: Investigate how KM in IoE can positively influence the creation of 

collective intelligence. 

GP2: Understand how intelligent services and relevant connections in IoE may 

benefit from KM strategy. 

4. General Problem Requirements 

From the definition of a class of problems in the previous step, the fourth step 

seeks a class of solutions to a general problem. From the definition of a class of 

problems, this step seeks a class of solutions to the general problem. The requirements 

to meet general issues are: 
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GR1: Investigate the state of the art of research on Knowledge Management 

(KM) that includes the dynamics of IoE and the knowledge flow between people and 

machines. 

GR2: Map knowledge management strategies that improve the quality of 

services in IoE applications. 

5. Comparison between specific problem (SP) statements and general (GR) 

requirements 

In the fifth step, the review of the requirements of the specific problem  (SR) is 

done by comparing them (step 2) with the general requirements (step 4). In this step, a 

comparison is made between the requirements of the specific problem and the general 

problem. In this step, the explanation of the specific problem is reviewed according to 

the general requirements. 

6. Search for a specific solution 

In the sixth step, the search for a specific solution is based on the general 

requirements mapped in the previous step. A set of actions is established based on these 

requirements.  

Revisiting the general requirements defined above, the following actions will be 

developed: 

Action 1: Development of an IoE taxonomy of sensors and actuators specific to 

the IoE context that supports identification and awareness regarding the knowledge 

flows. (Chapter 3) 

Action 2: Development of the IoE Integrated KM Model which addresses the 

design of intelligent services in IoE applications. (Chapter 3) 

Action 3: Development of a collaborative environment to support IoE KM 

strategy and the evolution of the proposed IoE taxonomy. (Chapter 3) 

7. Construction of the solution 

This step involves building and evaluating whether the problem has indeed been 

solved. In addition, the lessons learned during all stages must be made explicit. The 

construction of the artifacts is described in Chapter 3. 

8. Artifact evaluation 
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This step involves evaluating the artifact. The evaluation step is described in 

Chapter 4. This step also involves whether the problem has been resolved or if it has 

been modified. Learning along the stages must be explained and a new cycle must be 

started if necessary. 

1.5 Main Results 

In addition to the main contribution, there are some other contributions present 

in this work: 

1. Investigation of state of art about the IoE paradigm and trends in KM 

research. 

2. Investigate how to identify opportunities for serendipity in digital 

environments (Internet-based paradigms) related to the proposed approach. 

3. Survey of the state of the art of KM models disseminated in the literature 

and related to Internet paradigms and propose a specific IoE Integrated KM model for 

the evolution of intelligent services in IoE. 

4. The proposal of the IoE Knowledge-based Taxonomy and its validation in 

50 applications in different domains.  

5. A proposal of a collaborative environment (IoE Database) to evolve the 

taxonomy and support the KM strategy for the evolution of intelligent services in IoE. 

Different contributions were achieved throughout this research and are presented 

in this thesis: 

• Farias da Costa, V.C.; Oliveira, L.; de Souza, J. Internet of Everything 

(IoE) Taxonomies: A Survey and a Novel Knowledge-Based Taxonomy. 

Sensors 2021, 21, 568. https://doi.org/10.3390/s21020568 

• V. C. F. da Costa, L. Oliveira, and J. de Souza, "Towards A Taxonomy 

for Ranking Knowledge in the Internet of Everything," 2021 IEEE 24th 

International Conference on Computer Supported Cooperative Work in 

Design (CSCWD), 2021, pp. 775-780, doi: 

10.1109/CSCWD49262.2021.9437857.  
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• V. C. F. d. Costa, L. F. Oliveira and J. d. Souza, "A collaborative 

approach to support interoperability and awareness of the Internet of 

Everything (IoE) enablers," 2021 IEEE 2nd International Conference on 

Human-Machine Systems (ICHMS), 2021, pp. 1-6, doi: 

10.1109/ICHMS53169.2021.9582657.  

• Farias, V.; Oliveira, L.M.L.; Souza, J. Internet of Everything Taxonomy: 

Technical Report of IoE Applications. Federal University of Rio de 

Janeiro: Systems Engineering and Computer Science Program. Available 

online: https://www.cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa  

1.6 Structure  

This thesis proposal is organized into five chapters. In the first one, motivations, 

research problem and questions, and the followed research methodology are presented. 

The remainder of this work is organized as follows: 

Chapter 2 presents a theoretical background. First, the Theoretical Background 

of the thesis includes the Internet of Everything and other related paradigms, a literature 

review about smart sensors and KM, a study about IoE Governance, IoE Autonomic 

Computing, Service Science, and Serendipity in IoE, and related works for this 

research. 

Chapter 3 presents the studies conducted in the conceptual phase to characterize 

and support the present research. A literature review about IoE and IoT taxonomies and 

the proposed IoE Knowledge-based Taxonomy is presented in detail. An IoE Integrated 

Knowledge Management Model is presented in Section 3.4. In Section 3.5, a literature 

review on smart sensors in IoE revealed requirements for smart sensors. Section 3.6 

presents the IoE Database as a technological solution to support the curation of IoE 

enablers. 

Chapter 4 discusses how these artifacts were evaluated. Finally, Chapter 5 

presents the final considerations, objectives achieved, the contributions of the thesis, 

limitations of the work, and future research. 

https://www.cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa
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2 Theoretical Background 

 

This Chapter presents the Theoretical Background of the thesis 

and is divided into eight subchapters or sections. The first one 

includes the Internet of Everything and related paradigms. In 

the second and third ones, a literature review about smart 

sensors and an investigation of knowledge management state of 

art and trends. Finally, this work studies Service Science, 

Autonomic Computing, Serendipity, and Interoperability issues 

applied to IoE. 

2.1 Internet of Everything (IoE) 

Internet of Everything (IoE) is a term that was first defined by CISCO in 2012 

(EVANS, 2012) as a network of networks that brings together people, processes, data, 

and things to make network connections more relevant and valuable than ever before 

(AUGER; EXPOSITO; LOCHIN, 2018; CHARMONMAN; MONGKHONVANIT, 

2015; YU et al., 2018).  

IoE’s four individual components or ‘pillars’ are people (becoming nodes on the 

Internet), data (transformed into information to support intelligent decisions and the 

effective environment control), things (context-aware smart sensors placed on everyday 

items), and processes (relevant and value-added connections to deliver the right 

information at the right time in the appropriate way) (EVANS, 2012) (Figure 2).  
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Figure 2 - Four "pillars" in IoE 

 

IoE expands on the IoT concept by connecting devices and people in one 

network (FIAIDHI; MOHAMMED, 2019). While the Internet of Things (IoT) is 

concerned about things (i.e., physical devices, accessed through the Internet), IoE lays 

an upper foundation over IoT and is concerned with intelligent network connections and 

technologies (BOJANOVA; HURLBURT; VOAS, 2014; DI MARTINO et al., 2018a; 

SRINIVAS; JABBAR; NEERAJA, 2018; VAYA; HADPAWAT, 2020).  

IoE extends the concept of IoT by going beyond things and integrating the 

societal impacts and benefits of a more interconnected world. Thus, "intelligent 

services", together with the "things", represent the "everything" in IoE (AUGER; 

EXPOSITO; LOCHIN, 2018)(GHOSH; CHAKRABORTY; LAW, 2018). 

IoE supports creating new capabilities, richer experiences, and unprecedented 

economic opportunities for businesses, individuals, and countries (EVANS, 2012). With 

more relevant connections than IoT, IoE has enabled the global democratization of 

skills, including P2M, M2M, and P2P connections (RAJ; PRAKASH, 2018; 

SRINIVASAN et al., 2019).  

For Raj and Prakash (RAJ; PRAKASH, 2018), the IoE paradigm is a superset of 

IoT and requires advanced capabilities within the area of information sharing. It extracts 

and analyzes real-time data collected from diverse and heterogeneous environments, 

from simple sensors and actuators to complex robotic devices, and from autonomous 

service agents to human actors (YU et al., 2018). Thus, IoE applications require 

appropriate measures to be taken in the initial phases of their design and implementation 
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(RAJ; PRAKASH, 2018). The devices must use Artificial Intelligence (AI) to 

comprehend how people process information and interact appropriately within a social 

context and multi-user scenarios, due to the increasing deployment of various novel, 

innovative, and useful IoE-based applications (MIRAZ et al., 2018).  

As will be discussed in Section 2.2, about IoE KM,  actions and interactions 

within the IoE environment create and expand knowledge (NONAKA; TOYAMA, 

2015) (JENNEX, 2017a), and when combined with human sensors' knowledge (tacit 

knowledge), this transformation from data to information in IoE provides essential 

insights and a wide variety of possible applications (DI MARTINO et al., 2018b; ROY; 

CHOWDHURY, 2017).  

A knowledge-based strategy for identifying decision support artifacts (big data, 

data, information, knowledge, and intelligence) assists in the management and 

governance of data and technologies to ensure great benefit from IoE’s capacity to 

provide enhanced intelligent services. 

So, IoE is calling for a new and open approach, to foster knowledge flows.  New 

technologies emerging in the context of IoT and IoE are changing the way knowledge is 

managed within organizations and in people's daily lives. This scenario requires a 

specific knowledge management strategy and a specific approach which will be 

addressed in this thesis in Chapter 3. 

2.1.1 Internet-based paradigms 

Many Internet-based paradigms are under the IoE umbrella.  Pliatsios et al. 

(PLIATSIOS; GOUMOPOULOS; KOTIS, 2020) analyzed the evolution from the 

Internet of Things (IoT) to the Semantic Social Network of Things (SSNT). For  De 

Amorin and Braga (DE AMORIM SILVA; BRAGA, 2020), the Internet of Anything 

(IoA) is defined as a ubiquitous software ecosystem able to integrate IoT-derived 

systems. Over these networks, people usually create content developing a social 

network termed the Internet of People (IoP) (AZAD et al., 2021) (NING et al., 2021). 

IoT concept focuses on the network layer, where things are harmoniously 

connected and communicate through the Internet to deliver services to end-users. In a 

technology-driven approach, several paradigms realize information interaction, such as 

Narrow Band Internet of Things (NB-IoT) which uses cellular wireless transmission 



16 

(BAOCHENG; SHAN, 2020).  The Internet of Tangible Things (IoTT) refers to 

tangible interactions applied through IoT (GENNARI; MELONIO, 2019). Internet of 

Nano Things (IoNT) is the interconnection of nanoscale devices to communication 

networks, via electromagnetic radiations which are targeted towards a specific 

technology constraint-domain (in this case, nanotechnology) (PRAMANIK et al., 2020).  

Internet of Mobile Things (IoMobT) serves as an example of design parameters strongly 

influencing communication and information processing (ANG; SENG, 2019).  The 

Software-Defined Internet of Things-Fog (SDIoT-Fog) provides a new connectivity 

paradigm for effective service provisioning using network resource virtualization to 

provide services to heterogeneous IoT devices (KUMAR; TRIPATHI; P. GUPTA, 

2021). 

For Bennara et al. (BENNARA et al., 2020) the advent of Web of Things (WoT) 

is an application layer for IoT. It associates data analysis and functionality to networked 

objects. Many paradigms under WoT umbrella concept relate to interoperability of 

multiple devices across different platforms and application domains with a common 

stack based on web services. Low Earth Orbit (LEO) mega-constellations have recently 

been proposed to offer broadband “Internet from Space”, aiming to provide services 

comprising thousands of satellites (HAURI et al., 2020). To enable IoT experience for 

existing products, the concept of an augmented product has been proposed where the 

Internet of Old Things (IoOT) uses actuators to replace human manipulation (CHO et 

al., 2021). Green Internet of Things (GIoT) generally refers to a new generation of IoT 

design concepts composed of green smart devices (GSD), as a basic unit for saving 

energy (TAN, 2019). 

Semantic Web of Things (SWoT) is considered a transformation of WoT by 

incorporating semantic web-based technologies within IoT, with the ability to exchange 

and use information among data and ontologies. A step forward from interoperability 

towards a collaborative IoT is the approach of Social Internet of Things (SIoT) where 

different devices create social relationships with each other (just like social relationships 

on a social network of people) (PLIATSIOS; GOUMOPOULOS; KOTIS, 2020). 

In the Social Internet of Things (SIoT) paradigm, (DEFIEBRE; SACHARIDIS; 

GERMANAKOS, 2020) the connected objects operate autonomously to request and 

provide information and services to end-users. SIoT integrates the social concept into 



17 

IoT systems for enhancing service efficiency, by establishing a social relationship 

among smart objects free from human intervention (WEI et al., 2021). 

Pliatsios et al. (PLIATSIOS; GOUMOPOULOS; KOTIS, 2020) proposed the 

concept of Semantic Social Network of Things (SSNT), “a network of things that 

'speak', 'behave', 'collaborate' and 'coexist' just like a 'social network' of people”.  

A Social Collaborative Internet of Things (SCIoT) is another paradigm that has 

strong ties with the Social Internet of Things (SIoT). It is defined as a platform of IoT 

where smart objects work together socially through recursive knowledge interactions 

and establishing social relationships with their surroundings. In this paradigm, smart 

objects aim to achieve common/shared goals on “behalf of humans” (KHAN et al., 

2017). 

In Internet-of-Ships (IoS), objects (ships, crews, cargoes, onboard equipment, 

waterway environment, waterway facilities, shore-based facilities, and other navigation 

elements) are embedded with sensor and heterogeneous network technologies to boost 

the shipping industry towards improved safety, efficiency, and environmental 

sustainability (ASLAM; MICHAELIDES; HERODOTOU, 2020). Internet of Planets 

(IoP) aims at planets in the solar system, communicating with each other using the 

Internet (KANG et al., 2021). The Internet of Multimedia Things (IoMT) paradigm is 

specialized in services and applications based on multimedia data (GATI et al., 2021). 

Internet of Drones (IoD) provides coordinated access to controlled airspace for 

unmanned aerial vehicles (UAVs), also known as drones (WAZID et al., 2020). Internet 

of Vehicles (IoV) and the Multimedia Vehicular Ad hoc Network (VANET) have 

attracted extensive attention from academia, industry, and government (LV; QIAO; 

SONG, 2020). The Internet of Health Things (IoHT) plays an increasingly important 

role in the collaborative development of regional medical services (TANG; WANG, 

2020). Internet of Underwater Things (IoUT) establishes intelligent interconnection of 

underwater objects and employ heterogeneous underwater sensor nodes with diverse 

underwater communication technologies, for sensing their surroundings and improving 

smart ocean awareness (QIN et al., 2020) (BUSACCA et al., 2020) (COUTINHO; 

BOUKERCHE, 2019). 

With the advancement of technologies like network virtualization, mobile edge 

network, and software-defined network (SDN), software solutions implemented in IoT 
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environments are termed as Internet of Softwarized Things (IoST)  (SRIVASTAVA et 

al., 2021). 

As part of smart ecosystems, the Enterprise Internet of Things (E-IoT) allows 

users to integrate and control more complex installations of audio, video, scheduled 

events, shades, door access, and relays via available user interfaces (RONDON et al., 

2021). The Internet of Musical Things (IoMusT) is an emerging research field to apply 

IoT in music technology, human-computer interaction, and artificial intelligence 

(TURCHET, 2019). Education IoT (EIoT) can be described as the interactive 

framework in the educational field where information is connected and synchronized by 

applying cloud computing, third-party technologies, gateways, and data communication 

(HUNG; WU, 2019). 

Huang et al. (HUANG et al., 2019) refers to the “everything is service” trend, 

forming “Service Internet” which is implemented as integrated services across domains 

and networks around the world.  But further research is needed in terms of cross-domain 

service aggregation, value perception, and service intelligent interaction. 

Ang and Seng (ANG; SENG, 2019) summarized the latest developments of 

Application-Specific IoTs (ASIoTs) (a term to conceptualize the development of IoT 

targeted toward specific domains): The Internet of Battle Things (IBoT) is designed for 

military and defense applications. Internet of Medical Things (IoMT) is a user domain-

driven Internet-based paradigm for healthcare and patient monitoring. On the Internet of 

Animal Things (IoAT), smart objects and devices are used to monitor living creatures 

(e.g. livestock such as dairy cows, sheep, cattle) within the IoT. The Internet of Waste 

Things (IoWT) or Internet of Bins (IoB) includes smart garbage bins (SGBs) deployed 

in smart cities.  The Internet of Underground Things (IoUGT) is targeted for 

underground network communications and is particularly useful for applications in 

environmental monitoring. The Internet of Robotic Things (IoRT) and its fusion with 

deep learning techniques are applied in multiple application domains (ANTENUCCI et 

al., 2021). Internet of Vehicles (IoV) is focused on vehicles connectivity, consisting of a 

subarea of IoT applied to automobiles (FRANÇA et al., 2021). The Underwater Internet 

of Things (UIoT) is enabled by the most recent developments in autonomous 

underwater vehicles, smart sensors, underwater communication technologies, and 

underwater routing protocols, allowing it to become a smart network of interconnected 

underwater objects (QIU et al., 2020). 
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The Cognitive Internet of Things relates to collective AI, based on autonomous 

software agents, things that can sense, think and act within IoT (ANASTASIOU et al., 

2020). 

IoT trend applied to the industrial sector is commonly referred to as Industry 4.0, 

i.e., the fourth industrial revolution, or as Industrial Internet of Things (IIoT) (SERROR 

et al., 2021). The Internet of Production (IoP) envisions the interconnection of 

previously isolated cyber-physical systems (CPS) enabling computer systems to 

(remotely) execute control over entities in the manufacturing physical world across 

institutional boundaries (PENNEKAMP et al., 2019).  

Figure 3 presents the evolution route to the IoE paradigm, related to smartness 

and relevance in network connections. Moving upwards to the IoE paradigm, IoE is 

more than the approach to connect human social networks in the Social Internet of 

Things (SIoT).  While WoT adapts existing web technologies to build new applications 

and services, SWoT focuses on machine-understandable data and in the description of 

data with common vocabularies.  

IoE represents network "connections" and real-time data/information flows 

(LANGLEY et al., 2020) among IoE nodes (MIRAZ et al., 2015). The result is 

smartness and intelligence (MASOUD et al., 2019), and real-time insights working in 

concert (VANDEBROEK, 2016), far beyond IoT context disruptions (MAJEED, 2017), 

addressing the societal and organizational needs for more data and more actionable 

intelligence. 
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Figure 3 - The evolution route from IoT to IoE (prepared by the author) 

 

Ning et al. (NING et al., 2021) proposed a novel concept called the Internet of X 

(IoX). This Internet-based paradigm represents the integration of traditional IoT 

infrastructure with the Internet of People (IoP) and the brain-abstracted Internet of 

Thinking (IoTk), which aggregates AI for intelligent interconnections. In this paradigm, 

all things, entities, people, and thinking benefit from both space convergence and 

ubiquitous connections. To justify their attempt to introduce the novel concept of the 

Internet of X (IoX), authors presented a limited interpretation of IoE as “it mainly 

emphasizes the phenomenon of connecting the unconnected”. 

Another restricted understating of IoE paradigm disruption is presented by 

Lohiya et Thakkar (LOHIYA; THAKKAR, 2021) following the idea that IoT evolves to 

the “Internet of Everything” when it incorporates advanced technologies (wireless 

networks, sensors, cloud servers, analytics, smart devices) with machine-to-machine 

interactions only to “empower people”.  

. And metaverse means transcendence meta and universe and refers to a virtual 

world where avatars (user’s alter ego) acts, engage in political, economic, social, and 

cultural activities between virtual reality and reality (PARK; KIM, 2022).  It is being 

strengthened with mobile-based always-on access to connectivity with reality using 

virtual currency 
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Providing a broad, comprehensive, and updated view of the IoE paradigm is, in 

fact, the main contribution of this thesis. This work proposes an IoE taxonomy based on 

knowledge and resource management in the IoE context, to address intelligence services 

issues through a knowledge-based strategy approach.  

Figure 4 shows the characterization of the IoE paradigm in a Venn diagram, 

showing diverse intersections between other internet-based paradigms presented in the 

literature: 

 

Figure 4- IoE Venn Diagram (prepared by the author) 

 

2.1.2 Uncovering the IoE paradigm 

Although recent works are like this thesis approach in terms of coverage and 

analysis of the IoE paradigm, some approaches only deal briefly upon knowledge 

creation and collaboration among IoE devices; while others propose taxonomies to 

uncover IoE and IoT paradigms concerning specific areas (e.g., observations, 

infrastructure, sensor type, and analytics for IoT and IoE). Previous works design 

challenges from several perspectives; however, they do not explicitly address the 

characteristics of knowledge types provided by knowledge enablers (sensors and 

actuators) and how IoE sensors collaborate to improve efficiency in IoE solutions. In 

general, the identification of knowledge sources in human and non-human sensor nodes 

requires a holistic and multidisciplinary approach. And for knowledge-intensive IoE 
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applications, the identification of knowledge sharing in human-machine relationships is 

still mostly inadequate.  

However, there are challenges concerning the ranking and managing of 

knowledge processes in IoE applications. Recent studies have addressed different 

research challenges in IoT areas, and several authors have proposed taxonomies for 

dealing with IoE and IoT systems, in specific following focus and approach:  

- Technology and architecture design:  (BELLAVISTA; BERROCAL, 2019; 

GLUHAK et al., 2011; HALLER et al., 2013; HARON et al., 2017; MARJANI 

et al., 2017; PERERA et al., 2014).  

o Yaqoob et al. (YAQOOB et al., 2017) proposed an end-to-end view 

taxonomy to categorize and classify IoT architectures, considering 

parameters such as applications, enabling technologies, business 

objectives, architectural requirements, network topologies, and IoT 

platform architecture types.  

o Haller et al. (HALLER et al., 2013) have focused on central concepts and 

their relationships in the IoT domain, considering IoT as a self-

configuring, adaptive, complex network that interconnects “things” to 

the Internet, through standard communication protocols (ALKHABBAS; 

SPALAZZESE; DAVIDSSON, 2019).  

o In Mountrouidou et al. (MOUNTROUIDOU; BILLINGS; MEJIA-

RICART, 2019), the authors characterized IoT based on generic building 

blocks or primitives, defining IoT devices as sensing or actuating devices 

that can communicate with other devices and perform specific functions.  

- Sensors' capabilities: (BHATT; PATWA; SANDHU, 2017; DORSEMAINE et 

al., 2015; FORTINO et al., 2014; MOUNTROUIDOU; BILLINGS; MEJIA-

RICART, 2019; OBINIKPO; KANTARCI, 2017; SHAHID; ANEJA, 2017); 

o Shahid and Aneja (SHAHID; ANEJA, 2017) proposed an IoT taxonomy, 

developing technologies and solutions for enabling IoT vision, which is 

related to smart objects' ability to communicate and interact, either in 

building networks of connected items or with end-users or other entities 

in the network.  
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o Obinikpo and Kantarci (OBINIKPO; KANTARCI, 2017) presented a 

taxonomy of methodologies based on types of sensors and sensed data. 

Other works have proposed taxonomies to categorize the IoT's connected 

objects, devices, and smart objects (BHATT; PATWA; SANDHU, 2017; 

DORSEMAINE et al., 2015; FORTINO et al., 2014).  

o To support the development process of smart objects, specifically in the 

design phase, Fortino et al. (FORTINO et al., 2014) proposed a reference 

taxonomy for smart objects that is functional for service discovery. 

o Agarwal et al. (AGARWAL et al., 2016) reused concepts from several 

"third-party" ontologies and taxonomies and proposed a taxonomy for 

heterogeneous IoT testbeds, called FIESTA-IoT. It combines existing 

IoT ontologies into minor updates to overcome the most common issues 

associated with mainstream ontologies.  

- Observation context issues: (ASGHARI; RAHMANI; JAVADI, 2018; 

BUGEJA; DAVIDSSON; JACOBSSON, 2018; CHEN; HELAL, 2011; ERIS; 

DRURY; ERCOLINI, 2015; NOURA; ATIQUZZAMAN; GAEDKE, 2019; 

OBERLÄNDER et al., 2018; SETHI; SARANGI, 2017; SHOLLA; NAAZ; 

CHISHTI, 2017; YAQOOB et al., 2017).  

o Noura et al. (NOURA; ATIQUZZAMAN; GAEDKE, 2019) developed a 

taxonomy for IoT interoperability issues related to the following 

heterogeneity challenges in IoT environments: device interoperability, 

networking interoperability, syntactic interoperability, semantic 

interoperability, and platform interoperability.  

o In (ASGHARI; RAHMANI; JAVADI, 2018), the authors proposed a 

technical taxonomy for service composition in the IoT environment, 

based on functional and non-functional aspects.  

o Bugeja et al. (BUGEJA; DAVIDSSON; JACOBSSON, 2018) proposed 

a classification model based on the functionality of smart home devices.  

o Oberländer et al. (OBERLÄNDER et al., 2018) contributed to the IoT's 

descriptive knowledge and presented a classification of business-to-

things interactions to facilitate sense-making and theory-led design.  
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- Management solutions for control of IoT systems:  

o Sinche et al. (SINCHE et al., 2019) proposed a taxonomy for IoT device 

management.  

o Perera et al. (PERERA et al., 2014) surveyed a broad range of 

techniques, methods, models, functionalities, systems, applications, and 

middleware solutions related to context awareness and IoT.  

o Püschel et al. (PÜSCHEL; ROEGLINGER; SCHLOTT, 2016) presented 

a multi-layer taxonomy of smart things. It comprises ten dimensions 

structured within architectural layers of existing IoT stacks (i.e., the thing 

itself, interaction, data, and services). The classifications are 

continuously re-evaluated and adjusted to account for upcoming smart 

things. 

- Security in the adoption of IoT technologies and applications: (CHEN; 

HELAL, 2011):  

o Ashraf and Habaebi (ASHRAF; HABAEBI, 2015) proposed a taxonomy 

that aims to group IoT security vulnerabilities and their mitigation 

solutions.  

o Haron et al. (HARON et al., 2017) proposed a taxonomy of data 

trustworthiness for IoT sensor data. Alsamani and Lahza (ALSAMANI; 

LAHZA, 2018) studied the relationship between object characteristics, 

security, and privacy, and they proposed a taxonomy to categorize 

potential security threats in IoT.  

o In (ZHANG et al., 2018), the authors presented a comprehensive analysis 

of data security and privacy threats, protection technologies, and 

countermeasures inherent in edge computing.  

- Network architecture for IoT:  

o Gluhak et al. (GLUHAK et al., 2011) provided a taxonomy for the scope 

and architecture of testbeds in the IoT.  

o Naha et al. (NAHA et al., 2018) proposed a taxonomy considering the 

requirements of the fog computing paradigm.  
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o In Hassan et al. (HASSAN et al., 2018), a taxonomy of edge computing 

classifies and categorizes existing edge computing paradigms for IoT.  

o Ahad et al. (AHAD; TAHIR; YAU, 2019) provided a state-of-art review 

of 5G- and IoT-enabled smart healthcare.  

o Oteafy and Hassanein (OTEAFY; HASSANEIN, 2019) proposed a 

taxonomy of edge-IoT systems designed for rapid data acquisition. 

o Bellavista and Berrocal (BELLAVISTA; BERROCAL, 2019) presented 

a unified architectural model and proposed a new taxonomy after 

comparing solutions that had emerged for supporting the requirements of 

IoT applications.  

- Effective collaboration process between smart devices: 

o A comprehensive look at IoT environment collaboration is presented in 

(ERIS; DRURY; ERCOLINI, 2015), in a taxonomy to clarify how IoT 

enables collaboration.  

o People (as customers) and applications are perspectives that nurtured the 

IoT taxonomy presented by Smutný (SMUTNÝ, 2016).  

o Salim and Haque (SALIM; HAQUE, 2015) proposed a taxonomy for 

categorizing and characterizing urban computing technologies, and also 

discussed the level of participation these technologies stimulate in 

modern society.  

- Integrating humans in the loop (ARMANDO et al., 2018).  

o Sholla et al. (SHOLLA; NAAZ; CHISHTI, 2017) argue that integrating 

socio-cultural and ethical aspects within a smart city architecture turns it 

into a people-friendly environment.  

o Hui and Sherratt (HUI; SHERRATT, 2017) discussed how to stimulate 

human senses and capture human responses, and proposed a novel 

taxonomy for disappearing user interfaces. 

o  Yebda et al. (YEBDA et al., 2019) reviewed existing solutions for social 

sensing.  
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o Phuttharak and Loke (PHUTTHARAK; LOKE, 2019) presented a 

taxonomy based on the critical issues in mobile crowdsourcing.  

o Chaochaisit et al. (CHAOCHAISIT et al., 2016) presented an ontology 

for human localization sensors to address challenges in searching for 

users’ location-aware sensors.  

o Sethi and Sarangi (SETHI; SARANGI, 2017) proposed a novel 

taxonomy for IoT technologies and profiles and some applications that 

have the potential to make a striking difference in human life.  

- Information flow, quality of data, and opportunities in big data analytics:  

o Bisdikian et al. (BISDIKIAN; KAPLAN; SRIVASTAVA, 2013) 

presented a framework for scoring and ranking information products 

based on their value of information attributes.  

o Agarwal et al. (AGARWAL et al., 2016) proposed an ontology for 

reusing and interconnecting existing ontologies.  

o Shah et al. (SHAH et al., 2019) created a thematic taxonomy for 

deploying these solutions collaboratively to provide guidelines for 

harvesting, transmitting, managing, and analyzing disaster data from 

various data sources, to deliver valuable up-to-date information to 

support disaster management environments.  

o (RISTOSKI; PAULHEIM, 2016), (QANBARI et al., 2015), and 

(ROZSA et al., 2016) proposed semantic web techniques for better 

representation and exploration of sensor data.  

o Qanbari et al. (QANBARI et al., 2015) incorporated semantic and linked 

data technologies to increase data quality.  

o In (ROZSA et al., 2016), Rozsa et al. presented a taxonomy that 

identifies and categorizes sensors as the source devices to provide 

publication, discovery, sharing, reuse, and integration of 

data/information.  

o Marjani et al. (MARJANI et al., 2017) explained the relationship 

between big data analytics and IoT and proposed a new architecture for 

IoT big data analytics.  
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o Yaqoob et al. (YAQOOB et al., 2016) surveyed the domain of big data 

by examining the different techniques utilized for processing and 

analytics.  

o Gao et al. (GAO; LEI; YU, 2015) presented a taxonomy of big data 

sensing and services. And Ge et al. (GE; BANGUI; BUHNOVA, 2018), 

and surveyed big data technologies that stimulate knowledge sharing 

across IoT domains. 

o Subbu and Vasilakos (SUBBU; VASILAKOS, 2017) discussed the latest 

developments in the big data sensing field applied to context-aware big 

data systems. 

o Moustaka et al. (MOUSTAKA; VAKALI; ANTHOPOULOS, 2018) 

proposed a taxonomy to integrate data science and smart city domains by 

focusing on principles related to urban data sources and analytics 

approaches concerning data harvesting and data mining processes.  

o Langley et al. (LANGLEY et al., 2020) developed a vision of how the 

IoE may alter business models and how individuals and organizations 

create value and proposed a taxonomy to compare different IoE 

applications with benchmarks of IoE ecosystems.   

o For Haron et al. (HARON et al., 2017), the decision-making process in 

the IoT domain relies entirely on the data. The authors proposed a not 

exhaustive taxonomy of Data Trustworthiness for IoT Sensor Data based 

on the extant works. 

o  Sharma et al. (SHARMA et al., 2018) proposed a cognitive artificial 

system that computationally generates models of abstract concepts and 

representation of data obtained from IoE sources such as people, things, 

or processes. 

- Mobility and localization.  

o Shit et al. (SHIT et al., 2018) proposed a hierarchical taxonomy of the 

localization technique based on offline localization training, namely self-

determining and training-dependent approaches.  
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o Saad et al. (SAAD; ELHOSSEINI; HAIKAL, 2018) presented a 

taxonomy that classifies variant localization algorithms.  

o Pozza et al. (POZZA et al., 2015) made a classification between 

mobility-agnostic and mobility-aware discovery protocols.  

o Berger et al. (BERGER; DENNER; RÖGLINGER, 2018) developed a 

multilayer taxonomy of digital technologies that includes eight structured 

dimensions along with the layers of established modular architectures 

(i.e., service, content, network, and devices).  

Despite the vast coverage of research areas and focus, an integrated perspective 

of IoE enablers is still a research gap:  the human-thinking perspective integrated into 

IoE is still missing; the taxonomies have scope limitations due to the high heterogeneity 

of existing IoT devices; the seldom investigation of how collaboration throughout 

sensors and actuators of different types create value in cyberspace; the restricted 

investigation of interactions between human sensors and smart sensors for knowledge 

sharing. 

Few works have investigated the whole of human sensors in a smart 

environment and how things interact with human sensors through knowledge processes 

that lead to actionable intelligence. The critical goal of integrating human actors is to 

develop proper interfaces based on application domains, the type of operation to be 

performed, and integration between human sensors within the whole system (SAHINEL 

et al., 2019).  

As the world is running on the advent of the IoE lifestyle (FARIAS DA 

COSTA; OLIVEIRA; DE SOUZA, 2021) (GADDAM et al., 2020),  IoT infrastructure 

provide increased communication capability, IoE's success in penetrating all dimensions 

of IoE lifestyle heavily depends on processing, storing and extracting “sense” from the 

exponentially growing amount of structured and unstructured, data in real-time and 

guarantee the interoperability posed by the interaction between “everything” (JESSE, 

2018). As in a collaborative workspace (GUTWIN; GREENBERG, 2004), humans 

must maintain situational awareness to work collaboratively with smart sensors. And 

smart sensors (things) understand people's requirements to enhance the value chain 

autonomously and support intelligence services (RHO; CHEN, 2018). 
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In a broad manner, recent studies do not categorize and organize IoE in a 

concise manner which provides a contextual understanding of the complexity of IoE 

enablers. As one of this thesis contributions, Chapter 3 will present a comprehensive 

knowledge-based IoE taxonomy that organizes tangible and intangible elements as 

integrated resources and drives knowledge creation in IoE disruptive environment.  

2.2 Smart sensors in IoE 

Smart sensors are crucial in every IoE application (smart cities, smart grid, 

health care, agriculture, security, and environment monitoring, and smart parking) as 

they bridge the world’s physical objects with the cyber world of IoE (RAYES; 

SALAM, 2017).  They are equipped with artificial intelligence (AI) to provide the 

deployment of innovative IoE-based applications, where people (as human sensors) and 

things (sensors and actuators) interact appropriately within a social context and multi-

user environment (MIRAZ; ALI; EXCELL, 2015), a phenomenon defined as “smart 

revolution” (JANEERA et al., 2021). In this context, things are defined as physical 

smart sensors which provide a direct perception of the environment to achieve a task 

(KOLAR; BENAVIDEZ; JAMSHIDI, 2020)(ALONSO et al., 2020a). 

A challenge in this domain is to support the control and orchestration of “smart” 

sensors (things and people) and their enabling intelligence embedded in smart systems 

(BERTOLI et al., 2021)(MCLAMORE et al., 2019).   

In some cases, smart sensors in IoT networks are deployed in harsh 

environments, contributing to sensors failure, malfunction, malicious attacks, theft, and 

tampering. To ensure the quality of sensed data collected and avoid outliers (unusual 

and erroneous readings), the data collected by sensors are initially pre-processed to be 

transformed into information and further processed into applications and processes, with 

aid of artificially intelligent (AI) and machine learning (ML) models (SAAD; 

ELHOSSEINI; HAIKAL, 2018).  

For Metallidou et al. (METALLIDOU; PSANNIS; EGYPTIADOU, 2020), 

smart sensors support M2M and P2M interactions and value creation.  Bacciu et al. 

(BACCIU et al., 2017) studied the adoption of heterogeneous smart devices (sensors 

and actuators) that are pervasively collecting information through the interaction with 

humans in their environment (ABDEL-BASSET et al., 2020). The adoption of machine 
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learning (ML) methodologies allows smarter IoT applications to continuously adapt to 

evolving environmental conditions and users' needs.  

Bertoli  and Fantuzzi (BERTOLI et al., 2021) studied smart sensors 

orchestration in cyber-physical systems to address deep integration of computing, 

communication, and process control, with humans in the loop. Their work mainly 

focused on the area of data mining and data interpretability and analysis.  

For Pundir and Sandh (PUNDIR; SANDHU, 2021), there are specific Quality of 

Services (QoS) mechanisms used in the field of smart sensors, due to its dynamic and 

resource constraint nature: including throughput, packet loss, latency, delay, security, 

scalability, jitter, maintainability, packet error ratio, availability, reliability, priority, 

periodicity, dead-line, bandwidth, and energy consumption.  

The combination of sophisticated sensors and increased computational power 

will enable new ways to analyze data and gain actionable insights in industries 

(AHELEROFF et al., 2020), factories, airports (KORONIOTIS et al., 2020), parking 

spaces (SAARIKA; SANDHYA; SUDHA, 2018), households, and workplaces 

(GUPTA, 2021).  Recent interest has mainly focused on the concepts of cyber-physical 

systems (CPS) or the Internet of Things (IoT) with applications to smart city and smart 

grid concepts (PETRARIU; COCA; LAVRIC, 2021). Yaseer and Chen (YASEER; 

CHEN, 2021) reviewed the latest sensor technologies and machine learning techniques 

that can be used as a decision support tool for making the animal farming process more 

profitable and insightful.  In the human-animal iterations field, smart sensors monitor 

the animals' health, location, behavior, and/or environment. (JUNIOR, 2020)    

IoT places a relevant role in health monitoring (SHARMA; CHOUDHURY; 

KUMAR, 2018) with wearable smart biosensors and body sensors for monitoring 

patients (TAMILSELVI et al., 2020)(FIROUZI et al., 2018). 

Smart farming (YANG; SHARMA; KUMAR, 2021) is another promising 

application area that uses smart sensors and communication technologies to support 

intelligent decision-making systems to facilitate the agricultural sector (IoT-Agro) 

(PACHAYAPPAN; GANESHKUMAR; SUGUNDAN, 2020). To minimize the cost, 

maintenance, and monitoring of farms, traditional agriculture methods will be gradually 

replaced by smart technologies (MANOGARAN et al., 2021) in  IoT farm networks 

(ASTILL et al., 2020).  
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For Suresh et al. (SURESH; UDENDHRAN; BALAMURUGAN, 2020) 

integrating IoT and machine learning (SURESH; UDENDHRAN; BALAMURUGAN, 

2020) will be reflected on many aspects of human life in all segments. Surveillance 

system applications are drastically growing from small areas (buildings and homes) to 

wide areas such as forest monitoring. In smart home automation solutions 

(PATCHAVA; KANDALA; BABU, 2017),  IoT smart sensors capture intruders' 

identities and detect their presence, whenever motion is detected.  Smart sensors 

embedded into systems performs real-time monitoring based on a deep learning model 

in a smart waste management solution (SHENG et al., 2020). And so smart sensors have 

been deployed in surveillance system applications to monitor and record forest 

environmental impacts and safety production (YUAN et al., 2020). Abnormal events are 

identified and detected using appropriate IoT smart devices and deep learning 

algorithms (CUI, 2020). 

The adjustment of industrial production to complete intelligent automation in 

Industry 4.0 (KARABEGOVIĆ et al., 2020), introduces new technological discoveries 

and intelligent decision-making. For Elsisi et al. (ELSISI et al., 2021), smart grids are 

control infrastructure that manages and monitors the communication between smart 

machines to increase efficiency in the industrial environment.  Digital twins or 

surrogates are data-driven virtual representations that replicate, connect, and 

synchronize the operation of a manufacturing system or process (SHAO; KIBIRA, 

2019).  

It is difficult to enhance all parameters of QoS in IoE applications 

simultaneously such as improving communication and processing capabilities without 

impacts on energy consumption across the network. The focus for a trade-off between 

parameters to enhance the performance of IoE applications is related to value creation 

and expected outcomes, the core parameters for QoS in IoE.  There is a need to 

introduce a knowledge-based driven approach to define domain-specific QoS related to 

intelligent services in IoE applications.  This approach will be presented in Section 3.5, 

which will define smartness requirements for IoE smart sensors. 

As of today, people’s public and private spaces are equipped with advanced 

technology, which is reshaping their lifestyles (WANG et al., 2020). Services are 

sensor-collected-information driven and enhancing value creation through data is 

paramount. Often, these data are obtained from the environment where the information 
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is up-to-date and can be accessed through either built-in or connected smart sensing 

devices  (KOLAR; BENAVIDEZ; JAMSHIDI, 2020).  The expansion of data 

connectivity is a “catalyst for divergent application of sensors” and a sustainable 

ecosystem lies in the creation of a bridge where “data play an important role as both a 

resource and as a tool”(NIKIFOROVA, 2021). Section 2.3 will discuss how KM 

addresses the challenge to cope with implicit and explicit knowledge in IoE ecosystems. 

In Section 3.2, this thesis will apply the proposed IoE Knowledge-based 

Taxonomy as the main driver for investigating and defining requirements for smart 

sensors as IoE enablers, with a qualitative approach.   Existing works on smart sensors 

are collected and classified into four categories of IoE Knowledge-based taxonomy. 

From this, possible future directions are proposed related to metrics and parameters for 

ranking knowledge in smart sensors in IoE applications and an evaluation approach will 

be present in Chapter 4.  

2.3 Knowledge Management in IoE Lifestyle 

As defined in previous sections, the Internet of Everything (IoE) is a superset of 

the Internet of Things (IoT) by incorporating people, processes, data 

(CHARMONMAN; MONGKHONVANIT, 2015), and intelligence in the network 

(MIRAZ et al., 2015). The knowledge created and information derived from data adds 

'value' and provides insights into the dynamic IoE context disruptions (MAJEED, 

2017).  

IoE paradigm consists of extracting and analyzing real-time data from millions 

of sensors and applying it to automated processes in opportunities for combining related 

sensors and data sources (SHEN; NEWSHAM; GUNAY, 2017).  IoE sensors range 

from simple sensors and actuators to complex devices and from autonomous agents to 

human actors. 

To research how knowledge management process research is applied to IoE, this 

thesis reviewed contributions from the ACM Digital Library, IEEE Digital Library, ISI 

Web of Science, Science@Direct, and Scopus databases, which were considered to be 

the most relevant sources for finding specific studies in journal and conference papers in 

English. The following specific search string was sought: ("knowledge management") 
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AND ("internet") in the "Title", "Abstract", or "Keywords" fields. And restricted to 

studies since 2015 to support the novelty of the proposals. 

The search string retrieved from the databases as many studies as possible that 

were relevant to the review, even if the query results returned articles not relevant to the 

survey. It is important to mention that the generic term “internet” was propositional to 

consider paradigms under the IoE umbrella such as “internet of things”, “internet of 

people”, “industrial internet” and so on, considering studies not explicitly related to IoE. 

Furthermore, most contributions were studies related to KM in IoT environments, which 

indicates a lack of maturity in work in the field of KM in IoE.  

Only studies published in English in journals (already published and in press), 

conference proceedings, books, and technical reports were selected. After discarding the 

duplicates, a total of 715 candidate articles remained from the initial search (Table 1). 

Table 1- Summary of literature review stages 

Literature review stage 
number of 

papers 

Search of ISI Web of Science 231 

Search of Scopus 174 

Search of IEEE 335 

Search of ACM Digital Library 70 

Science@Direct 38 

Total 848 

Duplicates 133 

Total after discarding duplicates 715 

Discarded 542 

Approval for analytical reading 173 

Unclassified 134 

Approved 39 

 

The success of any knowledge management initiative in IoE disruption lies in its 

ability to cope with sharing of implicit and explicit information of “smart objects” (SO) 

and data sources in the IoE domain (TSAI et al., 2014) – things and humans or broadly 

between biotic or abiotic sensors in IoE context. The challenge is to create value 

integrating knowledge of people as human sensors (SHEN; NEWSHAM; GUNAY, 



34 

2017). Optimum combinations of sensors and data sources need to be identified since 

many devices and resources in IoE are highly distributed, heterogeneous, and 

constrained. Therefore, a smart environment is capable of obtaining knowledge, 

applying it, or adapting according to its users’ needs for creating value from the 

experience with that environment (AHMED et al., 2016). 

Knowledge Management (KM) processes are essential for improving the 

capabilities, successful adoption, and implementation of a particular technology (AL-

EMRAN et al., 2018), such as the novel paradigm of IoE applications.  But there is still 

an opportunity for further research, calling for new and inventive knowledge 

management open approach, to foster knowledge flows, and to facilitate the creation of 

open and collaborative ecosystems (SANTORO et al., 2017) applied to humans and 

things. And in terms of data, there is an opportunity to discover hidden knowledge and 

generate new knowledge with ultimate new demands from the digital era (KHAN; 

VORLEY, 2017). 

A traditional knowledge pyramid originally proposed by Ackoff et al. 

(ACKOFF, 1989) defines that data are symbols that represent the properties of objects 

and events. The author concludes that information, knowledge, and understanding lead 

to increase efficiency, not effectiveness.  And intelligence is the ability to increase 

efficiency, measured relative to an objective with a specified number of resources.  The 

value of the objective(s) pursued is relevant in determining effectiveness. Effectiveness 

is evaluated efficiency. It is efficient for a valued outcome. Therefore, it is the ability to 

optimize the resources in IoE processes that leads to a determined objective and value 

creation.  

Currently, with the increasing dissemination of IoE solutions, research efforts 

are being directed to the analysis of knowledge creation and wisdom. Barnaghi et 

al.(BARNAGHI et al., 2012) revisited the traditional knowledge pyramid originally 

proposed by (ACKOFF, 1989) to explain the creation of actionable intelligence and 

knowledge and presented knowledge hierarchy layers applied to the context of IoT 

(Figure 5).  The hierarchy layers refer from a large amount of data produced by the IoT 

resources and devices to high-level abstractions and perceptions (wisdom).  However, 

their study does not provide a comprehensive analysis of how actionable intelligence 

and knowledge creation derive from the collaboration of humans and things in IoE 

solutions.  
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Figure 5 - “Knowledge Hierarchy” in the context of IoT (Adapted from Barnaghi et al, 

2012) 

 

In Figure 7, a data approach of knowledge hierarchy layers in the context of IoT 

is proposed by Siow et al. (SIOW; TIROPANIS; HALL, 2018a).  Big data solutions and 

cloud platforms provide infrastructure and tools for handling, processing, and analyzing 

overload of the IoT data.  However, this data-to-knowledge transformation demands 

efficient methods and solutions to structure, annotate, share, and make sense of the IoT 

data and facilitate identifying, filtering, and transforming it to actionable knowledge and 

intelligence. Authors, related the knowledge hierarchy to five categories of analytics 

capabilities for IoT data (Figure 6), as follows (SIOW; TIROPANIS; HALL, 2018a):  

• Description in Analytics: For describing, summarizing, or presenting raw 

IoT data that has been gathered. 

• Diagnosis in Analytics: To find out the root cause and explanations for the 

IoT data.  Both descriptive and diagnostic analytics provides hindsight on what and why 

things have happened. 

• Discovery in Analytics: Through the application of inference, reasoning, or 

detecting nontrivial information from raw IoT data. It detects something new, novel, or 

different (e.g., trends, exceptions, or clusters) rather than describing or explaining it. 

• Prediction in Analytics: It uses past data and knowledge to predict future 

outcomes and provides methods to assess the quality of these predictions. 
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• Prescription in Analytics:  It presents the best course of action to act on 

foresight on time with the consideration of uncertainty. 

 

Figure 6- Analytics and the knowledge and value hierarchies, adapted from Siow et al. 

(2018) 

 

In Figure 7, by turning the hierarchy of knowledge upside down, a revised 

knowledge pyramid in the context of IoT is proposed by (JENNEX, 2017b). The study 

reversed the knowledge pyramid by assuming that there is more knowledge than data 

and expanded it (from data to wisdom) in a broader context. Humans are constantly 

gathering and processing data into information, knowledge, and wisdom. This approach 

posits a top-down strategy that leads to efficient identification of data, information, and 

knowledge sources on identifying the technologies and decision support components 

needed. A top-down KM strategy for managing the knowledge pyramid activities 

includes the identification of actionable intelligence needed to support societal decision-

making and the effective use of actionable intelligence. The more focused the strategy, 

the stronger the filters that are created to support intelligent decision making, supported 

by relevant information selection. 
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Figure 7- The Revised Knowledge Pyramid with KM, Big Data and IoT, adapted from 

Jennex, 2017b. 

 

As it can be seen, knowledge creation involves not only organization and 

context but also integration and collaboration (FIORE et al., 2010). A Social 

Collaborative Internet of Things (SCIoT) (KHAN et al., 2017) is a new paradigm 

defined as an IoT platform, based on the collaboration of network objects for achieving 

a common goal. The collaboration of social objects is dependent upon the services they 

provide to benefit people in an intelligent network environment. Khan et al. (KHAN et 

al., 2017) analyze a socially collaborative environment in IoT as a hierarchical 

knowledge pyramid (SCIoT pyramid) to represent the levels of different processes of 

collaborating for knowledge transformation.  

In Figure 8, SCIoT pyramid is introduced to represent the levels of different 

processes of IoT collaborating environment, from raw data to service delivery. At the 

lowest level, intelligent sensors embedded in the smart objects collect raw data by 

monitoring the environment. Then, information is created by analyzing, processing, and 

reducing the raw data. After the information is analyzed, IoT objects get knowledge 

about a particular situation or a problem. After having detailed knowledge, IoT objects 

learn and communicate to share knowledge effectively. After communicating with other 

objects, IoE devices exchange and share their resources through cooperation. While 

cooperating, all the activities are arranged sequentially and are harmonized through 

coordination. After aligning the coordinated activities, these activities are performed 
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effectively through proper collaboration. Smart objects collaborate through cooperation 

and coordination. The collaborated knowledge is then integrated through convergence. 

Finally, the service providers grant services to the particular service requester. 

 

Figure 8- SCIoT pyramid, adapted from Khan et al., 2017. 

 

Knowledge creation is a transcending process through which entities (tangible 

and intangible elements, people, things, organizations) transcend the old into a new self, 

new conceptual artifacts, or structures by acquiring new knowledge in consequent 

knowledge-creation cycles (NONAKA; TOYAMA, 2015). For integrating human 

actors, proper interfaces must be developed based on the kind of data to be exchanged 

between the human and the system (SAHINEL et al., 2019). In IoE applications data are 

sensed from physical sensors, virtual sensors, and social computing or participatory 

sensing and mobile crowd-sensing, where people collect and share sensed data 

(BAMGBOYE; LIU; CRUICKSHANK, 2018). 

Research efforts in knowledge management propose KM frameworks to support 

knowledge management processes (AL-QURISHI et al., 2015; MOSCOSO-ZEA et al., 

2019; PHILIP, 2018; PRAT, 2011; PUTRI; HUDIARTO; ARGOGALIH, 2017), but for 

IoE dynamics, there are minimal initiatives. The urgency for a knowledge management 

approach in the IoE applications also arises because tools and technologies involved and 

adopted should be evolved and refined (BALCO; DRAHOOVÁ, 2016), potentializing 

meaningful P2M and M2M collaboration (ABEBE et al., 2017). In this sense, as a 
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contribution of this thesis, Section 3.5 will present an IoE Integrated Knowledge 

Management Model to support intelligent services in IoE. 

2.4 IoE Governance 

Value-generating activities create actionable intelligence through knowledge 

processes that filter data, information, and knowledge (JENNEX, 2017a). A knowledge-

based strategy for selecting and managing IoE enablers (things, people, data, 

technological capabilities, knowledge, and intelligence) assists in the governance of IoE 

solutions adoption. It ensures excellent benefit from IoE's capacity to provide enhanced 

intelligent services for the connected society.  The governance of knowledge sharing in 

M2H interactions requires a complete taxonomy that leverages awareness from the 

length and breadth of the knowledge hierarchy, considering knowledge interaction and 

transformations from raw data to intelligence that provide outcomes and wisdom 

(FARIAS DA COSTA; OLIVEIRA; DE SOUZA, 2021). 

Pitt et al. (PITT; OBER; DIACONESCU, 2017) proposed a three-layer 

architecture for self-governing socio-technical systems (SG-STS). These applications 

distinguish the interaction and co-dependence between people and information 

technologies in the digital transformation era. The system must be sufficiently 

unrestricted (resilient, flexible), to enable a shared set of congruent values to achieve the 

joint purpose(s) in collective actions situations (Figure 9). 
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Figure 9 - Three-layer architecture for SG-STS, adapted from Pitt and Ober, 2017 

 

Many digital initiatives to modernize the public sector by connecting and 

integrating the physical and digital world in public or private environments are under 

the e-governance umbrella. However, most did not reach their full potential 

(SCHEDLER; GUENDUEZ; FRISCHKNECHT, 2019).  In IoE disruptions, there is no 

centralized control and, when it comes to rules, their application, selection, and 

modification are performed by the participants. Accordingly, these systems need to be 

regulated by a type of governance based on the codification of conventional rules which 

should be respected and be aligned with implicit shared values (PITT; OBER; 

DIACONESCU, 2017).  

Expecting outcomes and derived wisdom from IoE applications demand 

awareness considerations of IoE enablers and a proper understanding of how they 

contribute to knowledge transformations from raw data to intelligence (MIRAZ et al., 

2015) that provides outcomes and wisdom (FARIAS DA COSTA; OLIVEIRA; DE 

SOUZA, 2021). Awareness is commonsense knowledge about the state of a particular 

context (GUTWIN; GREENBERG, 2004). 

For Vu (VU et al., 2018), a web-based knowledge management system supports 

taxonomy management and evolution by matching information to existing categories so 

that humans and machines can organize, manage, access, and re-use information and 

knowledge resources more efficiently and effectively.  
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At the IoE landscape, some interactions and arrangements of resources can be 

more effective than others for value co-creation (KOMPELLA, 2020). Service 

innovation requires an evolving degree of reconfiguration of roles and responsibilities 

acceptance (MAGLIO et al., 2019), materialized as governance directives and rules to 

guide governance by design in IoE applications. 

Accordingly, taxonomies allow classifying the main concepts in a hierarchical 

structure and their inheritance in a graphical representation (OURIQUES et al., 2019). 

The proposed IoE Knowledge-Based Taxonomy presented in this thesis will guide the 

identification of critical knowledge in IoE applications providing an in-depth 

classification of IoE enablers (sensors and actuators). We stress that the challenge 

consists in the identification of critical knowledge sources in IoE solutions: how these 

sources collaborate and interact considering environment constraints and capabilities 

(technological requirements), as these interactions lead to actionable intelligence and 

expected outcomes in IoE solutions. 

2.5 Autonomic Computing in IoE  

Autonomic computing is a concept that “brings together many fields of 

computing to create systems that self-manage.” (LALANDA; MCCANN; 

DIACONESCU, 2013), and their principles can be adapted to help organizations 

survive in high dynamic scenarios (NETO, 2012).  

Ashraf et al (ASHRAF; HABAEBI, 2015) define an autonomic system as “an 

intelligent system, or system of systems where data acquired by sensing or monitoring 

capability is utilized in an overall autonomic decision-making process”. 

Autonomic computing can offer new ideas to business process automation 

(TERRES et al., 2008). Its principles can be adapted to help organizations survive in the 

high dynamics scenarios that call for new approaches to process management and 

always developing an improved strategic position (MONTEIRO  JR et al., 2008). 

Autonomic concepts have been applied in diverse technological areas for self-

management (BABAOGLU et al., 2005). The philosophy of Self-⁎ (self-start) self-⁎ 

seeks to describe essential qualities that should constitute the behavior of an autonomic 

element. 
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Therefore, in the hyper-connected context of IoE, as in a collaborative 

workspace (GUTWIN; GREENBERG, 2004), humans might maintain situation 

awareness, to realize what are things doing in a smart environment and how things 

interact, can aid or be supported by people. For Gutwin and Greenberg (GUTWIN; 

GREENBERG, 2004), workspace awareness concerns understanding how people 

interact within a shared workspace.  As a disruptive shift beyond the workspace to a 

interconnect world, IoE is envisioned to facilitate rich interactions among 

heterogeneous entities, ranging from devices to human actors (SAHINEL et al., 2019). 

Service ecosystems in IoE are when the flow between actors (people and things), which 

integrates their competencies and resources with those of the others, results in mutual 

value creation (LANGLEY et al., 2020). 

Limiting the discussion to smart sensors in IoE, the autonomic paradigm allows 

for the concepts of self-learning and self-governing to exist in specific IoE domains: 

An architectural framework was proposed by Kephart and Chess (KEPHART; 

CHESS, 2003) to make system management easier under the vision of autonomic 

computing. Following this, autonomic computing was re-defined as “a vision that 

enables any computing system to deliver much more automation than the sum of its 

individually self-managed parts” (KOEHLER et al., 2003). 

Another goal for any autonomic system is to modularly divide roles among the 

constituent components without sacrificing functionality. The presence of a central 

authority is an imperative prerequisite and allows for controlled management of the 

agents involved (ASHRAF; HABAEBI, 2015). It demands a new approach for IoE 

systems. The level of autonomy of an IoE sensor is its ability to act independently, with 

or without direct human intervention (ALKHABBAS; SPALAZZESE; DAVIDSSON, 

2019; BERGER; DENNER; RÖGLINGER, 2018; BOYES et al., 2018). 

•  Ability to Self-learn: IoT nodes equipped with smart sensors can 

immediately extract meaningful knowledge from the data through machine 

learning technologies  (CHEN et al., 2020) (DJENOURI et al., 2021).  Deep 

learning (DL) (AHMED et al., 2020) is constantly contributing significant 

progress in ubiquitous smart sensing due to its dramatic superiority over 

traditional machine learning, the promising prospect of a wide range of 

applications under various contexts (REDDY; MAMATHA; REDDY, 2018).  
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But performing DL on mobile or embedded platforms is becoming a common 

requirement but it is a challenge to bridge the gap between deep learning and 

resource-limited platforms. In this sense, Chen and Khan (CHEN et al., 2020) 

investigated three types of solutions: algorithmic design, computational 

optimization, and hardware revolution.  

Alonso et al. (ALONSO et al., 2020b) present a novel “smarter” sensor 

that offers the ability to self-adjust sensing parameters update and its tuning 

settings during operation in real-time, in coordination with smart sensors spread 

across the network. 

• Ability to Self-govern:  Smart sensors are those that can communicate 

over a network and thus have the ability to self-identify individual networks and 

communication allowing reprogramming the intelligent sensor system as needed  

(URBINA et al., 2019). Corchado et al. (CORCHADO et al., 2021) proposed an 

efficient cyber-physical platform for smart management of smart territories. The 

solution is defined as efficient and smart because it incorporates a complete 

artificial intelligence suite for data analysis, data classification, clustering, 

forecasting, optimization, visualization, and so on.  Additionally, its architecture 

and functionalities are also compatible with the edge computing concept, 

allowing for the distribution of intelligence and the use of intelligent sensors.  

The global intelligence of the platform could potentially coordinate its decision-

making processes. Intelligent nodes are installed in the edge, by optimizing the 

decisions taken by human sensors through explainable artificial intelligence and 

data from IoT smart sensors.  The proposed platform enables the development of 

adapted knowledge management systems with efficient computational 

performance and artificial intelligence algorithms.   

Security approaches in IoE have to be made self-sufficient and 

autonomic, with minimal manual human intervention (ASHRAF; HABAEBI, 

2015).  As an example, when a self-moving device moves autonomously and 

relative to its setup/installation point, without being uninstalled (e.g., smart car); 

whereas a non-self-moving device does not move autonomously, but can still 

move relative to its original location without being uninstalled 

(MOUNTROUIDOU; BILLINGS; MEJIA-RICART, 2019; MOUSTAKA; 

VAKALI; ANTHOPOULOS, 2018).  
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According to (KEPHART; CHESS, 2003), autonomic computing is 

implemented using the MAPE control loop (GANEK, 2007) which is like a structural 

arrangement divided into four separate parts based on their functionality, as follows: 

o Monitor: Monitor module is responsible for collecting the data obtained 

from the environment and the data related to the element itself. This 

module is also responsible for the aggregation, filtration, management, 

and reporting of all details. 

o Analyze: Analyze module provides mechanisms that model complex 

situations based on the received details. This allows the central authority 

element to learn about the environment. This module can also be used to 

predict future states. 

o Plan: Plan module provides mechanisms that guide action with the help 

of higher-level policies, rules, and regulations. This module plans further 

action based on the constraints that have been imposed in the system. 

The action is performed to achieve system goals and objectives. 

o Execute: Execute module controls the implementation of the devised 

“plan” with support for some kind of feedback. 

Figure 10 presents an IoE approach of the Autonomic Control loop adapted to the IoE 

context. In IoE autonomic resources the challenge is to promote and improve self-

learning (in Monitor and Analyze processes) and deal with self-governing when it is a 

necessary touch of control and governance ( in Plan and Execute processes). 

 

Figure 10 - Autonomic Control Loop, adapted from Ganek (2007) 
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To integrate sensors and actuators, working together to provide various services 

on-demand within the IoT environment, Kang et al. (KANG; KIM; CHOO, 2017) 

proposed a self-configurable gateway featuring real-time detection and configuration of 

smart things over the wireless networks.  

As an evolution of conventional sense-and-transmit sensors operations in IoE 

applications, Yin et al. (YIN; WANG; JHA, 2018) proposed a hierarchical inference 

model for IoT applications based on hierarchical learning and local inferences. For Teng 

et al. (TENG et al., 2019) the “intelligence is derived from data” and relates to how this 

data is significant in the decision-making system and segregated for future analysis 

purposes.   

So, learning techniques are used to learn from these data to make things more 

intelligent. Silva et al. (SILVA; SAMPAIO; SOUZA, 2008) applied autonomic 

computing to create a framework that can self-organize based on data-embedded meta-

information. Smart sensors generate smart data (which means filter out the noise and 

hold the valuable data). Emerging smart sensors can transmit only inference outcomes 

and possibly some raw data associated with rare events. So smart sensors have already 

performed a local inference. And edge or server inference models trained with 

conventional machine learning approaches should accept smart sensors inferences.  The 

data collected from IoT data sources need to be controlled even more due to the limited 

capacity of these sources to ensure the security and the quality of their data (AHMED et 

al., 2021).  

Zhang et al. (ZHANG et al., 2021) used a novel prediction machine via a self-

learning generative adversarial network for soft computing applications. The system 

collects data through a series of high-precision IoT sensor devices and makes 

preliminary preprocessing, further solves the crowd prediction problem based on deep 

learning algorithms, and obtains a reliable and accurate prediction result by 

continuously optimizing internal parameters.  

So, the autonomic computing in IoE may benefit from a KM strategy to improve 

self-learning and to deal with self-governing to guarantee a touch of control. 
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2.6 Services Science in IoE  

Service design requires the allocation of decision control to guide and organize 

the service's activities (MORELLI; DE GÖTZEN; SIMEONE, 2021). Decision 

allocations should satisfy the consumer's sense of control without being overwhelmed 

by the service provider (DASU; BRUNNER-SPERDIN, 2019). Meanwhile, a user of 

IoE systems in the digital society demands some (potentially unrestricted) self-

governance (PITT; OBER; DIACONESCU, 2017). El-Sheikh et al. (EL-SHEIKH; 

ZIMMERMANN; JAIN, 2016) define digitized services as software-intensive, 

malleable, and usually service-oriented services. Intelligent services in IoE support 

value co-creation for providers and consumers, increase ecosystem capabilities and 

offer disruptive new business solutions with potential innovative connected 

functionalities. 

Recently, service science has emphasized a human-centered approach, requiring 

the integration of multidisciplinary efforts while forwarding the dynamic 

reconfiguration of entities for value co-creation (SANGIORGI et al., 2019). Sensing 

from things and people and data analytics contributes to the effectiveness and efficiency 

of interactions within the IoE service system. Data analytics is core to smart service 

systems due to continuous monitoring and learning from data (LIM; MAGLIO, 

2019)(OCHS; RIEMANN, 2016). Services are constantly adjusting to nurture the 

evolving dynamics of service evolution and knowledge creation (SANGIORGI et al., 

2019). 

Internet is changing ways of collecting, organizing, and disseminating 

information and knowledge. Knowledge creation in IoE is a challenge due to 

heterogeneity and unstructured data sources, large volumes of data that grow 

continuously (ABEBE et al., 2017). Moreover, this "everything as a service" includes 

Knowledge as a Service (KaaS), providing critical knowledge as a product, and 

Knowledge Management as a Service (KMaaS), providing knowledge management 

services to the consumers (BALCO; DRAHOOVÁ, 2016)(AL-QURISHI et al., 2015). 

Nowadays, exchanging services, robust connectivity, dynamic changes, and 

service values are central in society. IoE is the paradigm of intelligent services. The 

central core in IoE is the "intelligent connections" and information derived from data 



47 

that creates 'value' and insights. Accordingly, intelligent, or smart services have tangible 

and intangible elements for value creation and outcomes. 

Dreyer et al. (DREYER et al., 2019) argue that the intelligence of connected 

systems and devices is in constant evolution and adaptation through collaboration. The 

authors define smart services as individual, highly dynamic, and quality-based service 

solutions convenient for the consumers. So, it is imperious to be ready for the 

digitalization era and disruptive innovations, from simple changes to complex 

disruptions, originated from technological and non-technological trends.  

Therefore, in the digitalization era, the value creation process implies 

negotiation among different actors and may require facilitation in the form of 

interaction mechanisms between service providers and consumers. In many cases, 

consumers are dynamically transformed into co-producers (MORELLI; DE GÖTZEN; 

SIMEONE, 2021).  

Morelli et al. (MORELLI; DE GÖTZEN; SIMEONE, 2021) analyzed the 

interaction among enablers (producers and consumers) in a service system that defines 

the roles and knowledge that contribute to shaping services as a value creation process. 

These enablers' interactions define three interpretations centered around the process of 

value creation: 

1. Services as Interactions: Consists in interactions in time and context between 

two or more entities characterized by unbalanced roles between the provider(s) 

and consumer(s) for value co-creation. For intelligent services in IoE, the 

interactions are machine to machine (M2M), people to machine (P2M), and 

people to people (P2P).  

2. Services as Infrastructure: Consists in infrastructure for value co-creation – 

physical, functional, or organizational infrastructure which operationalizes 

interactions and supports service activities. The IoE environment relates to IoT, 

the intelligent network infrastructure, big data analytics, and IoE applications. 

3. Services as a Systemic Institution: Consists in the institutional system or 

aligning services to the institutional context (governance). Represents the social, 

technical, and regulatory context to institutionalize and organize value creation 

activities and processes. In the IoE context, it represents the value and 

innovation attitudes of a connected society. 
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These three interpretations, when taken together, define possible contexts for 

service design and define an IoE ecosystem supported by intelligent service orientation, 

which is essential for digital transformation (digitalization) (MORELLI; DE GÖTZEN; 

SIMEONE, 2021). Figure 11 shows how IoE is built upon the "four pillars" of people, 

data, processes, and things connected by intelligent services in the network.   

 

Figure 11 - Service Interactions in IoE 

 

Service ecosystems in IoE are when the flow between entities (people and 

things) integrates individuals' competencies and resources with those of the others, 

resulting in mutual co-created value.  It serves as a new context of services in a many-

to-many, interconnected world, empowered by a continual and evolving flow of 

intelligent connections. And when the moments of insights and foresight in IoE result in 

a valuable and unanticipated outcome, the Serendipity phenomenon (OCED, 2021) 

occurs beneficially. The next section studies the relationship between Serendipity and 

IoE and investigates the benefits of serendipity by design in IoE applications. 

2.7 Serendipity in IoE  

Serendipity definition is “the occurrence and development of events by chance 

in a happy or beneficial way” (OCED, 2021). The term is originated from the fairytale 

“The Three Princes of Serendip”. In the story, the princes “were always making 

discoveries, by accident and sagacity, of things they were not in quest of”. 
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Serendipity occurs in unexpected circumstances when a moment of insight 

results in a valuable, unanticipated outcome. Although the occurrence of serendipitous 

events cannot be directly controlled, they can be potentially positively influenced and 

supported by effective digital information environments (MAKRI et al., 2014). 

For Makri et al. (MAKRI et al., 2014), designing technology to support 

serendipity is twofold: the more one attempts to “engineer” serendipity through 

technology, the fewer users may perceive the experience to be serendipitous. Some 

components of serendipity are novelty, diversity, and unexpectedness. Kamienski et al. 

(KAMIENSKI et al., 2018) emphasize the need for context-aware systems able to adapt 

behavior automatically to instant environment conditions. Currently, there is a gap in 

terms of understanding how context information is interrelated, as well as tracking 

visualizing, specifying, and monitoring typical contexts involved in IoE-based 

applications.   

For McCay-Peet et al. (MCCAY-PEET; TOMS; KELLOWAY, 2015) 

serendipity is “an unexpected experience prompted by an individual’s valuable 

interaction with ideas, information, objects, or phenomena”.  The authors studied under 

what conditions is serendipity most likely to occur and to what extent it is influenced by 

its actor’s interaction processes or by the environment or context in which they are 

immersed. They conclude that some types of digital environments, (e.g., websites, 

databases, search engines, intranets, social media sites) may be more conducive to 

serendipity than others.  

Human characteristics may influence the ability to experience serendipity, such 

as extraversion. Exogenous influencers are perceptions of the context in which people 

are immersed, including a trigger-rich creative environment that enables connections, 

and leads to the unexpected. The environment in which the user is immersed may create 

a fertile environment for serendipity to occur. This definition is in line with the IoE 

concept. 

In the perspective of McCay-Peet & Toms (MCCAY-PEET; TOMS, 2018),  to 

operationalize and recognize a serendipitous phenomenon, might support five 

conditions: (1) the observation is unexpected and unpredictable; (2) knowledge to 

identify the observation; (3) space and time to absorb it, recognize its value, and the 
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perseverance to act on it; (4) follow-up time to explore the observation; and (5) and a 

valuable outcome.  

In resume: “for an event, outcome or process to be serendipitous, it is initiated 

with an anomalous observation by a person who has the requisite skills to observe its 

irregularity, and the mental space to follow through on the observation, taking 

whatever requisite time is required to turn it into an unexpected finding” (MCCAY-

PEET; TOMS, 2018). 

Related to digital environments, serendipity is mainly approached as either 

quality of an event or a process or experience, which has one or more serendipitous 

qualities and characterizes the successful outcome of a task (MCCAY-PEET; TOMS, 

2018). 

Serendipity is not particularly susceptible to systematic control and prediction. 

However, it may also have a role in revealing hidden connections or “hidden analogies”, 

revealing creative connections through serendipitous links between information sources 

(FOSTER; FORD, 2003). It is an interesting phenomenon to study in information 

science.  Understanding connections when designing physical and digital environments 

interactions can facilitate serendipity. Serendipity is defined as what happens in 

unplanned ways when resources (information, things, people, etc.) correspond with each 

other.  

This thesis proposes a definition for Serendipity in IoE environments, extending 

(MCCAY-PEET; TOMS, 2018) definition: 

“In IoE context, for an event, outcome, or process to be 

serendipitous, it is initiated with an anomalous observation by a 

sensor node (people or machine), which has the requisite 

intelligence to observe its unexpected finding, and the cyber-

physical space and technological capabilities to follow through on 

the observation, taking whatever requisite of time and reach is 

required to turn it into valuable outcomes”. 

Björneborn et al (BJÖRNEBORN, 2017) presented a framework that introduces 

three key affordances for facilitating serendipity: diversifiability, traversability, and 

sensoriability, covering capacities of physical and digital environments to be 

diversified, traversed, and sensed. The framework is structured around couplings 
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between the three key affordances and three key personal serendipity factors: curiosity 

(self-learning), mobility, and sensitivity (monitoring).  The authors affirm that it is 

impossible to “engineer” or “design” serendipity, but it is important to design 

affordances for serendipity. And concludes that serendipity may thus be intended by 

designers but must always be unplanned by users. 

Table 2 presents the framework proposed by Björneborn et al (BJÖRNEBORN, 

2017). The conceptual framework presents ten “serendipity dimensions” grouped into 

three key affordances: diversifiability, traversability, and sensoriability. The affordances 

deal with how physical and digital environments can be diversified, traversed, and 

sensed, thus covering key aspects of human interactions with environments. 

In the framework, serendipity is seen as a possible outcome when personal 

factors of curiosity, mobility, and sensitivity correspond with affordances of 

diversifiability, traversability, and sensoriability in a given environment. However, even 

it is not possible to “design serendipity,” it is possible to design for serendipity. It is 

important to design affordances for serendipity – seen from the designers’ point of 

view. From the people’s point of view, serendipity must always be encountered in 

unplanned ways to be serendipitous.  

Table 2 presents key affordances and sub-affordances for serendipity with 

coupled personal factors and sub-factors. 

Table 2 - Conceptual Framework for Serendipity, adapted from Björneborn (2017) 

10 Sub-affordances for 

serendipity 
3 Key affordances 

for serendipity 
3 Key personal 

factors for serendipity 
10 Personal sub-factors 

for serendipity 

Diversity (multiple 

potentials)  

Cross-contacts (colliding 

potentials)  

Incompleteness (finalizable 

potentials) 

 

Diversifiability Curiosity Interest (regarding 

diversity, etc.) 

Playfulness (regarding 

cross-contacts, etc.) 

Inclusiveness (regarding 

incompleteness, etc.) 

 
Accessibility (access to 

specific spot, convergently) 

Multi-reachability (reaching 

anywhere, immersively) 

Explorability (inviting 

somewhere else, 

divergently)  

Slowability (affording 

slower pace, frictionally) 

 

Traversability Mobility Searching (convergent) 

Immersion (both 

convergent 

and divergent) 

Exploring (divergent) 

Stumbling (both divergent 

and convergent) 
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Exposure (highlighting 

broader, over longer time) 

Contrasts (highlighting 

sharper, more suddenly) 

Pointers (highlighting 

narrower, more specifically) 

 

Sensoriability Sensitivity Attention (broader sensing) 

Surprise (unprepared 

sensing) 
Experience (prepared 

sensing) 

 

 

Specifically, to support and design affordances for serendipity in the IoE 

environment – diversifiability of information sources, traversability in the immersive 

physical-digital environment, and sensoriability of data are the major research 

challenge. Related to machines' point of view, serendipity may be related to self-

learning and self-governing to identify opportunities for knowledge creation through 

M2M and P2M interactions. 

Intelligent environments will be created with communication and services 

seamlessly adapted to the pervasive IoE contexts, where customized interconnectivity is 

provisioned to enable specific applications at the individual device and infrastructure 

levels (YOUNIS, 2018).  

2.8 IoE Interoperability 

Interoperability needs to be resolved to allow interaction between devices and 

users located within and across different smart spaces. Some technical issues that must 

be taken into consideration in designing smart spaces are changing the focus from a 

technology-centric to a user-centric approach, emphasizing the user's understanding of 

the system's behavior and functions of devices and the balance between user-device 

control (ALAVI et al., 2018).  

IoE sensors’ ability to communicate and share information and knowledge may 

vary at different levels of interoperability. Noura et al. (NOURA; ATIQUZZAMAN; 

GAEDKE, 2019) classified interoperability in the following levels: no connection (no 

interoperability between IoE enablers), technical (basic connectivity and network 

connectivity), syntactical (data exchange interoperability), semantic (understanding in 

the meaning of the data), pragmatic/dynamic (applicability of the information), or 

conceptual (shared view of the world) (NOURA; ATIQUZZAMAN; GAEDKE, 2019). 
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Taxonomies work more in the sense of organizing information and/or 

knowledge in hierarchical relations between the terms. Ontologies, on the other hand, 

try to establish semantic relations between concepts (VITAL; CAFÉ, 2011), providing 

semantic interoperability (BARNAGHI et al., 2012). To support interoperability 

between different semantic descriptions in the IoE domain, the ontologies and semantic 

models need to be simple and lightweight to make them suitable for resource-

constrained environments (BARNAGHI et al., 2012). 

Semantic descriptions can support and interoperability between different 

sources; (BARNAGHI et al., 2012). Several approaches and semantic web techniques 

for better representation and exploration of the data were proposed to extract knowledge 

from data and to successfully understand and extract value from this data (RISTOSKI; 

PAULHEIM, 2016). Much sensor data is now being annotated with a sensor ontology 

(i.e., SSN ontology), encoded in standard Web formats (i.e., RDF), and is increasingly 

being made available on the Web (i.e., as Linked Data) (BARNAGHI et al., 2012). The 

human data model proposed by (SAHINEL et al., 2019) is used to define the human 

agent that represents human actors in the cyber world. 

The W3C Semantic Sensor Networks Incubator Group (the SSN-XG) has 

developed an ontology for describing sensors and sensor network resources, called SSN 

(BARNAGHI et al., 2012). In the existing IoT ontologies, it serves as a top-level 

ontology or foundation ontology to be extended and instantiated by subsequent IoT 

ontologies (RISTOSKI; PAULHEIM, 2016). The ontology provides a high-level 

schema to describe sensor devices, their operation and management, observation, and 

measurement data (YOU; LI; CHEN, 2018). Sensor or sensor-related ontologies can 

describe sensors in terms of sensor capabilities, measurement processes, observations, 

and deployments. Langley et al. (LANGLEY et al., 2020) presented a taxonomy of 

smart things in IoE context limited on capabilities, connectivity, and levels of smartness 

of things.  

Many studies have focused on the interaction among sensors and actuators in tri-

space (cyber, physical, and cyber-physical). Kotis and Katasonov (KOTIS; 

KATASONOV, 2013) presented a framework for supporting semantic interoperability 

between many distributed and heterogeneous IoT entities (sensors, actuators, and 

applications). Farias da Costa et al. (COSTA; OLIVEIRA; SOUZA, 2021) developed an 

observatory specifically for cataloging IoE enablers (sensors and actuators) and to 
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support sensors and actuators selection in IoE applications and highlight often 

overlooked details regarding proper intelligent management issues.  

IoE ecosystem is characterized by a high degree of heterogeneity, and it exists to 

enable many entities to pool their resources to connect and interact with heterogeneous 

sensors, actuators, and controllers, making them interoperable to create significant 

opportunities for new applications and services. Fortino et al. (FORTINO et al., 2018) 

presented INTER-IoT, a bottom-up approach to support IoT stakeholders in the design 

of open IoT devices, smart objects, services, and complex systems, thus creating new 

IoT interoperable ecosystems.  Le-Puhoc and Hauswirth (LE-PHUOC; HAUSWIRTH, 

2018) address the interoperability issue of IoE by laying out the extended version of 

linked data principles for publishing and consuming data into a hypergraph which is 

made programmable agnostic to networking technologies and platforms.  

Song et al. (SONG et al., 2021) propose a methodology for modeling 

interoperability of smart sensors in terms of interactions using labeled transition systems 

and finite-state processes to quantitatively and automatically measure and assess, 

identify and resolve interoperability issues, and improve interoperability.   

Smart devices equipped with artificial intelligence (AI) provide the deployment 

of innovative IoE-based applications, where people (as human sensors) and things 

(sensors and actuators) interact appropriately within a social context and multi-user 

environment (MIRAZ; ALI; EXCELL, 2015). 

For (SEHRAWAT; GILL, 2019) sensors play an important role in the 

automation of any function, measuring and processing the collected data to detect 

changes in physical things. However, there are different types of sensors that can range 

from very simple to very complex as the task of sensing has been aided by various 

technologies and the increasing inclusion of computational capabilities. 

To support the digital transformation in Industry 4.0, Colly et al. (COLLI et al., 

2019) presented an assessment approach to provide, as an outcome, an assessment of 

the current maturity stage of a company towards its evolution path concerning the 

digital transformation of the industrial sector. It considers the preparedness for the 

enabling of data ubiquity and connectivity capabilities. However, the authors perceived 

the need for built context-specific general improvement recommendations and neglected 

a knowledge management approach regarding knowledge flows of smart sensors in 
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H2M, H2H, and M2M interactions. The IoE Integrated Knowledge Management Model 

will support maturity stages progression towards IoE interoperability. 

This thesis contributes to the development of a taxonomy related to IoE 

applications, which will guide interested researchers in this field and also application 

developers in designing IoE knowledge-intensive services.  Considering that awareness 

of actions and intentions is the understanding of what another entity is doing, either in 

detail or at a general level (GUTWIN; GREENBERG, 2004). Actions and interactions 

with the environment create and enlarge knowledge through the conversion process of 

tacit and explicit knowledge (NONAKA; TOYAMA, 2015). 

This Chapter aimed to contribute to a better understanding of interactions among 

people and things in the IoE context, considering a knowledge management perspective. 

In Chapter 3, in a knowledge-based approach to support KM in IoE applications, the 

IoE Knowledge-based taxonomy will be presented to support awareness of IoE 

Enablers, an IoE Integrated Knowledge Management Model is proposed to guide KM 

strategy in IoE context and requirements to evaluate smart sensors will support the 

design of IoE solutions.  The use of a platform such as the IoE Database, presented in 

Section 3.6, is a central repository for the IoE body of knowledge. 
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3 Proposition: A Knowledge-based approach 

 

This Chapter conducts a literature review about IoE and IoT 

taxonomies and from this, the IoE Knowledge-based Taxonomy is 

presented. In Section 3.3, the proposed taxonomy is evaluated. An 

IoE Integrated Knowledge Management Model is presented to 

support knowledge strategy in IoE applications design and 

utilization. Smart Sensors requirements are defined in Section 

3.5. Finally, the IoE Database is presented. It is a platform to 

support the IoE body of knowledge and the evolution of the IoE 

Knowledge-based taxonomy. 

3.1 IoE Taxonomies: A literature review 

Taxonomies represent sense-making structures (EDWARDS, 2015) (p.51) for 

organizing information and knowledge into hierarchical relationships between the 

terms. This involves studying how the theories evolve, which enables researchers to 

study the essences and their relationships in the research territory (NICKERSON; 

VARSHNEY; MUNTERMANN, 2013).   

As a form of classification (NICKERSON; VARSHNEY; MUNTERMANN, 

2013), a taxonomy for IoE sensors and actuators that considers knowledge enablers with 

support the understanding of certain types of sensors, how they are combined and used 

in different application domains, and how issues with capabilities and observations can 

affect the quality of services and knowledge creation. To develop a taxonomy for IoE 

sensors, existing taxonomies were reviewed related to IoT and IoE. The first step in 

developing our taxonomy was to review the existing classification schemes, semantic 

descriptions, and taxonomies, which could suggest design implications for IoE systems. 

The methodological guidelines suggested by Kitchenham and Charters 

(KITCHENHAM et al., 2010) for literature reviews guided this survey. The review 

included contributions from the ACM Digital Library, IEEE Digital Library, ISI Web of 

Science, Science@Direct, and Scopus databases, which were considered to be the most 

relevant for finding specific studies in journal and conference papers in English. The 
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following specific search string was sought: ("internet of everything" OR "IoE" OR 

"internet of things" OR "IoT") AND ("taxonomy") in the "Title", "Abstract", or 

"Keywords" fields. 

The designed search string retrieved from the databases as many studies as 

possible that were relevant to the review, even if the query results returned articles not 

relevant to the survey. Relevant studies not retrieved after the first query were also 

included in a second iteration analysis in June 2020, considering studies likely to be 

explicitly related to IoE. Furthermore, most contributions were survey papers for IoT, 

which indicates a lack of maturity in work in the field of IoE.  

Only studies published in English in journals (already published and in press), 

conference proceedings, books, and technical reports were selected. After discarding the 

duplicates, a total of 394 candidate articles remained from the initial search (Table 3). 

Table 3 - Summary of literature review stages. 

Literature review stage number of papers 

Search of ISI Web of Science 235 

Search of Scopus 323 

Search of IEEE 118 

Search of ACM Digital Library 22 

Science@Direct 62 

Total 760 

Duplicates 366 

Total after discarding duplicates 394 

Approval for analytical reading 76 

Discarded 318 

 

Each candidate article was subjected to the following before its eventual 

selection: 1) evaluate the title and read the summary, and then delete the article if not 

related to IoE or IoT taxonomies; 2) retrieve the paper and read the introduction and 

conclusions; and 3) critically assess the quality of the contribution and discard it if of 
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low quality. The quality parameters considered were the study’s degree of adherence to 

IoE applications and the contribution's relevance.  

Finally, after applying the filters, 76 articles relevant to this literature review 

remained. The studies were diverse and promoted different approaches. From the list of 

papers selected, it was possible to extract works related to IoT and IoE taxonomies, thus 

revealing the proposed IoE taxonomy. A qualitative analysis of the results provided 

some guidelines and a comprehensive overview of the topic that supported the novel 

IoE taxonomy proposal.  

.  
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3.2 The proposed IoE Knowledge-based Taxonomy 

This section will present the proposed IoE Knowledge-based taxonomy 

published in January 2021 in MDPI Sensors Journal (https://www.mdpi.com/1424-

8220/21/2/568/htm). For the development of this taxonomy, an iterative approach was 

followed, as suggested by Nickerson et al. (NICKERSON; VARSHNEY; 

MUNTERMANN, 2013). The taxonomy identifies and categorizes sensors, attributes, 

and characteristics that are important for developing IoE applications for distinct 

domains. This proposed taxonomy is the first attempt to address knowledge 

classification and how knowledge processes lead to intelligent services in IoE 

applications.  

The development of an IoE taxonomy involves specifying the characteristics of 

the sensors and actuators in IoE applications that arise from a refinement process at 

various stages, to sufficiently fulfill the following qualitative attributes from 

(NICKERSON; VARSHNEY; MUNTERMANN, 2013), regarding the taxonomy: 

- Concise: It has a limited number of dimensions and limited 

characteristics and is restricted to what is relevant and understandable.  

- Robust: It contains enough dimensions and characteristics to represent 

the objects of interest. 

- Comprehensive: It includes the main dimensions and characteristics of 

the objects of interest and can classify all known objects within the 

considered domain. 

- Extendable: It allows for the inclusion of new dimensions and additional 

characteristics within a size when new demands appear. 

- Explanatory: It provides useful explanations and valuable descriptions of 

the nature of the objects under consideration. 

The taxonomy's purpose (meta-characteristic) drives the taxonomy's dimensions 

and characteristics (NICKERSON; VARSHNEY; MUNTERMANN, 2013). Each 

element or classification proposed in the taxonomy should be a logical consequence of 

its meta-characteristic. The proposed taxonomy aims "to classify sensors in IoE 

applications (human and non-human based) based on the knowledge they provide in 

intelligent tasks". 

https://www.mdpi.com/1424-8220/21/2/568/htm
https://www.mdpi.com/1424-8220/21/2/568/htm
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To elicit main characteristics in IoE applications and to understand the IoE 

domain, specific questions were applied by answering the 4 Ws (What, When, Who, 

and Where) and 1 H (How) identified using the 4W1H methodology (BAJAJ et al., 

2018). This development methodology addresses the challenge imposed due to the high 

heterogeneity of existing IoE devices. A similar approach was proposed in 

(BISDIKIAN; KAPLAN; SRIVASTAVA, 2013) to measure the quality and value of 

information when considering the benefits and value created by IoE applications. From 

these questions, it was able to define the following four complementary categories that 

drive the purpose of taxonomy dimensions and characteristics:  

• Knowledge: Refers to knowledge in action; that is, the artifact or 

information within a context (what) with understanding and meaning. 

• Type: Represents sensors and actuators characteristics — who they are, 

their physical characteristics, their usage, and their role in IoE context: 

sensors or actuators in cyber, physical, or cyber-physical presentation. 

• Observation: Refers to the physical context in time (when) and space 

(where); that is, the location and time related to monitoring the sensed 

data within ever-changing IoE contexts. 

• Capabilities: Relates to how the information is delivered, the 

infrastructure capabilities, and the resources required.  

Then in the top-down development process, the first step started with defining 

the most general categories (Knowledge, Type, Observation, and Capabilities), and after 

that determining dimensions and characteristics of the sensors in the IoE taxonomy. 

The taxonomy dimensions and characteristics were derived from a theoretical 

foundation from reviewing the related literature, as presented in Section 3.1. The 

proposed IoE taxonomy consists of four categories (see Figure 12), and groups 18 

dimensions, each consisting of mutually exclusive and collectively exhaustive 

characteristics. Section 3.2.1 describes the Knowledge category, which analyses the 

knowledge characteristics and the value created by IoE applications. Section 3.2.2 

details sensors characteristics related to their use in IoE applications (Types). Section 

3.2.3 presents the Observation category, which classifies how data are sensed and 

gathered in IoE observations. Finally, in Section 3.2.4, the sensors’ Capabilities are 



61 

classified into a few dimensions that address the technological aspects for designing IoE 

applications. 

 

Figure 12- IoE Knowledge-based taxonomy 

 

3.2.1 Knowledge 

The Knowledge category consists of five dimensions related to knowledge and 

information: Explicitness, Structure, Trust, Outcome, and Act. 

 

Figure 13- Knowledge Category, dimensions, and characteristics 
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3.2.1.1 Explicitness 

Knowledge discovery approaches used in developing IoT solutions (POZZA et 

al., 2015), which involve sharing information from smart objects, should be optimized 

by examining how humans process data sources of information to form knowledge 

(SHAHID; ANEJA, 2017). IoE environment architectures consist of IoT standard 

architecture (DE MATOS; AMARAL; HESSEL, 2017), but with the addition of the 

human element (which acts as a node) to contribute for intelligent services to the IoT 

network (NEZAMI; ZAMANIFAR, 2019). For Perera et al. (PERERA et al., 2014), this 

requires knowledge from different perspectives; for example, knowledge of sensors, 

application domains, users, and activities. And these uncovered knowledge patterns are 

analyzed and integrated for subsequent use in real-time, using multiple knowledge 

management approaches (BONTE et al., 2019; GE; BANGUI; BUHNOVA, 2018; UR 

REHMAN et al., 2017). This dimension considers the addition of the human element 

and the intelligence of connected things ranges from nonexistent to perfectly rational 

(ALKHABBAS; SPALAZZESE; DAVIDSSON, 2019). There are different kinds of 

knowledge, and it demands distinct representations. Regarding explicitness, this 

dimension classifies knowledge provided by sensors in IoE applications into three 

distinct types: 

3.2.1.1.1 Tacit 

Tacit knowledge is human sensors’ knowledge and is rooted in actions, 

experiences, and involvement in specific contexts. Tacit knowledge consists of people's 

knowledge based on intuitive evaluations of sensory inputs and perceptions, which is 

sometimes hard to express (EIN-DOR, 2011). Enhancement of human senses through 

sensor and data fusion and context awareness is the background that enables smarter 

wearable devices for interacting with human cognitive memories (PERERA; 

VASILAKOS, 2016).  

3.2.1.1.2 Explicit 

Explicit knowledge is knowledge codified and articulated (EIN-DOR, 2011). 

Explicit knowledge from hard sensing-based data acquisition results in discovering 

hidden patterns in the aggregated sensor data (CHAOCHAISIT et al., 2016; 

OBINIKPO; KANTARCI, 2017). The explicitness refers to awareness of a fact and the 
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application of knowledge (PERERA; VASILAKOS, 2016) from efficient scheduling of 

the resources (HUI; SHERRATT, 2017; MAHDAVINEJAD; REZVAN; 

BAREKATAIN, 2018; POZZA et al., 2015).  

3.2.1.1.3 Implicit  

Implicit knowledge may be implicit information intertwined in information 

systems and data sources (EIN-DOR, 2011). It is derivable from various assumptions 

(GRANT; PARISI, 2010) and inferences. Thus, many data analytic algorithms can be 

applied to data to extract a higher level of implicit knowledge (MAHDAVINEJAD; 

REZVAN; BAREKATAIN, 2018). Implicit knowledge emerges from machine learning 

and AI technologies, mainly in machine intelligence services (HÖLLER; TSIATSIS; 

MULLIGAN, 2017). It consists of outputs to make predictions oriented toward decision 

support and automation in diverse IoE application scenarios (RUTA et al., 2018).  

3.2.1.2 Structure  

Sensor data is a piece of explicit knowledge with meta-information (or 

metadata) representing the body of evidence (BISDIKIAN; KAPLAN; SRIVASTAVA, 

2013). Knowledge is created by transforming the multiple data formats collected 

(structured, semi-structured, and unstructured) (EIN-DOR, 2011) (DAMIANI, 2015) 

into high-level information (PAL; VANIJJA; VARADARAJAN, 2018; PERERA et al., 

2014; UR REHMAN et al., 2017; YEBDA et al., 2019), and useful knowledge patterns 

(PERERA et al., 2014). The combination of data streams with background knowledge 

enables meaningful analysis to extract higher levels of abstraction and provide quality 

actionable information to IoE services (BONTE et al., 2019; MAHDAVINEJAD; 

REZVAN; BAREKATAIN, 2018; QANBARI et al., 2015). Descriptions of these data 

formats are given below: 

3.2.1.2.1 Structured 

Structured data have a standard defined format and a relational structure often 

managed using a standard SQL-type language and stored in relational database 

management systems. Examples of structured data are string, numeral and date 

(MOHAMED et al., 2019).  
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3.2.1.2.2 Semi-structured 

Semi-structured data cannot be managed by traditional database management 

system techniques, but the understanding and analysis of such data require 

comprehensive and intelligent rules (BUGEJA; DAVIDSSON; JACOBSSON, 2018; 

HÖLLER; TSIATSIS; MULLIGAN, 2017; MOHAMED et al., 2019).  

3.2.1.2.3 Unstructured 

Unstructured data do not follow any specific pre-defined format and are often 

represented in a rather complex structure that contains hidden relationships. Examples 

of unstructured data are videos, text, time information, and geographic location 

(MARJANI et al., 2017). With the volume of data generated by sensors, devices 

continuously generate large amounts of structured, unstructured, and semi-structured 

data, which results in ”big data” (GAO; LEI; YU, 2015; YAQOOB et al., 2016).  

3.2.1.3 Trust 

Trust management is a critical challenge for IoE/IoT platforms (ASGHARI; 

RAHMANI; JAVADI, 2018; JING et al., 2014). In a hybrid human-based and device-

based environment,  data's trustworthiness can be estimated mostly by the sensor nodes' 

reputation (HARON et al., 2017).  

Trust refers to any direct or indirect interactions of users' information with 

sources or connected objects within IoT landscapes (JING et al., 2014) (BARKER et al., 

2014). 

Dynamic and heterogeneous network environments and the diversity of devices 

connected in the IoT generate a vast array of security threats (AHAD; TAHIR; YAU, 

2019; ASGHARI; RAHMANI; JAVADI, 2019; HASSAN et al., 2018; NOURA; 

ATIQUZZAMAN; GAEDKE, 2019). The network management level should handle 

issues such as security of the data to be transmitted (YEBDA et al., 2019), and a 

coherent IoT architecture would provide a layer of data security (BARKER et al., 2014; 

BOTTA et al., 2016), and users' awareness about the consequences of potential IoT 

threats may reduce the risk of exposure (ASHRAF; HABAEBI, 2015; BISDIKIAN; 

KAPLAN; SRIVASTAVA, 2013; NESHENKO et al., 2019; PHUTTHARAK; LOKE, 

2019). 
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Knowledge assets vary in veracity levels (EIN-DOR, 2011), between the 

extremes of truth and untruth (BAMGBOYE; LIU; CRUICKSHANK, 2018). Sensor 

networks’ applications need support regarding privacy, security accuracy, timeliness, 

relevance, completeness, and provenance (BISDIKIAN; KAPLAN; SRIVASTAVA, 

2013; CHEN; HELAL, 2011). The data source's reputation represents the source's 

truthfulness in providing quality content to handle changing external requirements and 

contexts (HÖLLER; TSIATSIS; MULLIGAN, 2017). The trust values are considered 

based on the reliability of devices and the level of security and trust involved in 

establishing and operating the connectivity (BOYES et al., 2018; SIOW; TIROPANIS; 

HALL, 2018a). Knowledge of sensors and sensor data in IoE application is either 

trustful or untrustful: 

3.2.1.3.1 Trustful 

Knowledge of sensors data sources is trustful when it regards establishing 

meaningful identity, using trusted communication paths, and protecting contextual 

information is essential to ensure the protection of users’ privacy in the IoE 

environment (CHELLAPPAN; SIVALINGAM, 2016). It is based on protecting both 

users' and service providers' privacy precedents (MARJANI et al., 2017). Alsamani and 

Lahza (ALSAMANI; LAHZA, 2018) addressed the security of IoT objects and privacy 

issues by combining identification, authentication, and authorization into one concept: 

access control, consisting of five concepts: access control, confidentiality, integrity, 

availability, and non-repudiation. Other studies have covered concerns such as 

anonymity, liability, and moral, ethical, legal, cultural, and regional parameters, among 

other things (ABBAS et al., 2018; BELLAVISTA; BERROCAL, 2019; FORTINO et 

al., 2014; SHOLLA; NAAZ; CHISHTI, 2017). 

3.2.1.3.2 Untrustful 

Untrustful and misleading data could lead to wrong decisions and severe 

consequences and lead to uncertainty at all knowledge transformation levels. 

Incompleteness in data occurs at the lower layer of the sensor readings or raw data 

collected. Vagueness frequently appears at a higher level of contextual information 

(HARON et al., 2017; SHAH et al., 2019). Another security risk associated with IoT 

data is the heterogeneity of the devices used (ZHANG et al., 2018), which further 

complicates access control decisions.  
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3.2.1.4 Outcome 

Considering the type of information exchanged between humans and the system 

(SAHINEL et al., 2019), the expected outcomes from IoE applications provide multiple 

tiers of cognition from heterogeneous contexts (OTEAFY; HASSANEIN, 2019). 

Human aspects contemplated by collaboration theory and technical aspects are 

challenges in computer network theory that require efficient solutions in distinct levels 

of collaboration between IoE resources (ERIS; DRURY; ERCOLINI, 2015). It is 

imperative to provide awareness of collective intelligence and where the intelligence is 

(BOYES et al., 2018), representing the outcomes expected in designing the IoE 

solutions, based on the application domain (ERIS; DRURY; ERCOLINI, 2015; PAL; 

VANIJJA; VARADARAJAN, 2018). 

The Outcome dimension refers to the degree to which knowledge sources 

(things and humans) contribute to knowledge value in IoE intelligent services. Relevant 

knowledge contributions either complement or substitute (or both in some cases) to 

provide benefits, and sometimes automate or transform traditional tasks (ALSAMANI; 

LAHZA, 2018) into IoE environment disruptions. 

3.2.1.4.1 Complementing 

Represents knowledge sharing between IoE sensors and actuators. An example 

is human mobile devices as sensors collect human observation and information about 

the environment and infrastructures (OBERLÄNDER et al., 2018; PHUTTHARAK; 

LOKE, 2019; YAQOOB et al., 2017). 

3.2.1.4.2 Substituting 

Represents a novel interpretation of reality to enhance the quality of life 

(livability), regarding knowledge acquisition as the "core element" and the realization of 

"intelligence" (MOUSTAKA; VAKALI; ANTHOPOULOS, 2018) and serendipitous 

outcomes. 

3.2.1.5 Action 

The Action dimension refers to knowledge creation and actionable intelligence 

to promote automated processes (OBERLÄNDER et al., 2018), (BISDIKIAN; 
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KAPLAN; SRIVASTAVA, 2013; RUSSELL; NORVIG; DAVIS, 2016; YAQOOB et 

al., 2017), or transforming and changing the state of their environment (ALKHABBAS; 

SPALAZZESE; DAVIDSSON, 2019).  

The goals of IoT systems range between general and specific, and include, for 

example, monitoring, reducing costs, and improving utilization and goals (ASGHARI; 

RAHMANI; JAVADI, 2019).  

For Russell et al. (RUSSELL; NORVIG; DAVIS, 2016), a rational agent acts to 

achieve the best outcome or the best-expected outcome. There is a close 

interrelationship between intelligence and automation (ALSAMANI; LAHZA, 2018), 

or creating and pursuing goals through transformation. Sensor information in IoE 

applications provides either automation or transformation of the IoE environment, 

which are defined as follows: 

3.2.1.5.1 Automation 

The automation of tasks and dependency on machines may reduce human 

abilities (MOHAMED et al., 2019).  When combined with AI and machine learning, 

IoE applications will benefit from automated decision making (ATAT et al., 2018) and 

automated tasks, with efficient usage of network resources, minimization of operational 

costs, coordination of computational resources, and efficient and effective data 

management mechanisms (HASSAN et al., 2018) all of these associated with the 

quality of experience (AHMED et al., 2016; PAL; VANIJJA; VARADARAJAN, 

2018).  

3.2.1.5.2 Transformation 

When an IoE solution provides transformation, smart sensors act independently, 

with minimal or no human intervention (OBERLÄNDER et al., 2018). With the support 

of IoT and AI, humans benefit from improvements in technological advancements 

(HÖLLER; TSIATSIS; MULLIGAN, 2017; OBINIKPO; KANTARCI, 2017) by 

collecting, modeling, and reasoning the context (PERERA et al., 2014). Raw 

observations can be transformed into higher-level abstractions (OTEAFY; 

HASSANEIN, 2019) that are meant for human or automated decision-making processes 

(ALSAMANI; LAHZA, 2018).  
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Considering how actions generate changes in the environment to achieve the 

desired goal(BELLAVISTA; BERROCAL, 2019; LANGLEY et al., 2020), automation 

and transformation processes may respond and interact with the environment in 

assisting the evolutions of future systems, defined in (LANGLEY et al., 2020), which 

can be:  

Reactive: Consists in the ability to immediately adjust to a changing 

environment.  

Adaptive: Consists in the longer-term ability to adjust their behavior to changes. 

Predictive: Consists in the ability to use computation and analytics techniques to 

find in-depth knowledge of the environment, and the most appropriate solutions or 

possible evolutions to each IoE system situation. 

3.2.2 Type 

The Type category contains five dimensions for the classification of sensors and 

actuators: Presentation, Nature, Use, Role, and Engagement. 

 

Figure 14- Type Category, its dimensions and characteristics 

3.2.2.1 Presentation 

Presentation relates to the physical aspects of sensors and actuators that interact 

with the physical world. The physical and virtual world integrate computation and 
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physical processes in one of the following ways: a) physical, b) cyber or virtual, and c) 

cyber-physical, logical or software sensors (AGARWAL et al., 2016; ARMANDO et 

al., 2018; CHEN; HELAL, 2011; SAHINEL et al., 2019; SALIM; HAQUE, 2015; 

SINCHE et al., 2019). 

Human sensors collect data for the sensory systems and are also content 

providers, who sense and share diverse and relevant raw spatial-temporal data (HUI; 

SHERRATT, 2017; NAHA et al., 2018; PHUTTHARAK; LOKE, 2019). Accordingly, 

sensors and actuators can be classified as follows: 

3.2.2.1.1 Physical sensors 

Physical sensors are tangible devices that sensor and generate sensor data. The 

data retrieved from physical sensors represent a low-level context (PERERA et al., 

2014). Examples of physical sensors are temperature sensors, pressure sensors, 

biosensors, light sensors (SRINIVAS; JABBAR; NEERAJA, 2018), and human sensors 

(HALLER et al., 2013).  

3.2.2.1.2 Cyber or virtual sensor 

A cyber sensor is an abstract information entity that serves sensor function but 

does not directly interact with the physical world. Cyber sensor examples are computer 

programs and systems, communication processes, and monitoring activities that have no 

physical body (e.g., sensing web service) (CHAOCHAISIT et al., 2016; GAO; LEI; 

YU, 2015; OBERLÄNDER et al., 2018). It retrieves data from many sources and 

publishes them as sensor data. They commonly use web services technology to send and 

receive data (PERERA et al., 2014).  

3.2.2.1.3 Cyber-physical sensors 

Logical sensors or software sensors: These connect the cyber and physical 

worlds as a combination of physical sensors and virtual sensors to produce meaningful 

information (BERGER; DENNER; RÖGLINGER, 2018; YAQOOB et al., 2017). They 

commonly use web services technology to send and receive data (PERERA et al., 

2014). They are autonomous, cyber-physical objects augmented with sensing/actuating, 

processing, storing, and networking capabilities (FORTINO et al., 2014). 
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3.2.2.2  Nature 

The nature dimension refers to sensor knowledge, intertwined with its 

architecture and functionality (BHATT; PATWA; SANDHU, 2017). A sensor is 

anything that observes (COMPTON et al., 2012). Humans are content receivers through 

the sensory systems, but they are also content providers — mainly through muscular 

movements and nervous systems (HUI; SHERRATT, 2017; MONTORI et al., 2018), 

and through tacit knowledge and experiences that can affect their actions in IoE 

applications and cognitive tasks. People can be modeled as sensors (RUSSELL; 

NORVIG; DAVIS, 2016) and anything that acts individually to perform a task is an 

individual IoE sensor device (NAHA et al., 2018). Knowing the nature of knowledge 

source devices is crucial for publication, discovery, sharing, reuse, and integration of 

data/information within the IoE/IoT environment (ROZSA et al., 2016). Human beings 

with dedicated roles, as well as machines, devices, and services (ATAT et al., 2018; 

BARKER et al., 2014; HALLER et al., 2013), implies system constraints when it 

interacts with the physical space (CHEN; HELAL, 2011).  

Several works have identified sensor types according to the type of sensing they 

are based on and the data type collected (ARMANDO et al., 2018; HARON et al., 2017; 

SINCHE et al., 2019).  

According to their built-in nature, sensors in IoE are classified (ARMANDO et 

al., 2018) as follows:  

3.2.2.2.1 Electronic-based sensors 

Define physical IoT devices, based on electronic or mechanical systems that 

measure physical variables and actuate physical phenomena. 

3.2.2.2.2 Software-based sensors 

Define virtual entities that produce information from the repository or analytical 

results, using some processing techniques. 

3.2.2.2.3 Human-based sensors 

Define humans or virtual entities, based on knowledge provided or reported by 

human judgment about any phenomena occurring in their physical, virtual, or social 

environment.  
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3.2.2.2.4 Non-human-based sensors 

Define biotic sensors based on knowledge data provided by biotic sensors about 

any phenomena occurring in their physical environment. In the constantly growing area 

of animal cognition, sensor networks monitor health and welfare in non-human animals 

in livestock herds and animal surveillance applications (RAVIGNANI et al., 2013).  

3.2.2.3 Use 

Refers to the physical characteristics of the physical IoE sensors, related to their 

usage in a particular application. The devices inherit the properties of their owners or of 

the entities or platform (AGARWAL et al., 2016) to which they are attached (BHATT; 

PATWA; SANDHU, 2017; BOYES et al., 2018; CHAOCHAISIT et al., 2016). A wide 

variety of objects — a group of infrastructures and devices (DORSEMAINE et al., 

2015) such as embedded devices, sensors, service, radio-frequency identification 

(RFID), and actuators — have integrated communication and, depending on its usage, 

provides tight interactions to create a pervasive environment (ATAT et al., 2018; 

BARKER et al., 2014; QANBARI et al., 2015). 

Smutný (SMUTNÝ, 2016) described things according to how they are used or 

applied to humans: 

3.2.2.3.1 Embeddable 

Embeddable devices are sensors that are in the user or under the user's skin, that 

are non-autonomous, or embedded in carry-on devices (OBINIKPO; KANTARCI, 

2017). Its autonomy level ranges from human-companion device tasks 

(PHUTTHARAK; LOKE, 2019) to opportunistic devices, which decide and act 

independently (ALKHABBAS; SPALAZZESE; DAVIDSSON, 2019; ERIS; DRURY; 

ERCOLINI, 2015). For example, a mobile phone is a user-friendly device and has many 

sensors embedded (SETHI; SARANGI, 2017), which is why it has turned into a global 

mobile sensing device (SALIM; HAQUE, 2015).  

3.2.2.3.2 Wearable 

Wearables sensors are devices that rest on a person's body or can be used, worn, 

or attached to their owners, and enable accurate detection of the wearers' motions 
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(BUGEJA; DAVIDSSON; JACOBSSON, 2018; HUI; SHERRATT, 2017; SUBBU; 

VASILAKOS, 2017; YEBDA et al., 2019). 

3.2.2.3.3 Surroundables 

Surroundables sensors are autonomous devices, near or around the user, but 

which have no physical contact with the user. Non-contact sensing can detect 

information without direct contact with a subject, and without devices physically 

touching the body. Non-contact techniques have been considered highly valuable in 

dealing with highly infectious diseases such as COVID-19 (TAYLOR et al., 2020). 

3.2.2.4 Role  

Smart devices have sensing and actuating capability according to defined rules 

under various scenarios (NAHA et al., 2018; ROZSA et al., 2016). They perform 

sensing and actuating functions (ALKHABBAS; SPALAZZESE; DAVIDSSON, 2019; 

MOUNTROUIDOU; BILLINGS; MEJIA-RICART, 2019; OBERLÄNDER et al., 

2018) in interactions with the physical environment (SETHI; SARANGI, 2017). An IoE 

device or enabler can be a sensor, an actuator, or a sensor and actuator (ATAT et al., 

2018; DORSEMAINE et al., 2015; MOUSTAKA; VAKALI; ANTHOPOULOS, 2018). 

3.2.2.4.1 Sensor 

A sensor is a monitor device that observes and senses and provides the 

information required to immediately control actuators; whereas actuators act on the 

physical entity or control other things (ERIS; DRURY; ERCOLINI, 2015; HALLER et 

al., 2013; SIOW; TIROPANIS; HALL, 2018a). Sensing is a read operation over a 

context entity. The data collected by a sensor is stored and processed intelligently to 

derive useful inferences and to support the decision-making process (CHEN; HELAL, 

2011).  

3.2.2.4.2 Actuator 

Actuators act and affect a particular domain of the physical space or a 

combination of both. Actuation is a write operation over a context entity, in which the 

conceptual entity represents the domain of a sensor or an actuator (DORSEMAINE et 

al., 2015). Actuators perform the decided actions and effect a change in the environment 

(BELLAVISTA; BERROCAL, 2019; PERERA et al., 2014; SETHI; SARANGI, 2017). 



73 

3.2.2.4.3 Sensor and actuator 

This device is a hybrid of the two previous categories, and it can gather data and 

act within its environment. 

Processing and analytics (fixed process or algorithm, machine learning, or AI) 

don't fit within this classification (BOYES et al., 2018).  

3.2.2.5 Engagement 

Engagement refers to sensing tasks. In data acquisition, it can be both 

opportunistic and participatory, and it provides sensory information that collectively 

forms knowledge in distinct engagement levels.  

Cooperative smart things can interact with other constituents of the IoE to work 

toward a unified objective (LANGLEY et al., 2020)  and with humans in real-time 

ubiquitous computing (HUI; SHERRATT, 2017; OTEAFY; HASSANEIN, 2019). The 

engagement of a sensor node in an IoE application is one of the following: 

3.2.2.5.1 Participatory 

The sensor or actuator device is actively involved and actively reports 

observations (MONTORI et al., 2018). It can retrieve information about the 

environment, weather, urban mobility, and congestion, as well as any other sensory 

information that could be on social groups (social sensing) or with everyone (public 

sensing) or at the community level (ATAT et al., 2018; HARON et al., 2017; SALIM; 

HAQUE, 2015). With mobile crowdsourcing, the primary information shared 

voluntarily is user knowledge and opinion, along with location as the only sensor 

information (PHUTTHARAK; LOKE, 2019). 

3.2.2.5.2 Opportunistic 

The sensor or actuator device has minimal or no involvement — it senses and 

monitors tasks running in the background. Embedding sensors trigger the data 

automatically (either periodically or based on events). 
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3.2.3 Observation 

The Observation category contains five subcategories related to sensed context 

and monitoring activities: Location, Reach, Mobility, Time, and Mode. 

 

Figure 15- Observation Category, its dimensions and characteristics 

3.2.3.1 Location 

The location dimension refers to the spatial context (physical context) of IoE 

sensors within a local or global network (ALKHABBAS; SPALAZZESE; 

DAVIDSSON, 2019; BAJAJ et al., 2018; BOYES et al., 2018; MOUNTROUIDOU; 

BILLINGS; MEJIA-RICART, 2019; SHOLLA; NAAZ; CHISHTI, 2017). It represents 

the geophysical position of a sensor or actuator in absolute terms, specifying the 

coordinates (latitude and longitude) or relative terms through location tags (FORTINO 

et al., 2014) or an area covered by a particular object (AGARWAL et al., 2016). 

Sensors that are randomly deployed get the required information about the target 

environment (SAAD; ELHOSSEINI; HAIKAL, 2018), obtained manually or 

automatically (MONTORI et al., 2018). The location-aware aggregation of knowledge 

patterns facilitates reduced data transfer in remote environments and minimizes 

bandwidth use (UR REHMAN et al., 2017). Location systems — both outdoor and 

indoor — can be categorized as context-aware systems (SUBBU; VASILAKOS, 2017). 

The precise location of an object is critical since location plays a significant role 

in context-aware computing (CHAOCHAISIT et al., 2016; PERERA et al., 2014; SHIT 
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et al., 2018). Some physical measurement-based localization schemes are classified as 

coarse-grained and fine-grained (SHIT et al., 2018). 

3.2.3.2 Reach 

When related to KM, reach classification distinguishes between individual and 

collective knowledge as well as novel classifications, such as collective knowledge 

classified into individual or group, internal or external, full or partial domains (Prat, 

2006). In IoE, it refers to an environment of sensing interest (QANBARI et al., 2015). 

Sensors are getting more powerful, cheaper, and smaller in size, due to sensor 

technology advances, stimulated large-scale deployments (PERERA et al., 2014), and 

dense geographical distribution (HASSAN et al., 2018). 

The domain of interest represents the applicative domain in which the device is 

operative (AGARWAL et al., 2016; SAAD; ELHOSSEINI; HAIKAL, 2018), and 

ensures that IoT services are accessible or reached only by authorized access (ABDUL-

GHANI; KONSTANTAS; MAHYOUB, 2018; BOYES et al., 2018). 

For instance, a conglomerate of sensor network data stored on a cloud storage 

infrastructure can be referred to as big data sensing and based on the reach of its sensing 

requests and requirements (GAO; LEI; YU, 2015), it can be: a) private big data sensing, 

b) public big data sensing, c) community big data sensing, or d) hybrid big data sensing.  

3.2.3.3 Mobility 

Mobility or monitoring continuity (PERERA et al., 2014), is one of the main 

characteristics that enables identification of the state of sensors and actuators and their 

capability of movement (BELLAVISTA; BERROCAL, 2019; BHATT; PATWA; 

SANDHU, 2017; BOYES et al., 2018; DORSEMAINE et al., 2015; HASSAN et al., 

2018; MAHDAVINEJAD; REZVAN; BAREKATAIN, 2018; MOUNTROUIDOU; 

BILLINGS; MEJIA-RICART, 2019; PERERA et al., 2014; SETHI; SARANGI, 2017; 

SHIT et al., 2018; SINCHE et al., 2019), with significant implications on device 

operation, connectivity, and location management (SETHI; SARANGI, 2017; SHIT et 

al., 2018; SINCHE et al., 2019). Devices are classified into two categories: 

static/immobile/fixed and mobile (BOYES et al., 2018; MOUNTROUIDOU; 
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BILLINGS; MEJIA-RICART, 2019; MOUSTAKA; VAKALI; ANTHOPOULOS, 

2018; POZZA et al., 2015).  

3.2.3.3.1 Fixed/static/immobile 

Fixed devices are those that remain static to a specific location or cannot move. 

Their observations are restricted to a specific location, in a static or very constrained (in 

terms of mobility) environment that is not designed to move (relative to their point of 

installation) without being uninstalled.  

3.2.3.3.2 Mobile 

Mobile objects are devices that move (DORSEMAINE et al., 2015), and their 

location may be calculated in absolute coordinates or relative to reference nodes in the 

network (SAAD; ELHOSSEINI; HAIKAL, 2018), requiring a wireless communications 

mechanism to convey data and permit configuration and control (BOYES et al., 2018). 

Their movement and mobility capability are controlled independently (or 

autonomously) or dependently through device users (BHATT; PATWA; SANDHU, 

2017).  

In crowdsensing applications, mobility of the things in the system is dependent 

on the collaboration of the items physically coupled with the humans in the system 

(ERIS; DRURY; ERCOLINI, 2015). In this application, in which geographically 

dispersed users actively (participatory) or passively (opportunistic) collect data with 

their smartphones (OBERLÄNDER et al., 2018; SUBBU; VASILAKOS, 2017). 

Classifications between mobility-agnostic and mobility-aware (POZZA et al., 2015) 

highlight an approach that ignores knowledge about mobility and the ones that consider 

and exploit it for optimization (SRINIVASAN et al., 2019).  

Challenges related to mobility include frequent disconnections and handoffs, 

which affect perfect connectivity (NAYYER; RAZA; HUSSAIN, 2019). So mobility 

techniques in the cloud, fog, and edge architectures (HASSAN et al., 2018) support 

mobility (BELLAVISTA; BERROCAL, 2019). 

3.2.3.4 Time 

Time represents the instant of observation (i.e., timestamp) (AGARWAL et al., 

2016). Information about time and location are critical features of some applications 
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(called spatial-temporal-aware applications) that require tasks to make observations at a 

specific location during a defined period (MONTORI et al., 2018). In (ALKHABBAS; 

SPALAZZESE; DAVIDSSON, 2019), latency characterizes aspects related to the time 

an IoE system needs to respond to a stimulus or to complete a task. It is the response 

time (ASGHARI; RAHMANI; JAVADI, 2018, 2019; CAI et al., 2018). 

The time dimension depends on how sensors are requested and respond to the 

system in specific periods or on an ad-hoc basis (as software system makes a request), 

which is characterized as the following two distinct methods that were proposed in (CAI 

et al., 2018): 

Pull method: The software component responsible for acquiring sensor data 

from sensors makes a request periodically (after certain intervals) or instantly acquires 

data on an ad-hoc basis  (CAI et al., 2018).  

Push method: The physical or virtual sensor pushes data to the software 

component responsible for acquiring sensor data periodically or instantly (CAI et al., 

2018; PERERA et al., 2014). A sensor observation could be the outcome of a local 

sensor data fusion (BISDIKIAN; KAPLAN; SRIVASTAVA, 2013). 

Real-time applications monitor the state of the environment and react to changes 

accordingly and promptly and its responsiveness (low-latency and real-time 

interactions) is a challenge for IoE applications and their deployment in real-world 

scenarios. The coherency between the value of the data in the system and its 

corresponding environment state is temporal data consistency (CAI et al., 2018). In 

dynamic and real-time scenarios, inferred contexts evolve with time (BAJAJ et al., 

2018; UR REHMAN et al., 2017), and the exchanged data from and to the cloud might 

not be accurate, because of the high latency during interactions (BELLAVISTA; 

BERROCAL, 2019). Hard real-time data cannot tolerate any delay, whereas soft real-

time data can tolerate several bounded delays. Delay-tolerant applications can be 

classified as non-real-time (CAI et al., 2018; HASSAN et al., 2018) (HARON et al., 

2017; PHUTTHARAK; LOKE, 2019). 

Timeliness (CAI et al., 2018; SHAH et al., 2019) (i.e., data processing rate by a 

given deadline), which is real-time/static, near real-time, or batch processing (BOYES 

et al., 2018).  
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Real-time: refers to immediate computation processing for a time-sensitive 

application, with results in seconds, as follows:  

Near real-time: It refers to situations when the computation process is not as 

immediate as real-time, but time is still relevant. 

Batch-processing: It refers to situations when data are first collected, and 

processed only when a specified amount of data is available or at a predetermined 

interval (HARON et al., 2017). 

3.2.3.5 Mode 

The mode dimension refers to the smart sensor's activities (active or passive), 

depending on their usage and functionalities (MASOUD et al., 2019; PHUTTHARAK; 

LOKE, 2019). The combination of sensors serving different purposes and data 

generated in IoE applications implies the need to classify data sources and information 

in the IoT context (ROZSA et al., 2016). During real-time data harvesting, it can be 

challenging to determine the possible relationships among heterogeneous knowledge 

sources (SHAH et al., 2019).  

Eris et al. (ERIS; DRURY; ERCOLINI, 2015) defined how much interaction is 

required within the network in three levels of collaboration interdependence (ERIS; 

DRURY; ERCOLINI, 2015):  

Pooled interdependence: The lowest level of collaboration, in which each 

collaborator makes a discrete contribution to the collaboration environment. Each 

collaborator benefits from the contributions of others. The collaborators do not have to 

synchronize their contributions or negotiate the nature of each other's contributions. 

Sequential interdependence: The middle level of collaboration, in which the 

output of one collaborator becomes the input to another collaborator, which demands a 

temporal ordering of the collaboration efforts. 

Reciprocal interdependence: The highest interdependence level of collaboration, 

in which one collaborator's outputs are the next collaborator's inputs, and collaborators 

must also deal with contingencies between their contributions to the collaboration 

environment.  
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The Mode dimension refers to the way of linking the physical and digital world, 

to acquire context (MON et al., 2018), and it can be either sensed, derived, or manually 

provided: 

Sensed: Includes the sensed data gathered through sensors. 

Derived: Includes the sensed data stored in databases or the information 

generated by performing computational operations on sensor data. Data aggregation 

serves as a pillar of the application's workflow and directly impacts the software 

system's quality. (CAI et al., 2018). 

Manually provided: Human sensors provide the context information (PERERA 

et al., 2014).  

3.2.4 Capabilities 

The Capabilities category contains three subcategories (Communication, 

Processing, and Storage), and refers to the processing power and storage capacity of the 

underlying technologies and communication protocols.  

 

Figure 16- Capability, its dimensions and characteristics 

 

3.2.4.1 Communication 

Communication capability refers to the sensors' ability to communicate and 

change information locally. This ability may vary at different levels of interoperability 
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between IoE sensors and systems, and be classified as no connection (no 

interoperability between enablers), technical (basic connectivity and network 

connectivity), syntactical (data exchange interoperability), semantic (understanding in 

the meaning of the data), pragmatic/dynamic (applicability of the information), or 

conceptual (shared view of the world) (NOURA; ATIQUZZAMAN; GAEDKE, 2019). 

Additionally, based on communication capabilities, IoT devices are classified into two 

categories: gateway devices and constrained devices (BHATT; PATWA; SANDHU, 

2017; FORTINO et al., 2014). And according to their abilities to interact with other 

objects, IoT objects can be classified into four levels (Level 0–Level 3). Level 0 only 

receives and Level 1 objects only send information. Level 2 objects can perform both 

operations with one object, while Level 3 extends the interaction to any other object 

(BUGEJA; DAVIDSSON; JACOBSSON, 2018). 

Distinct networking protocols and technologies provide networking 

interoperability in IoT (NOURA; ATIQUZZAMAN; GAEDKE, 2019; SETHI; 

SARANGI, 2017; SIOW; TIROPANIS; HALL, 2018a). IoT networks have different 

characteristics in terms of size, data transfer, coverage, latency requirements, capacity, 

and supported reachability (BARKER et al., 2014; BERGER; DENNER; 

RÖGLINGER, 2018; GAO; LEI; YU, 2015; SHAH et al., 2019; SUBBU; 

VASILAKOS, 2017). Some networking and communication technologies are local area 

networks, wireless local area networks, wireless personal area networks, wide area 

networks, metropolitan area networks, wireless regional area networks, body area 

networks, mobile communication networks, wireless metropolitan area networks, 

satellite networks (e.g., GPS) (AHMED et al., 2016; ALKHABBAS; SPALAZZESE; 

DAVIDSSON, 2019; MEHMOOD et al., 2017), Neul, IPv6 over Low-power Personal 

Area Networks (6LowPAN), low-range wireless area networks, cellular Sigfox, 

narrowband-IoT, and Thread or mesh technologies such as Zigbee and SDNs  (BOYES 

et al., 2018; SINCHE et al., 2019; YAQOOB et al., 2017). 

The communication protocols that enable IoT to interconnect and communicate, 

and are classified as: (1) Device to Device, which is applied to communication between 

mobile phones nearby, and represents the next generation of cellular networks; (2) 

Device to Server, in which the data is sent to the servers, close or far away from devices 

(applies to cloud processing); and (3) Server to Server, in which servers transmit data 
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between each other — mainly used for cellular networks (MAHDAVINEJAD; 

REZVAN; BAREKATAIN, 2018). 

3.2.4.2 Processing 

The sensors and devices vary in their processing capabilities (FAN et al., 2015). 

The study of (MON et al., 2018) classifies sensors as high-end or low-end devices, 

depending on resources and computational capabilities. Low-end devices are resource-

constrained in terms of energy, processing power, and communication capabilities. The 

processing capability is the sensors' ability to process aggregated data locally 

(ALSAMANI; LAHZA, 2018).  

Data processing techniques are either historical or proactive. Historical data 

processing is related to knowledge discovery; whereas proactive data processing 

provides predictive and actionable insights (ALKHABBAS; SPALAZZESE; 

DAVIDSSON, 2019).  

Analytics technology refers to the systematic computational analysis of 

transforming a variety of data from different sources into information (MOHAMED et 

al., 2019), and applying data fusion and mining techniques (UR REHMAN et al., 2017) 

to make intelligent decisions at the following distribution levels: (1) the device level, 

where devices act as data producers and as participants of the storage and computing 

process; (2) the network level, which involves remote connections to fog computing 

nodes, hubs, base stations, gateways, routers, and servers; and (3) cloud level, within a 

group of interconnected servers (AHMED et al., 2016; ALKHABBAS; SPALAZZESE; 

DAVIDSSON, 2019; GLUHAK et al., 2011; SIOW; TIROPANIS; HALL, 2018a; 

YAQOOB et al., 2016).  

Cloud, edge and fog computing are integral parts of the centralized and 

decentralized IoE ecosystem (MOUNTROUIDOU; BILLINGS; MEJIA-RICART, 

2019; SMUTNÝ, 2016; YAQOOB et al., 2017). Since devices that have low compute 

and memory capacity need to delegate these functions, edge computing can efficiently 

handle the processing problems associated with edge big data. In the edge computing 

paradigm, the data is close to or at the edge of the network (ERIS; DRURY; 

ERCOLINI, 2015; ZHANG et al., 2018). 
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Related expansions of cloud computing and edge computing paradigms are 

mobile cloud computing (MCC), cloudlets, mobile edge computing (MEC), and fog 

computing (FC) (HASSAN et al., 2018; NAYYER; RAZA; HUSSAIN, 2019; 

NEZAMI; ZAMANIFAR, 2019). Cloudlets, MEC, and FC are edge computing 

technologies and rely on virtualization; while MCC processes the data of rich mobile 

applications, outside the mobile devices at a remote cloud data center. 

3.2.4.3 Storage  

The storage dimension refers IoE system's storage function, based on the 

paradigm where its storage function resides: cloud, fog, or edge (YAQOOB et al., 

2016). A storage platform (public, virtual, or private) offers the flexibility and 

scalability that an IoE application needs, from development to deployment (SMUTNÝ, 

2016). Storage refers to storing data internally, and it varies intensively from one object 

to another (ALSAMANI; LAHZA, 2018). Storage interactions between IoE enablers 

may differ significantly depending on the object's capabilities. Some objects may have 

very few capabilities and store minimal information (USCHOLD, 1996). Most mobile 

devices at the edge of the network are resource-constrained, with low storage capability 

(ZHANG et al., 2018). Although almost all of the IoT devices can store embedded 

codes to function internally, they differ in storing aggregated and processed data (PAL; 

VANIJJA; VARADARAJAN, 2018). An object’s storage should also be based on the 

sensitivity of the information stored (ALSAMANI; LAHZA, 2018).  

Depending on the storage and compute capabilities, the storage capability of an 

IoE node or application is classified as follows (SIOW; TIROPANIS; HALL, 2018a):  

- Device-level: devices act not just as data producers but as participants in 

the storage and compute process. 

- Network-level: the storage function uses remote connections to fog 

computing nodes, hubs, base stations, gateways, routers, and servers.  

- Cluster level: storage function is provided within a group of 

interconnected servers (SIOW; TIROPANIS; HALL, 2018a). 
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3.3 Taxonomy evaluation 

This section presents the IoE Knowledge-based taxonomy conceptual validation. 

It aimed to show that the proposed taxonomy involves the qualitative attributes of 

robustness and comprehensiveness. It contains enough dimensions and characteristics to 

differentiate the objects of interest into distinct domains, and to classify all known 

objects within the field under consideration (NICKERSON; VARSHNEY; 

MUNTERMANN, 2013)` 

There is a brief comparison of the scope of the proposed IoE taxonomy and 76 

IoE and IoT taxonomy previous works, selected in the literature review (presented in 

Section 3.1). Diverse approaches were examined to enhance understanding of the 

contextual aspects of IoE/IoT addressed and their relationships in knowledge 

management in IoE/IoT applications.  

The comparison presented in Table 4 shows the adherence of the analyzed 

studies to our proposed IoE taxonomy, across the proposed categories and dimensions. 

Concerning dimensions of the IoE taxonomy, Capabilities is the category most 

frequently addressed and studied, followed by Observation and Type of sensor, 

respectively. Previous works were compared and the summaries show that most 

taxonomies support at least two categories, but Knowledge support is limited. 

The proposed IoE Knowledge-based taxonomy covered all of the 18 categories 

(100%). On average, it should be noted that the remaining 76 studies, covered 25,5% of 

the categories. The framework proposed by Boyes and Hallaq (BOYES et al., 2018) 

obtained the second-highest coverage (72%), with 13 categories; however, it did not 

include aspects related to the type of knowledge in IoE applications. On average, the 

Knowledge category obtained 24,7% coverage; while the Type of sensor, Observation 

and Capabilities categories appeared in 20.5, 20, and 44.3% of the studies, respectively.  

The results demonstrated a few interest (only 15.8%) in identifying knowledge 

sources in terms of explicitness (tacit, explicit, or implicit). And only 13.1% of the 

studies addressed how the outcome of the IoE application was achieved and benefited 

by complementation (accompaniment) or substitution (replacement) of knowledge in 

IoE processes (between things, data, and humans). Thus, further research should 

consider this gap and attempt to examine the impact of knowledge identification on the 

design of IoE applications, and how knowledge should be synthesized and combined to 



84 

drive knowledge creation and intelligent services that create value. In this sense, Section 

3.4 will present the IoE Integrated KM Model. In conclusion, the findings of this 

present study provided an insight into the current trend of IoE research. 

Table 4- Comparison of the scope of IoE Knowledge-based paradigm with previous 

works 
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Ref. Year                   

This study 2020                                    

(ALKHABBAS; 

SPALAZZESE; 

DAVIDSSON, 2019) 2019                   

(MOUNTROUIDOU; 

BILLINGS; MEJIA-

RICART, 2019) 2019                   

(NOURA; 

ATIQUZZAMAN; 

GAEDKE, 2019) 2019                   

(SINCHE et al., 2019) 2019                 

(OTEAFY; 

HASSANEIN, 2019) 2019                   

(AHAD; TAHIR; 

YAU, 2019) 2019                   

(BELLAVISTA; 

BERROCAL, 2019) 2019                 

(YEBDA et al., 2019) 2019                   

(PHUTTHARAK; 

LOKE, 2019) 2019                           

(SHAH et al., 2019) 2019                   

(SAHINEL et al., 2019) 2019                   

(BONTE et al., 2019) 2019                     

(MOHAMED et al., 

2019) 2019                 

(CAI et al., 2018) 2019                      

(ASGHARI; 

RAHMANI; JAVADI, 

2019) 2019                   

(NESHENKO et al., 

2019) 2019                     
 

 

(NAYYER; RAZA; 

HUSSAIN, 2019) 2019                      
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Ref. Year                   

(ARMANDO et al., 

2018) 2018                     

(HARON et al., 2017) 2018                   

(ALSAMANI; 

LAHZA, 2018) 2018                      
 

 

(ZHANG et al., 2018) 2018                 

(NAHA et al., 2018) 2018                 

(HASSAN et al., 2018) 2018                 

(ASGHARI; 

RAHMANI; JAVADI, 

2018) 2018                   

(BUGEJA; 

DAVIDSSON; 

JACOBSSON, 2018) 2018                   

(OBERLÄNDER et al., 

2018) 2018                       

(GE; BANGUI; 

BUHNOVA, 2018) 2018                   

(SHIT et al., 2018) 2018                   

(SAAD; ELHOSSEINI; 

HAIKAL, 2018) 2018                   

(BERGER; DENNER; 

RÖGLINGER, 2018) 2018                   

(MAHDAVINEJAD; 

REZVAN; 

BAREKATAIN, 2018) 2018                   

(RUTA et al., 2018) 2018                   

(PAL; VANIJJA; 

VARADARAJAN, 

2018) 2018                 

(ATAT et al., 2018) 2018                           
 

 

(BOYES et al., 2018) 2018                 

(SIOW; TIROPANIS; 

HALL, 2018a) 2018                      
 

 

(ABBAS et al., 2018) 2018                   

(MOUSTAKA; 

VAKALI; 

ANTHOPOULOS, 

2018) 2018                   
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Ref. Year                   

(MONTORI et al., 

2018) 2018                   

(ABDUL-GHANI; 

KONSTANTAS; 

MAHYOUB, 2018) 2018                     
 

 

(MON et al., 2018) 2018                   

(YAQOOB et al., 2017) 2017                   

(SHAHID; ANEJA, 

2017) 2017                 

(OBINIKPO; 

KANTARCI, 2017) 2017                        

(BHATT; PATWA; 

SANDHU, 2017) 2017                       

(SHOLLA; NAAZ; 

CHISHTI, 2017) 2017                   

(HUI; SHERRATT, 

2017) 2017                   

(SETHI; SARANGI, 

2017) 2017                   

(MARJANI et al., 

2017) 2017                      
 

 

(SUBBU; 

VASILAKOS, 2017) 2017                 

(AGARWAL et al., 

2016) 2017                   

(UR REHMAN et al., 

2017) 2017                 

(HÖLLER; TSIATSIS; 

MULLIGAN, 2017) 2017                   

(AKOKA; COMYN-

WATTIAU; LAOUFI, 

2017) 2017                   

(SMUTNÝ, 2016) 2016                 

(DORSEMAINE et al., 

2015) 2016                   

(CHAOCHAISIT et 

al., 2016) 2016                   

(ROZSA et al., 2016) 2016                      

(YAQOOB et al., 2016) 2016                    
 

 

(BOTTA et al., 2016) 2016                 
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Ref. Year                   

(CHELLAPPAN; 

SIVALINGAM, 2016) 2016                 

(AHMED et al., 2016) 2016                   

(ERIS; DRURY; 

ERCOLINI, 2015) 2015                         

(ASHRAF; HABAEBI, 

2015) 2015                      

(SALIM; HAQUE, 

2015) 2015                   

(QANBARI et al., 

2015) 2015                   

(GAO; LEI; YU, 2015) 2015                        
 

 

(POZZA et al., 2015) 2015                   

(FORTINO et al., 

2014) 2014                   

(PERERA et al., 2014) 2014                           

(JING et al., 2014) 2014                   

(BARKER et al., 2014) 2014                   

(HALLER et al., 2013) 2013                      

(BISDIKIAN; 

KAPLAN; 

SRIVASTAVA, 2013) 2013                   

(CHEN; HELAL, 

2011) 2011                       

(GLUHAK et al., 2011) 2011                    
 

 

 

Additionally, the IoE taxonomy was validated using a sample of analyses of 50 

applications, the full results and details are available in a dataset within a technical 

report (https://www.cos.ufrj.br/uploadfile/publicacao/2963.pdf ). 
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3.4 An IoE Integrated Knowledge Management Model 

The development of a specific knowledge management model to support 

knowledge creation in IoE applications can provide an adequate set of concepts to 

support knowledge management by design and implementation of knowledge 

management strategy considering M2P, M2M and P2P collaboration. 

In Section 2.3, the Knowledge Management concepts and models were analyzed 

from a comparative perspective, keeping in mind the definition of a generic knowledge 

management model with high applicability in the context of IoE.  

Gao et al. (GAO; CHAI; LIU, 2017) reviewed the definitions about KM and 

conclude that despite the various versions of the definition and descriptions about KM, 

the essence of KM is to support learning efficacy and integration of different 

information resources to improve competitiveness advantages.  

IoE is about intelligent services to support a dynamic ubiquitous environment. 

Section 2.4 highlighted an e-governance knowledge management approach for 

intelligent service in IoE applications (Figure 9). The focus is leveraging awareness of 

intelligence sources (on perception layer) and supporting self-organization and 

collective action (on governance layer) for knowledge aggregation (on KM layer). 

The Hierarchical Model for Knowledge Management proposed by Prat (PRAT, 

2011) provides an effective conceptual representation of knowledge management from 

a strategic point of view and proved to be adequate for distinguishing knowledge 

management processes between Strategic Processes and Operational Processes, making 

it possible to abstract the concepts of value and trust (more strategic point of view 

regarding knowledge identification and evaluation), from the way knowledge is 

managed,  shared and stored. The evaluation process guides the evaluation of 

knowledge, knowledge systems and projects, and Knowledge Management (the KM 

strategy). However, this Model lacks an evolutionary approach that leads to intelligent 

services improvement in the IoE context. Figure 17 presents the Hierarchical Model for 

Knowledge Management proposed by Prat (PRAT, 2011). 
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Figure 17- Hierarchical Model of Knowledge Management, adapted from Prat(2011) 

 

This thesis proposes integrating service science and knowledge management 

research to support the e-governance of IoE applications for intelligence service 

evolution towards goal-directed actions. For this, an IoE Integrated Knowledge 

Management Model leverages awareness of intelligence sources in IoE applications, 

considering IoE enablers, observation capabilities, supporting e-governance and 

knowledge creation. 

The IoE Integrated Knowledge Management Model, as the contribution of this 

work, integrates the knowledge creation model (SECI process) (NONAKA; KONNO, 

1998) and service evolution cycles (SERI cycle) (KIM, 2019), to support the design of 

intelligent services centered around the process of creating knowledge and value in the 

IoE context.  

The integration of knowledge creation and service operation model (NONAKA; 

KONNO, 1998)(KIM, 2019) promotes service enhancement and self-improvement of 

IoE enablers in faster evolution cycles centered around knowledge processes for value 

co-creation.  

This thesis approach will consider Strategic and Operational KM processes 

proposed by (PRAT, 2011) applied to service evolution cycles (SERI cycle) (KIM, 

2019). And for evaluation purposes, the artifacts presented in this thesis will support: 
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• The Identification and evaluation of knowledge, knowledge projects, and 

systems: the proposed IoE Knowledge-based Taxonomy (Section 3.2) 

and smart sensors intelligence requirements (Section 3.5); 

• The Evaluation of knowledge management strategy: The proposed 

Integrated IoE Knowledge Management Model (Section 3.4). 

Our approach consists in evaluating the maturity stages of KM in the IoE 

context, into a novel model, regarding knowledge management processes, self-

governance, and self-learning of smart sensors, using interoperability communication 

capabilities. 

The obtained maturity stages progression consists, therefore, of six sequential 

stages (communication capability of M2M, P2M, and P2P interactions) of sensors' 

ability to communicate and change information. This ability may vary at different levels 

of interoperability between IoE sensors and systems, and be classified as (0) no 

connection (no interoperability between enablers), (1) technical (basic connectivity and 

network connectivity), (2) syntactical (data exchange interoperability), (3) semantic 

(understanding in the meaning of the data), (4) pragmatic/dynamic (applicability of the 

information), or (5) conceptual (shared view of the world) (NOURA; 

ATIQUZZAMAN; GAEDKE, 2019). As shown in Table 5. 

 

Table 5- Interoperability levels 

Interoperability Level Interoperability 

(0) no connection No connection between smart objects found in the physical world 

(1) technical Different networking protocols and technologies are used to provide 

networking interoperability in IoT. 
(2) syntactical Interoperation of the format and the data structure used in any exchanged 

information or service between heterogeneous IoT system entities. 
(3) semantic Different smart sensors, services, and applications exchange information, data, 

and knowledge in a meaningful way.   

(4) dynamic 
Extensive knowledge of a cross-platform IoT application platform, specific 

APIs, and information models of each different platform to adapt their 

applications from one platform to another.  

(5) conceptual 
Seamlessly cooperate and communicate with each other to realize the full 

potential of the IoT ecosystem. 
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The IoE Integrated Knowledge Management Model is presented in Figure 18. 

 

Figure 18- An IoE Integrated Knowledge Management Model 

 

Specifically, in IoE, knowledge creation is based on the conversion of tacit, 

explicit, and implicit knowledge of IoE enablers. When people bring knowledge and 

experience in some situations, they create, use and share tacit knowledge (SHARIQ; 

VENDELO, 2011). Explicit knowledge can be expressed and codified; implicit 

knowledge is defined as knowledge that is not explicit but derived from implicit 

information stored in a system ('wired in') (DAVIES, 2015). For Kamthan 

(KAMTHAN; FANCOTT, 2011), implicit and tacit dimensions represent types of 

internal knowledge that can be, but not has been, articulated (KAMTHAN; FANCOTT, 

2011). 

The knowledge-creation process is expressed by the SECI model (NONAKA; 

KONNO, 1998), consisting of four knowledge conversion processes: Socialization (S), 

Externalization (E), Combination (C), and Internalization (I) (NONAKA; KONNO, 

1998)(NONAKA; TOYAMA, 2015). The flow through the four modes of knowledge 

conversion forms a spiral of knowledge creation. In IoE environments, the SECI model 

conceives knowledge creation as follow (EDWARDS, 2015): 

• Socialization: IoE enablers share their knowledge of the IoE environment 

through collaboration and their practical consciousness and absorb knowledge 
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through actions and perceptions of implicit knowledge in IoE applications 

(FARIAS DA COSTA; OLIVEIRA; DE SOUZA, 2021). 

• Externalization occurs when tacit knowledge and/or implicit knowledge (data 

analytics) are made explicit to become the basis of new knowledge, to rationalize 

and articulate the IoE context surroundings. 

• Combination: It consists of processing explicit knowledge to form more complex 

and systematic explicit knowledge from analytics capabilities and value creation 

for intelligent services.  

• Internalization occurs when explicit knowledge is converted into tacit knowledge 

from human sensors combined with models from learning systems (implicit 

knowledge). 

Kim (KIM, 2019) studied how services evolve and proposed a service operation 

model that expresses the evolution of services in a spiral trajectory, called the SERI 

cycle. The SERI cycle method (KIM, 2019) is defined in four evolution quadrants: 

Servitization (S), Establishment (E), Reinforcement (R), and Infrastructure (I).  

Services have tangible (product-based and engineering domains) and intangible 

elements (human-based and knowledge domains). Usually, in a service centered on 

tangible elements, the cycle starts in the first quadrant, Servitization. On the other hand, 

when service is centered mainly on intangible elements, the cycle starts from the second 

quadrant, becoming the E-R-I-S cycle.  

Table 6 presents the integration of SERI cycles with knowledge creation 

processes in the SECI Model and recommended activities related to KM processes. 

This approach leverages awareness of intelligence sources in IoE applications, 

supports e-governance and meta-learning, aligned with a knowledge management 

strategy. 

The development of a specific framework for knowledge management in IoE 

applications favors the evolution of knowledge management research in an IoE dynamic 

environment.  As a theoretical background, the Hierarchical Model for Knowledge 

Management, proposed by Prat (PRAT, 2011) supports an effective conceptual 

representation of knowledge management from a strategic point of view. 
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These processes are facilitated by technological advances such as IoT, Big Data, 

data analytics, and services (Services as Infrastructure) and by collaboration between 

humans and machines (Services as Interactions). 

IoE Integrated Knowledge Management Model proposes integrating service 

science and knowledge management research to support governance of IoE applications 

for intelligence service evolution. It integrates knowledge conversion processes (SECI 

process) (NONAKA; KONNO, 1998) and service evolution cycles (SERI cycle) (KIM, 

2019), to support the design of intelligent services centered around the process of 

creating knowledge and value in the IoE context.  Specifically, the proposed model 

considers the flow and conversion of knowledge from sensors and actuators, humans 

and machines, human-machine collaboration, and the use of IoT and data analytics.  

The evolution of products and services in a spiral trajectory, defined by (KIM, 

2019) as the SERI cycle goes through four evolution quadrants: Servitization (S), 

Establishment (E), Reinforcement (R), and Infrastructure (I). Services have tangible 

(product-based and engineering domains) and intangible elements (human-based and 

knowledge domains).  Usually, in a service centered on tangible elements, the cycle 

starts in the first quadrant, Servitization. On the other hand, when service is centered 

mainly on intangible elements, the cycle starts from the second quadrant, 

Establishment.  

Table 6 presents the processes of service evolution positively related to 

knowledge management capabilities in the IoE context. The cyber-virtual environment 

in the IoE paradigm is the ‘shared space’ in which knowledge is embedded, a platform 

for knowledge creation.  Knowledge is created when people and machines interact and 

collaborate between themselves or with their environments (physical space or virtual 

space) in a shared time, energy, and place, defined by Nonaka et al. (NONAKA; 

KONNO, 1998) as Ba.  And the IoE enablers (sensors and actuators) are ‘knowledge 

assets’ (KA), resources specific to a domain application that can aid in the knowledge 

creation process and value creation. Knowledge Management processes are the 

strategies that link the three together, knowledge assets, knowledge conversion process, 

and the shared context for knowledge creation, Ba (NONAKA; KONNO, 1998).  
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3.4.1 First Quadrant: Servitization (S) and Serendipity  

In this quadrant, the focus is service enhancement and improvement (KIM, 2019). In 

this regard, intelligent service systems use the generated and collected data from smart 

products, the user, and the environment to create new and enhanced customer values 

(PAUKSTADT; STROBEL; EICKER, 2019).  

 

Figure 19- First Quadrant: Servitization (S) and Serendipity 

 

Knowledge assets: IoE Enablers (tacit, implicit, or explicit knowledge) 

Knowledge conversion process: The Internalization process (explicit-to-tacit, 

explicit-to-implicit conversion) consists of analyzing the explicit, classified, and 

organized data to make accurate decisions (AL-QURISHI et al., 2015). It takes place in 

KMaaS on aggregated data such as lessons learned or codified knowledge leveraged 

from anywhere, anything, and anyone in a distributed computing environment (OCHS; 

RIEMANN, 2016). In M2M interactions, Internalization refers to self-learning. 

Learning: Supported by Acquisition and Utilization (Knowledge Processes) 

Knowledge Management Processes: Operational Processes  

- Acquisition Processes: The combination of explicit knowledge in 

knowledge sources to support the use of a service or product based. 

Comprises all activities that increase the global stock of knowledge 

potentially useful to the IoE experience. 

- Utilization Process: Consists in learning by doing, creating implicit 

knowledge (machine learning) or tacit knowledge from the user 
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experience (procedural knowledge). New ideas will come from meta-

learning. Utilization is the application of knowledge. 

Interoperability Maturity Assessment (IMA): Ability of IoE Enablers to 

exchange and use information during internalization (support self-learning) and 

combination of knowledge in H2H, M2H, and M2M interactions. 

3.4.2 Second Quadrant: Establishment (E) and Evaluation 

After identifying new opportunities for applying knowledge, it is important to 

socialize and focus on the collaboration of knowledge sources. And identification of 

new opportunities for value creation. Refers to the ability to learn with enhanced 

services and to identify innovation opportunities.  

 

Figure 20- Second Quadrant: Establishment (E) and Evaluation 

 

Knowledge assets: IoE Enablers (mainly intangible assets: tacit or implicit 

knowledge) 

Knowledge conversion process: The Socialization process (tacit-to-tacit, 

implicit-to-implicit) conversion consists of sharing and managing valuable knowledge 

and sharing similar interests.  When knowledge services involve, different fields and 

areas,  the providers need to build a broad knowledge network (MA; SUN; SONG, 

2015).  

Services as interactions: M2M, P2M, and P2P are supported by shared 

knowledge through social, partners, or corporate networks (AL-QURISHI et al., 2015). 

(Knowledge Processes) 



96 

Knowledge Management Processes: Strategic Processes 

Identification and Evaluation: Then, self-innovation drives the process of 

satisfying new demands of consumers and providers where insights emerge from 

virtual, physical systems, and human knowledge involvement (DRAGICEVIC et al., 

2017).  

- Identification consists of the identification, mapping, and modeling of 

current knowledge or of knowledge necessary to achieve previously 

defined objectives.  

- Evaluation, which may be operated at various levels: the evaluation of 

knowledge, the evaluation of KM projects and/or of KM systems 

(KMSs) resulting from these projects, and the evaluation of KM. 

Interoperability Maturity Assessment (IMA): Ability of IoE Enablers to 

exchange and use information during socialization (support knowledge sharing in P2P, 

M2P, and M2M interactions). 

3.4.3 Third Quadrant: Reinforcement (R) and Governance 

This phase comes from knowledge sharing and learning by doing from the 

previous quadrants. In this regard, intelligent products or services facilitate new data 

qualities, revealing hidden demands, customer actions, and resources to the service 

provider (PAUKSTADT; STROBEL; EICKER, 2019).  

 

Figure 21- Third Quadrant: Reinforcement (R) and Governance 
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Knowledge assets: IoE Enablers (mainly tacit and explicit knowledge) 

Knowledge conversion process: In this quadrant, the Externalization process 

(tacit-to-explicit knowledge conversion) emerges when service consumers access the 

knowledge acquired and convert it into concepts for the final use. In this scenario, final 

findings generate rules for improvements and adaptive changes in the environment (AL-

QURISHI et al., 2015). 

Governance and control are supported by Update and Protect Knowledge 

Processes. This quadrant refers to reinforcement of what was identified as an 

opportunity in the previous phase.  

Knowledge Management Processes: Strategic Processes  

- Update: It consists of knowledge creation from the collaboration of 

knowledge sources and protection of knowledge through externalization 

or governance rules and regulations. Consists in enhanced services that 

strengthen intangible elements to meet the evolving demands of IoE's 

disruptive environment.  

- Protection: The protection of knowledge through various means 

(patents, firewalls, etc.). 

3.4.4 Fourth Quadrant: Infrastructure (I) and Technology 

Refers to Knowledge Storage and Transfer. Drives the improvement of the 

service environment so that required resources are provided (MA; SUN; SONG, 2015) 

and enhanced intelligent services reinforced in the previous quadrants rely on awareness 

of IoE enablers and capabilities that foster new forms of value creation (PAUKSTADT; 

STROBEL; EICKER, 2019)(KIM, 2019).  
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Figure 22- Forth Quadrant: Infrastructure (I) and Technology 

Knowledge assets: IoE Enablers (mainly explicit knowledge) 

Knowledge conversion process: The combination process (explicit-to-explicit 

knowledge conversion) finally occurs when explicit knowledge is captured, organized, 

indexed, classified, and stored to support the following evolving cycles (AL-QURISHI 

et al., 2015).  

Knowledge Management Processes: Operational Processes 

Service as Infrastructure supports the infrastructure for product and service and 

refers to the storage and transfer of codified knowledge. It benefits from IoT 

technologies, analytics, and applications.  

- Storage consists in retaining knowledge in individual or collective 

memory. Knowledge is indexed to facilitate future retrieval.   

- Transfer is the sharing of knowledge between individuals, groups, and 

organizations. 
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Table 6 - IoE Integrated Knowledge Management Model 

IoE Integrated Knowledge Management 

Service Design Knowledge Management  Strategy (KM) 

Service Cycle Process 
Knowledge 

Assets 

Knowledge 

Process 
KM Processes 

Interoperability Maturity 

Assessment (IMA) 
Contextual recommended activities 

Servitization (S) 

Tacit  

Implicit 

Explicit 

Combination 

Internalization 

Acquisition 

The ability of IoE Enablers to 

exchange and use information  

(0 – 5) 

Analyze big data generated by IoT devices as a rich source of the user’s context. 

Analyze generated social data to achieve collective intelligence (eg. using crowdsensing) 

Maintain context-awareness of social relationships from users and devices. 

Maintain context-awareness of infrastructure capabilities as well as information semantic 

perspective. 

Supports contexts for individuals to internalize tacit knowledge using the explicit knowledge 

communicated through the IoE environment 

Utilization. 

The ability of IoE Enablers to 

exchange and use information  

(0 – 5) 

Offer personalized services and customized content according to the user’s social context. 

Use of artificial social agents to generate and manage actionable social knowledge within the 

IoE environment. 

Allow devices in the execution of automatic tasks without the involvement of the humans 

Support collaboration and cooperation between IoE devices and interoperability of services on 

behalf of the humans. 

Maintain context-awareness and record the resulting interactions and learn by doing. 

Interact with big data tools and other analytical software to gain the experience 

Establishment (E) 

Tacit 

Implicit 

Explicit 

Internalization 

Socialization 

Identification 

The ability of IoE Enablers to 

exchange and use information  

(0 – 5)  

Support intelligence orchestration in M2H interactions 

Understand the IoE contexts and customize services and applications accordingly. 

Foster M2H interactions in a shared time, and place (physical  or cyberspace) 

Evaluation 

The ability of IoE Enablers to 

exchange and use information  

(0 – 5) 

Maximize the system knowledge about the social dimension of the users. 

Maximize context-awareness of knowledge in IoE applications, computational capability 

perspective as well as information semantic reasoning perspective. Evaluate Knowledge 

Sources, Knowledge Systems, and KM strategy for service evolution 
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IoE Integrated Knowledge Management 

Service Design Knowledge Management  Strategy (KM) 

Service Cycle Process 
Knowledge 

Assets 

Knowledge 

Process 
KM Processes 

Interoperability Maturity 

Assessment (IMA) 
Contextual recommended activities 

Reinforcement (R) 

 

Tacit 

Implicit 

Explicit 

Socialization 

Externalization 

Update 

The ability of IoE Enablers to 

exchange and use information  

(0 – 5) 

Support a live knowledge network, as the observed nodes' activities and profiles change over 

time due to IoE environment dynamics. 

Develop machines’ thinking abilities side-by-side with their social integration abilities. 

Maintain tight coupling of AI techniques merged with the humans' and machines' social 

context. 

Cultivate a serendipitous environment through the collaboration of IoE devices. 

Protection 

The ability of IoE Enablers to 

exchange and use information  

(0 – 5) 

Evaluate the trust level of IoE nodes and applications and infer the reliability among devices. 

Implement a social privacy preserving scheme to support trust. 

Protect the social properties of users as sensitive information to support the customization of 

offered services. 

Provide a knowledge protection strategy on behalf of critical knowledge identified for IoE 

applications. 

Infrastructure (I) 

Tacit 

Implicit 

Explicit 

Externalization 

Combinatiion 

Storage 

The ability of IoE Enablers to 

exchange and use information  

(0 – 5) 

Support data management activities at the unit IoT level, involving pre-processing and filtering 

tasks, such as data aggregation and data compression. 

Support data acquisition for the local unit IoT and complements it with external data such as 

open linked data and knowledge graphs or codified knowledge from data sources 

Transfer 

The ability of IoE Enablers to 

exchange and use information  

(0 – 5) 

Use social networks to solve IoT-related issues related to the scalability of interconnected 

objects. 

Support service recommendation system to leverage the social relationships between IoT 

devices’ owners.  Support a socially connected community of sensors and actuators 

Integrate communication and processing technologies near end-user devices 

Improve the network performance, reducing unnecessary network traffic and increasing the 

throughput while replying to the users’ requests. 

Provide state-of-the-art technologies, software, databases, and repositories 
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3.5 How Smart is a Sensor? Smartness requirements for IoE 

Smartness is a broad concept related to what extent smart sensors contributes to 

IoE value creation and it is derived from the knowledge provided by RTA 

transformations or related to the experience of using sensors and actuators, sometimes 

related to observation facilities and the support for monitoring and control solutions in 

the evolution of IoT paradigm. 

This Section will present smartness requirements for sensors and actuators 

towards intelligent services goals in IoE applications. IoT devices have an important 

role in realizing the IoE, thus it is vital to consider their capabilities in addressing 

interoperability and providing intelligence services for IoE applications (NOURA; 

ATIQUZZAMAN; GAEDKE, 2019). Therefore, the main research question of this 

work proposal is formulated as “How do smart sensors contribute to the Quality of 

Intelligent Services in IoE applications”? There is a challenging need to satisfy the 

quality of intelligent services (QoS) requirements in distinct domains of IoE 

applications. 

Internet of Things (IoT) is seamlessly connecting the real world and the virtual 

world using intelligent sensors smarter than before empowering users to salvage vital 

information which in turn will help in decision making (YU et al., 2017) (SINGH; 

SINGH TOMAR, 2019). Kolar (KOLAR; BENAVIDEZ; JAMSHIDI, 2020) described 

significant challenges for decision-making due to the safety, efficiency, and accuracy 

requirements. For reliable operation, decisions on the system need to be made by 

considering the entire set of multi-modal sensor data, keeping in mind a complete 

solution.  

However, there is a lack of a review and discussion on ranking smart sensors 

intelligence in IoE, as well as the emerging challenges and new issues in knowledge 

management applied to this field of research.  

To understand the latest trends in studies on smart sensors and what’s the focus 

of intelligence in IoE applications and related works on smart sensors, a systematic 

literature review was conducted on digital libraries. The methodological guidelines 

suggested by Kitchenham and Charters (KITCHENHAM et al., 2010) for literature 

reviews guided this survey. The review included contributions from the ACM Digital 

Library, IEEE Digital Library, ISI Web of Science, Science@Direct, and Scopus 
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databases, which were the most relevant for finding specific studies in journal and 

conference papers in English. The specific search string was sought: "intelligent sensor" 

OR "smart sensor" in the "Abstract" fields. 

The search string was designed to retrieve from the databases as many studies as 

possible that were relevant to the review, even if the query results returned articles not 

relevant to the survey. Relevant studies not retrieved after the first query were also 

included in a second iteration analysis in December 2021, considering studies likely to 

be explicitly related to smart sensors in IoT or IoE applications. Furthermore, most 

contributions were related to the application of smart sensors for IoT, which indicates a 

lack of maturity in work in the field of IoE.  

Only studies published in English in journals (already published and in press), 

conference proceedings, books, and technical reports were selected. After discarding the 

duplicates, a total of 130 candidate articles remained from the initial search (Table 6). 

Table 7- Summary of “smart sensors” literature review stages 

Literature review stage number of papers 

Search of ISI Web of Science 81 

Search of Scopus 576 

Search of IEEE 262 

Search of ACM Digital Library 16 

Science@Direct 8 

Total 943 

Duplicates 128 

Total after discarding duplicates 815 

Approval for analytical reading 130 

Discarded 685 

 

A total of 130 related articles were collected and analyzed based on their title, 

keywords, and abstracts. Among these documents, the most influential and highly cited 

articles are selected and discussed. The findings would assist researchers in 
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understanding current developments and barriers in the IoE systems adoption. Although 

Table 7 presents fruitful work and progress, this research domain still confronts 

challenges on theories and practice. 

This work identified distinct approaches to what was the contribution of a smart 

sensor and applications which have been applied to IoE Applications in multi-domains 

and categorized them in terms of those which have been applied to IoE categories. 

Table 8 shows this categorization of the distinct requirements that lead to smart sensors 

categorization related to smart sensors works according to the identified requirements to 

which they have been focused. 

As aforementioned in Section 2.2, ranking knowledge in IoE sensors is a 

composition of characteristics in IoE applications knowledge sources regarding the kind 

of knowledge they provide, the type of sensor itself, the observation within ever-

changing contexts, and the technological capabilities of sensors, as presented in Table 8. 

The selected requirements were grouped related to what extent it provides smartness to 

each category of IoE Enablers proposed by (FARIAS DA COSTA; OLIVEIRA; DE 

SOUZA, 2021) in IoE Knowledge-based Taxonomy.  This methodology addresses the 

challenge imposed due to distinct applications of smart sensors in the IoE domain.  

To support the multidisciplinary vision proposed in this work, smart sensors 

requirements were derived from the literature review to represent the intelligence in IoE 

applications. We related each identified requirement to a category of IoE enablers, 

which defines the challenges to smart sensors in support of IoE in each of the categories 

(knowledge, type of sensors, observation capability, or technology.  

Aiming to identify those different requirements that characterize this 

multidisciplinary of what to consider smartness in IoE solutions, we analyzed the recent 

works identified in the SLR with challenges and benefits of smart sensors and actuators 

in IoE applications. The analysis was based on IoE knowledge-based taxonomy 

categories and leads us to propose the 18 smartness requirements, supporting each IoE 

category. The proposed requirements were organized in Table 8 assigned to related 

works. The taxonomy shows the categorization of the works according to the type of 

problems to which they have been applied, some goals have been applied to more than 

one type of problem, and hence, they appear more than once in the taxonomy. The 
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challenge of sensors smartness in IoE applications will be translated into smartness 

requirements according to specific goals: 

3.5.1 Related to Knowledge goal 

The initial step is raw data capture using smart sensors, the challenge they try to 

solve is mapping the multiple streams of raw sensory data to related distinct and 

conflicting tasks, which complicated the problem. This resulted in system learning to 

translate the multiple inputs to the appropriate tasks or sequence of system actions. 

Combining data sources (sensor input and output values) in a cooperative environment 

is summarized as follows:  (KOLAR; BENAVIDEZ; JAMSHIDI, 2020)  

• Data-in-data-out (DAI-DAO): Raw data are input and raw data are extracted 

out; 

• Data-in-feature-out (DAI-FEO): Raw data are sourced, but the system 

provides features as output.  

• Feature-in-feature-out (FEI-FEO), also called feature-fusion: Features or 

processes from previous steps of fusion are fed into the fusion system and better 

features or higher-level features are output.  

• Feature-in-decision-out (FEI-DEO): The features are input to provide 

decisions for tasks and goals as output.  

• Decision-in-decision-out (DEI-DEO): Lower-level decisions are accepted by 

input and higher-level better decisions are processed out.  

The combination of the Internet of Things (IoT) and the blockchain paradigms 

helps in the development of automated and trusted systems. Aligned to this concept,  

Ahmed et al. presented a logistic traceability smart contract developed on top of a 

blockchain (AHMED et al., 2021). 

IoT sensors are efficiently used in various IoT applications for creating a smart 

environment (SEHRAWAT; GILL, 2019). For instance, Alahi and Mukhopadhyay  

(ALAHI; MUKHOPADHYAY, 2019) discussed IoT-enabled smart sensors and sensing 

systems that were developed to measure nitrate concentration in water. Regular 

measurement of nitrate is critical to keep the water safe for all purposes. The sensing 

system can be installed at any sampling location, and the system can measure the nitrate 
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concentration and transfer it to the cloud server for further analysis. Advances in the 

Internet of Things (IoT) applications resulted in emergence of smart contexts, governed 

by real-time monitoring with smart sensors embedded and analytics (Artificial 

Intelligence (AI)).  

So smart sensors should be seamlessly, securely, and trustworthy interconnected 

to enable automated high-level smart applications (DATTA; SHARMA, 2017). 

Focusing on collaboration to support intelligent services, Poza-Lujan et al. 

(POZA-LUJAN et al., 2020)  proposed an architecture to recognize heterogeneous 

smart sensors, which are called smart resources in intelligent environments.  Smart 

resources process local sensor data and offer information to other devices as a service. 

These resources can be in the same operating range (the edge), in the same Intranet (the 

fog), or on the Internet (the cloud). As requisite, smart resources must have an 

intelligent layer to process the information and capabilities to collaborate closely with 

other devices. 

For Gomba and Nleya (GOMBA; NLEYA, 2018) the emergence of the Internet 

of Things (IoT) benefit mankind via physical objects embedded with intelligent sensors 

of varying types, in support of intelligent decision making, as well as be provisioned of 

beneficial services. The basic premise is to have smart sensors collaborate directly 

without human involvement to deliver a new class of applications (JIENAN; 

XIANGNING; SHUAI, 2021). 

For (VOICU; PETREUS; ETZ, 2020), the Internet of Things (IoT) is now 

beginning to witness the maturity technology level. Blockchain (KHRAIS, 2020) is an 

emerging technology considered an ideal candidate to counter the flaws of IoT, among 

which there is security. A blockchain network is deployed to mitigate the native 

vulnerabilities of IoT and to ensure that data collected is decentralized, accessible, 

transparent, lightweight, and scalable.  Roman and Ordieres-Mere (ROMAN; 

ORDIERES-MERE, 2019) applied smart sensors in IoT system that collects, send, 

store, and publishes relevant data in a blockchain-like database, and publish a temporal 

statistic data summary.  

For Haldorai et al. (HALDORAI; RAMU; SURIYA, 2020), authentication 

remains to be the vital security element in IoTs applications. Machine-learning (ML)-

based remedies mitigates various security problems such as accessibility and 
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authentication controls in IoTs. Solangi et al. (SOLANGI et al., 2018) revealed a 

holistic approach of device identification, authentication, management, security, and 

privacy concerns for a global, immersive, invisible, ambient network-computing 

environment built through the continued proliferation of smart sensors. 

This thesis proposes the following requirements for smart sensors regarding 

knowledge goals to support smart services in IoE applications. 

3.5.1.1 Effectivity  

Effectivity is the main noun form of the adjective effective (“EFFECTIVE | 

Meaning & Definition for UK English | Lexico.com”, 2022), which means “adequate to 

accomplish a purpose; producing the intended or expected result”.   More than sensing 

the environment smart sensors or smart nodes extract meaningful knowledge from the 

data through machine learning technologies (CHEN et al., 2020) and collaborate 

directly without human involvement to deliver a new class of applications (JIENAN; 

XIANGNING; SHUAI, 2021).  The intelligence (SONG et al., 2019) and smartness of 

smart sensors are related to applications purpose and criticality (KORONIOTIS et al., 

2020) and proportional to its extent for empowering users in decision making (YU et 

al., 2017) (SINGH; SINGH TOMAR, 2019) or in cyber-physical experiences for 

expecting outcomes.   

3.5.1.2 Interpretability  

The challenge is raw data capture using smart sensors, mapping the multiple 

streams of raw sensory data and enabling new ways to analyze data, combining data 

sources (sensor input and output values) in a cooperative environment  (KOLAR; 

BENAVIDEZ; JAMSHIDI, 2020), and gain actionable insights (GUPTA, 2021). In  

(YIN; WANG; JHA, 2018) a hierarchical inference model has been applied for IoT 

applications based on hierarchical learning and local inferences to learn from these data 

to make things more intelligent. 

3.5.1.3 Integrity  

Integrity is a significant requirement in IoE applications, due to the outliers in 

sensor data, the integrity of the data source is not maintained, and data becomes 
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inconsistent. This inconsistency is not acceptable in the transmission of data from 

sender to receiver (PUNDIR; SANDHU, 2021). In the field of data quality and integrity 

of information, ontologies will play an essential role in interlinked IoT systems 

(HONTI; ABONYI, 2019). Smart sensors generate smart data which should be 

semantically enriched to provide intelligent services in IoE applications. So smart 

sensors intelligence is derived from data (TENG et al., 2019).  And data collected from 

IoT data sources need to be restricted controlled due to the limited capacity of these 

sources to ensure the security and the quality of their data (AHMED et al., 2021).  

3.5.1.4 Accuracy  

Significant challenges for decision-making supported by IoE systems are due to 

safety, efficiency, and accuracy requirements (KOLAR; BENAVIDEZ; JAMSHIDI, 

2020). Continued proliferation of smart sensors, decisions on IoE systems needs to be 

made by considering the entire set of multi-modal sensor data, keeping in mind a 

complete solution. To address traceability challenges, (WANG et al., 2020) presents a 

logistic traceability smart contract solution (AHMED et al., 2021) using blockchain 

technologies (KHRAIS, 2020). In Hama and Nepal's (HAMAD et al., 2019) solution, a 

fingerprint was created for each IoE device. Broadly, (SOLANGI et al., 2018) revealed 

a holistic approach of device identification, authentication, management, security, and 

privacy for smart sensors in IoT. 

3.5.1.5 Security  

In the field of security in IoE applications, a reliability-driven design process is a 

focus. Major challenges are the design and development of security and privacy 

management schemes for IoT smart sensors with good performance, low power 

consumption, robustness to attacks, tampering of data, and end-to-end security 

(YAMINI; GANAPATHY, 2021).  Authentication (HALDORAI; RAMU; SURIYA, 

2020) remains a vital security element in IoTs applications, and machine learning (ML)-

based algorithms address security problems such as accessibility and authentication 

controls in IoT applications (HALDORAI; RAMU; SURIYA, 2020).  

For Pal et al (PAL et al., 2020), the state of the art is lacking a systematic 

analysis of the security requirements for the IoT and presented security requirements for 
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the IoT, which will help design secure future IoT systems by achieving much of the 

promised benefits of scalability, usability, connectivity, and flexibility practically and 

comprehensively.  

Researchers have already studied the combination of IoT and Blockchain 

(especially smart contract) technology (HUANG; ZHANG; JIN, 2021). A smart 

contract, residing on blockchain technology, is defined in digital form, including 

agreements on which contract participants can execute these commitments. 

3.5.2 Related to Sensor Characteristics goal 

Sensor engineering is rooted in material choice, and the development of 

practical protocols that enhance device accuracy without sacrificing temporal resolution 

(GIL et al., 2016). Smart sensors material choice dictates classification of the device as 

a regular sensor (use of abiotic materials), biosensor (biological or biomimetic 

materials), nano sensor (nanomaterials), or nano biosensor (hybrid nano/biomaterials).  

It is related to sensor critical performance factors such as durability, cost, and ultimately 

the quality of service (MCLAMORE et al., 2019).   

Ruppert et al. (RUPPERT et al., 2018) present the concept of intelligent space, 

where the fast development of smart sensors and wearable devices has provided the 

opportunity to develop intelligent operator workspaces.  But a variety of new challenges 

is emerging, with multiple parameters requiring control and intelligence (FRENCH; 

BENAKIS; MARIN-REYES, 2018).  

New contexts that emerge daily in consequence of the dynamics of the real 

world eventually demand the development of new sensor types (ROZSA et al., 2016). 

Sensors are pervasive solutions creating interactions between users and the environment 

anytime and anywhere (STEFANA et al., 2021). Before design considerations which 

are based on material choice, the smart sensors are based on the recognition-

transduction-acquisition (RTA) triad. The importance of this first step in the RTA triad 

cannot be over-emphasized, 

 transduction is the platform for innovation (MCLAMORE et al., 2019). Two 

major classes of transduction that lead to the evolution of quantitative data or qualitative 

data, namely inherent transduction and engineered transduction, respectively are 

presented as follow (MCLAMORE et al., 2019): 
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• In engineered transduction, the sensor cannot autonomously produce a 

measurable product. It depends on an engineered process or exogenous 

reagent (MCLAMORE et al., 2019).  

• In inherent transduction, sensors autonomously produce quantitative data. 

(MCLAMORE et al., 2019). 

Stefana et al. (STEFANA et al., 2021) provided an overview of the state of the 

art of smart wearables to support the selection of the most suitable smart sensors in 

industrial and non-industrial applications in IoE settings.  The generation of creative 

solutions depends on the ability of the IoT designers and the context of the problem they 

intend to solve. Yang and Wei (YANG; WEI, 2019) address the problems in user-

device interaction. Petrariu (PETRARIU; COCA; LAVRIC, 2021) presented the design 

of a fully reconfigurable wireless sensor node that can sense the smart grid 

environment. The proposed solution is called “multi-sensor” due to the use of different 

sensors for data acquisition, such as temperature, humidity, air pressure, or ozone 

concentration, that are integrated into a modular hardware platform, attached throughout 

the network with self-monitor capabilities.  

For Malík and Krištofík (MALÍK; KRIŠTOFÍK, 2020) the use of neural 

networks in mobile and IoT applications depends on special design techniques which 

would make them suitable for mobile or IoT applications with limited computational 

power (MCLAMORE et al., 2019). The emergence of microsensors (very small size, 

weight, as well as low energy usage) within intelligent sensor framework technology 

permits the forefront production of a sensor framework (SHARMA; KAUR; YADAV, 

2021).  

Adaptability, integration, and usability are the focus when considering smart 

sensors design. Different insights about different applications and communication 

systems are provided in (RAMÍREZ-MORENO et al., 2021a, 2021b), as smarter 

communities are those that can adapt through transparent and inclusive community 

engagement in the use of technologies based on local and regional societal needs and 

values.  
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3.5.2.1 Adaptability  

Adaptability challenge is a consequence of the dynamics of the real-cyber 

physical world that demands the development of new sensor types:  smart sensors with 

a special design that would be suitable for mobile or IoT applications with limited 

computational power (MCLAMORE et al., 2019). Smart sensors applied in context-

aware systems change the parameters of the environment or their own, gather 

information, and transmit it to other devices (ZHILENKOV et al., 2017). Different 

challenges are the intelligent combination of multi-agent systems (to simulate collective 

behaviors of the smart sensors), knowledge graphs (to support communication among 

different devices), and deep learning architectures to create models from distinct sensor-

based data (PETRARIU; COCA; LAVRIC, 2021).  

3.5.2.2 Usability  

In the field of smart sensor engineering, the challenge is in material choice, and 

the development of practical protocols that enhance device accuracy without sacrificing 

temporal resolution (GIL et al., 2016). The sensor's smartness is related to its benefit in 

support of intelligent decision making, via physical objects of varying types (GOMBA; 

NLEYA, 2018). The emergence of intelligent microsensors (very small size, weight, as 

well as low energy usage) permits the forefront production of intelligence derived from 

data (SHARMA; KAUR; YADAV, 2021).   For Rana and Bo (RANA; BO, 2020), 

friendly smart cyber-physical system design is the main challenge for IoT 

implementation. Moreover, the authors suggested the following requirements for the 

IoT communication systems regarding sensors and actuators: privacy, security, 

intelligent design, low cost and complexity, universal antenna design.   

3.5.2.3 Durability  

Still, in the field of smart sensors engineering, material choices are also related 

to sensor critical performance factors such as durability, cost, and ultimately the quality 

of service (MCLAMORE et al., 2019). The aim is to integrate a low-cost and scalable 

network of smart sensors capable of mapping large areas in real-time (CABRA et al., 

2018). 
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3.5.3 Related to Observation goal  

This category refers to technologies for sensing the environment and sensing 

context.   

Advances in sensor technology, IoT, and machine learning methods, have turned 

recent environment monitoring into a smart environment monitoring (SEM) system 

(ULLO; SINHA, 2020), with the advances in the development of modern sensors. 

Mourtzis et al. (MOURTZIS; MILAS; VLACHOU, 2018) proposed a monitoring 

system for shop-floor control following the IoT paradigm consisting of a data 

acquisition device (DAQ) capable of capturing quickly and efficiently the data from the 

machine tools and transmits these data to a cloud gateway via a wireless sensor 

topology.   

The development of sensor technology, processing techniques, and 

communication systems give rise to the development of the smart sensor for adaptive 

and innovative applications (SHIT et al., 2018). As the number of sensors increases, the 

data handled by the network also increases significantly (MAHAKALKAR et al., 

2019).  

Some works present the benefit of reducing the number of nodes (SINGLA; 

BOSE, 2018) or defining the point of monitoring interest. The work of Singla and Bose 

(SINGLA; BOSE, 2018) proposed a system to infer the user context from input data 

from various devices classifying points of interest (POI) to make sense of the input 

sensor data.  

Yeh et  Lin (YEH; LIN, 2018) presented a cooperative parallel simplified swarm 

algorithm (pSSO) to solve the redundancy allocation problem in IoT. The authors argue 

that it is the safest, most convenient, and most economical way to increase the reliability 

of smart sensor systems. Meeradevi et al. (MEERADEVI; MUNDADA; 

SANJAYKUMAR, 2018) presented a framework based on embedded intelligent sensor 

nodes with suitable embedded architecture for various multi-sensor applications.  

Quek et al. (QUEK; WOO; LOGENTHIRAN, 2017)refer to intelligence 

injection where it is possible to detect multiple loads and states related to a single 

sensor, eliminating the need to have intelligence and communication features for every 

appliance. When the number of nodes is very high, as in large networks, it is very 
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difficult to recharge, and sometimes the solution is some nodes replacement. (WASON; 

KUMAR; JOHRI, 2021) proposes a system with a limited number of sensors kept in an 

active state. But the system will constantly sense the changes around the active nodes 

and after detecting an intrusive change, a signal will be sent to other remaining nodes to 

turn themself into active states.  

Purri et al. (PURRI et al., 2017) refer to recent improvements in RFID with 

device-to-device advancements, to permit smart sensors and actuators to be detected 

and controlled remotely crosswise over the Internet of Things.  

3.5.3.1 Mobility 

Mobility of customized/personalized smart sensors allows the integration of a 

high-density smart sensors network distributed over a large-scale geographical area in 

real-time.  Mobility of customized/personalized sensors allows the integration of a high-

density of sensors distributed over a large-scale geographical area. This is possible by 

using LPWAN (Low-Power Wide-Area Network) technologies, due to its numerous 

advantages such as unlicensed spectrum transmitting, easy deployment by any 

hardware/software developer for both components, nodes, and gateways (MCLAMORE 

et al., 2019). Xu and Chen (XU et al., 2018) proposed a federated capability-based 

access control (FedCAC) framework to enable effective access control processes to 

devices, services, and information in large-scale IoT systems through delegating 

centralized authorization decision-making policy to local domain delegators. 

3.5.3.2 Availability  

Availability is a significant parameter of QoS and guarantees authorized users 

access to resources and information when required (PUNDIR; SANDHU, 2021). Some 

challenges of availability in IoT systems are a limited number of smart sensors inactive 

state (WASON; KUMAR; JOHRI, 2021), the ability to sense the changes around the 

active nodes after detecting a perceived change, or sending it to other remaining nodes 

to turn themself to the active state (PURRI et al., 2017). In Chen and Khan (CHEN et 

al., 2020) algorithmic design, computational optimization, and hardware revolution are 

promising solutions. In this sense, smart sensors integrate several detection methods, 

real-time data analysis, and connectivity.  
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3.5.3.3 Scalability 

For Pundir (PUNDIR; SANDHU, 2021), a scalable network should perform 

well even when the count of extra nodes is increased after the designing of the network 

and can accommodate extra nodes at a later stage and improve its coverage. The region 

of interest is said to be fully covered if each location is monitored by at least one sensor 

node. Good coverage can be referred to how well sensors monitor a particular event and 

refer to monitorability. Smart sensor architecture incorporates real-time operation 

features, local data analysis, scalable big-sensing-data cleaning, scalable big-sensing-

data compression, and cloud-based data curation with high availability communication 

interfaces, interoperability, and cyber-security (YANG et al., 2021). 

3.5.3.4 Monitorability 

In the field of environmental monitoring and control, smart sensors intelligently 

perceive inputs from the environment, with secure and energy-efficient data collection 

(OSIFEKO; HANCKE; ABU-MAHFOUZ, 2020). In (KAMIENSKI et al., 2018). 

Monitorability comes from context-aware systems able to adapt behavior automatically 

to instant environment conditions. Smart sensors are those which fundamentally change 

the way cyber and physical infrastructure systems are monitored, controlled, and 

maintained (PRUTEANU; GABRIEL, 2019). In Poza-Lujan et al. (POZA-LUJAN et 

al., 2020), heterogeneous smart sensors are considered smart resources in intelligent 

environments. Smart resources can process local sensor data and offer information to 

other devices as a service. 

Hammoudi et al. (HAMMOUDI; ALIOUAT; HAROUS, 2018) proposes the use 

of Infrastructure as a Service (IaaS) to support any IoE system where a huge data is 

generated and processed in real-time and uses sensory and social data such as traffic 

monitoring system, a health system, and other smart city domains monitoring systems.   

3.5.4 Related to Capabilities goal 

In IoT, smart sensors data creates challenges concerning storage and analytics 

given the resource constraints of these smart devices (KAUR et al., 2017). Additionally, 

the large volume of information processed in cloud-based infrastructure may lead to 
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long response times and higher bandwidth consumption. In this sense, edge computing, 

promises to support data processing and service availability at the edge of the network.  

Smart sensors are based on built-in microprocessors and wireless 

communications, which fundamentally change the way civilian infrastructure systems 

are monitored, controlled, and maintained (PRUTEANU; GABRIEL, 2019). 

For Yu, et al. (YU et al., 2017)  edge computing as a strategy is the solution to 

mitigate the escalation in resource congestion and to improve the performance of IoT 

networks, emerged as a new paradigm to solve IoT and localized computing needs to 

the network 'edge,' near the end-users. The advantages of this strategy in comparison 

with traditional cloud services are to offload the computational demands away from the 

centralized data center, and benefits in communication, in IoT networks reducing the 

latency avoiding the traffic peaks in information exchange processes and reducing 

response times for real-time IoT applications. Furthermore, the focus is broader than 

bandwidth occupation. Energy consumption and overhead are critical aspects that 

should be addressed. By transferring computation and communication overhead from 

nodes with limited battery supply to nodes with significant power resources to the 

system that can extend the lifetime of the individual nodes. 

The explosion in the development and adoption of smart wearable sensors is 

demanding for specific infrastructure supporting real-time data analysis for anomaly 

detection, event identification, situation awareness as data produced by wearable 

sensors continuously grow, yielding to a sensor big data approach (GRECO; 

RITROVATO; XHAFA, 2019).  Greco et al.  [113] proposed a technological and 

architectural solution, composed of four distinct layers: a sensing layer, a pre-processing 

layer, a cluster processing layer, and a persistence layer to perform real-time analysis of 

wearable sensor data streams.  The solution evaluates the performance of each layer 

considering CPU and memory usage. 

To support IoT infrastructure, sensors will be placed on all manner of locations, 

and sometimes in inaccessible areas. In these areas, sensors work for a long time, so 

sensors design capabilities are looking forward to continuous delivery and self-

maintaining devices. The power supply is a bottleneck of the sensor technology and 

using a battery as a power source will be unable to fulfill the requirements of the IoT. 

(WU; CHENG; WANG, 2020). In this context, potential energy sources are solar, 
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thermal, wind, chemical, mechanical, biomass, and so on. Wu et al. (WU; CHENG; 

WANG, 2020) defines two meanings for the term “self-powered sensor”: first, it is a 

sensor that automatically sends an electric signal when mechanically demanded without 

an external power source. Second, the operation power supply provided for the sensor is 

self-generated. 

Cabra et al. (CABRA et al., 2018) provided insights into the technologies that 

compose the IoT architecture to integrate a low-cost and scalable network of smart 

sensors capable of mapping large areas in real-time. 

For Maiti et al. (MAITI et al., 2018), cloud-IoT solutions focused on centralized 

data collection and storage are not appropriate for efficient data collection and 

utilization for sensor data processing and fast real-time decision making. For addressing 

IoE/IoT's diverse set of requirements, resources should be placed near the data sources 

instead of sending all the data to the cloud. The results showed a total energy saving and 

reduction in latency compared to processing IoT data in a conventional cloud system. 

Intelligent sensors and actuators support the linkage of computation and 

interoperability (YANG et al., 2021). Bansal and Kumar (BANSAL; KUMAR, 2020) 

provide a technical overview of IoT enabling architectures, devices, gateways, operating 

systems (OS), middleware, platforms, data storage, security, communication protocols, 

and interfaces in an overview of the taxonomy of the IoT ecosystem.  

Kurniabudi et al. (KURNIABUDI et al., 2018) presented a global framework for 

anomaly detection in IoT and proposes a distributed preprocessing framework to 

overcome the challenge in data preprocessing and analysis of huge and heterogeneous 

data on smart sensors in IoT. 

Chanal and Kakkasageri (CHANAL; KAKKASAGERI, 2020) studied the 

design and development of security and privacy management schemes for IoT smart 

sensors. The objective factors are good performance, low power consumption, 

robustness to attacks, tampering of the data, and end-to-end security.  

For Abbas et al. (ABBAS; PRIYA, 2019), the controlling part of the connected 

sensor devices and communication devices are crucial, the main purpose of their work 

is to design a smart sensor controller that provides reliable data transmission between 

process controller and sensor node by using critical communication and massive IoT 

solution.  
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Silvestre-Blanes et al. (SILVESTRE-BLANES; SEMPERE-PAYÁ; ALBERO-

ALBERO, 2020) presents a method called Interactive to determine the operating 

parameters of the dynamic governor algorithm which offers significant improvements in 

power consumption, without reducing the performance of the application.  

Data collaboration is where a cloud server instructs smart sensor nodes on the 

edge of the network to perform specific aspects of a data processing task, such as 

filtering, denoising, filing, combining data, and so on. It improves data processing 

power and focuses on reducing latency and providing highly customizable 

computationally intensive data processing services (SUN et al., 2021). 

3.5.4.1 Communication efficiency 

IoT world of smart sensors demands the popularity of lightweight and simple 

methods to implement communication protocols among humans, machines, and sensors 

(SILVA et al., 2019). The edge computing concept allows the distribution of 

intelligence and the use of intelligent sensors.  

The rapid development of smart sensors in different applications imposes 

challenges in optimizing the QoS in terms of performance, privacy, and security levels 

to satisfy the Quality of Service (QoS) requirements due to the dynamic network 

condition, heterogeneous traffic flows, and resource-constrained behavior of sensor 

nodes (PUNDIR; SANDHU, 2021). 

3.5.4.2 Processing efficiency 

In this field, the challenge is the optimal merging of complex distributed 

computing environments technologies with smart sensors with additional computational 

capabilities (YANG et al., 2017) (YU et al., 2017) and optimizing the QoS in terms of 

performance, privacy, and security levels to satisfy the Quality of Service (QoS) 

(PUNDIR; SANDHU, 2021). Some works address the challenge in data preprocessing 

and analysis of huge and heterogeneous data on smart sensors on the Internet of Things 

(KURNIABUDI et al., 2018) (LAMMEL et al., 2021).  

In this sense, Markiewicz et al. (MARKIEWICZ et al., 2019) propose a novel 

architecture for IoT, in which a sensor processes data locally thanks to a decrease of 

computational complexity given by the usage of compressed recurrent neural networks. 
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Local processing of the data on ultra-low power wireless sensors gives comparable 

outcomes in terms of accuracy but much better results in terms of energy consumption 

than transferring the raw data. 

Edge computing as a strategy brings benefits in communication, in IoT 

networks, reducing the latency and avoiding the traffic peaks in information exchange 

processes, and reducing response times for real-time IoT applications.  

3.5.4.3 Storage Efficiency  

Considering challenges concerning storage, smart sensors are due to storage and 

analytics resource constraints (KAUR et al., 2017). To address IoE/IoT set of 

requirements, resources are placed near to the data sources instead of sending all the 

data to the Cloud, so (KAUR et al., 2017) smart sensors support data processing and 

service availability at the edge of the network, as the large volume of information 

processed in cloud-based infrastructure may lead to long response time and higher 

bandwidth consumption. In (HAMMOUDI; ALIOUAT; HAROUS, 2018), their 

approach provides intelligent data storage to minimize the latency of any input and 

output data requests in a massive data storage and a huge number of servers, in an 

Infrastructure as a Service (IaaS) approach.  

3.5.4.4 Energy efficiency  

In the energy engineering field, the challenge is smart, secure, and energy-

efficient data collection processes. The power supply is a bottleneck of the sensor 

technology (WU; CHENG; WANG, 2020). In this context, smart sensors use potential 

energy sources such as: solar, thermal, wind, chemical, mechanical, biomass (WU; 

CHENG; WANG, 2020) to be “self-powered sensors”(SILVESTRE-BLANES; 

SEMPERE-PAYÁ; ALBERO-ALBERO, 2020). For (YU et al., 2017), energy 

consumption is a critical aspect that should be addressed in IoE/IoT systems 

(OSIFEKO; HANCKE; ABU-MAHFOUZ, 2020). Energy-efficient data collection 

(DC) processes are key to the realization of the full potentials of future Internet of 

Things (FIoT)-based systems.  For (AKMANDOR; YIN; JHA, 2018), edge-side 

computing and cryptographic techniques have been proposed to get around limited 

bandwidth, insufficient energy, and security concerns of the use of cloud resources, as a 
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result of increased computational load and energy consumption, it is difficult to 

simultaneously achieve smartness, security, and energy efficiency.  

Lammel et al. (LAMMEL et al., 2021) developed specialized architectures for 

smart sensor systems, focusing on close hardware/software co-design, to achieve ultra-

low power consumption in the execution of high-performance algorithms, while staying 

flexible in programming. 

3.5.4.5 Maintainability (low cost, low complexity)  

Pundir (PUNDIR; SANDHU, 2021) defined Maintainability as “the probability 

of performing a successful repair action within a given specific time”. As smart sensors 

operations last for a long and uninterrupted period, are placed in all manner of locations, 

and sometimes in inaccessible areas. sensors design capabilities are looking forward to 

continuous delivery and self-maintaining devices (MALDONADO et al., 2018). Smart 

sensor requirements relate to their optimization in cost, size, and power requirements 

(MALDONADO et al., 2018). For Rusnack (RUSNACK, 2021), the evolution of 

sensing technology has resulted in increasingly more affordable smart sensors with low-

cost integrated electronics and inexpensive microcontrollers with integrated data 

conversion technologies. 
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Table 8- Proposed Smart Requirements for IoE Applications 

Sensors Requirements 
IoE Category 

supported 
Related Works 

Effectivity  

Knowledge  

(What)  

(JANEERA et al., 2021) (KULKARNI; VANI; HUNAGUND, 2019) (CHEN et al., 2020)(XU; ZHOU; ZHU, 2018) (YU et 

al., 2017)(DA COSTA; OLIVEIRA; DE SOUZA, 2021)(WANG et al., 2020) (NIKIFOROVA, 2021) (YASEER; CHEN, 

2021) (MANOGARAN et al., 2021) (KORONIOTIS et al., 2020)(METALLIDOU; PSANNIS; EGYPTIADOU, 2020) 

(KARABEGOVIĆ et al., 2020) (SURESH; UDENDHRAN; BALAMURUGAN, 2020) (ELSISI et al., 2021) (YUAN et al., 

2020) (FRANÇA et al., 2021) (QIU et al., 2020) (BACCIU et al., 2017) (YIN; WANG; JHA, 2018)(ALAHI; 

MUKHOPADHYAY, 2019) (SINGH; SINGH TOMAR, 2019) (HONTI; ABONYI, 2019) (REDDY; MAMATHA; 

REDDY, 2018) (DJENOURI et al., 2021) (AHMED et al., 2020) (POZA-LUJAN et al., 2020) (JIENAN; XIANGNING; 

SHUAI, 2021) (LIPPI et al., 2018) (VOICU; PETREUS; ETZ, 2020) (HAMAD et al., 2019) (JACOB et al., 2021) 

(ALSHAMSI et al., 2017) (XU et al., 2018) (ZHANG et al., 2021) (MAHAKALKAR et al., 2019)(MARKIEWICZ et al., 

2019) (GARCIA-MAGARINO; LACUESTA; LLORET, 2017)(GOMES et al., 2019).  

Interpretability  

(BERTOLI et al., 2021) (MCLAMORE et al., 2019) (PETRARIU; COCA; LAVRIC, 2021)  (SHENG et al., 2020) 

(AHMED et al., 2020)(JUNIOR, 2020) (ASTILL et al., 2020) (SAARIKA; SANDHYA; SUDHA, 2018) (SINGLA; BOSE, 

2018) (AKHTER et al., 2019) 

Integrity  
(KOLAR; BENAVIDEZ; JAMSHIDI, 2020) (AHMED et al., 2021) (TENG et al., 2019) (GADDAM et al., 2020) 

(MOURTZIS; MILAS; VLACHOU, 2018) 

Accuracy  

(KOLAR; BENAVIDEZ; JAMSHIDI, 2020) (YAMINI; GANAPATHY, 2021) (CUI, 2020) (VOICU; PETREUS; ETZ, 

2020) (ROMAN; ORDIERES-MERE, 2019) (YANG; SHARMA; KUMAR, 2021) (YEH; LIN, 2018) (KURNIABUDI et 

al., 2018) 

Security   (AHMED et al., 2021) (HONTI; ABONYI, 2019) (KHRAIS, 2020) (RAMÍREZ-MORENO et al., 2021a) (OSIFEKO; 
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HANCKE; ABU-MAHFOUZ, 2020) (PUNDIR; SANDHU, 2021)  

Adaptability  

Type of Sensors 

(Who)  

(GADDAM et al., 2020) (RUPPERT et al., 2018)(SHIT et al., 2018) (SOLANGI et al., 2018) (GIL et al., 2016) (ROZSA et 

al., 2016) (STEFANA et al., 2021) (YANG; WEI, 2019) (SONG et al., 2021)(MEERADEVI; MUNDADA; 

SANJAYKUMAR, 2018) (AKMANDOR; YIN; JHA, 2018)  

Usability  
(FIROUZI et al., 2018) (GUPTA, 2021) (VISHNU; JINO RAMSON; JEGAN, 2020) (GIL et al., 2016; STEFANA et al., 

2021) (ROZSA et al., 2016) 

Durability  (MCLAMORE et al., 2019)(PAL et al., 2020)  

Mobility  

Observation 

(Where When)  

(PETRARIU; COCA; LAVRIC, 2021) 

Availability  
(JESSE, 2018) (SEHRAWAT; GILL, 2019) (ABRISHAMBAF, 2020) (IQBAL et al., 2018) (SINGA; JADHAV; 

MATHEW, 2020) (RANA, 2020) 

Scalability  (GADDAM et al., 2020) (YAMINI; GANAPATHY, 2021) (PAL et al., 2020) (IQBAL et al., 2018) 

Monitorability 

(ABDEL-BASSET et al., 2020) (ULLO; SINHA, 2020) (KOCAKULAK; BUTUN, 2017; ULLO; SINHA, 2020) 

(TAMILSELVI et al., 2020) (RAMAKRISHNA et al., 2019) (PACHAYAPPAN; GANESHKUMAR; SUGUNDAN, 2020) 

(YAMINI; GANAPATHY, 2021) (GOMBA; NLEYA, 2018) (SOLANGI et al., 2018) (HAMAD et al., 2019) 

(KAMIENSKI et al., 2018)(SERIKUL; NAKPONG; NAKJUATONG, 2018)  

Communication efficiency  Capabilities 

(How)  

 

(DATTA; SHARMA, 2017) (YU et al., 2017) (FRANÇA et al., 2021)(JACOB et al., 2021)(PURRI et al., 2017)(WU; 

CHENG; WANG, 2020)(HAMMOUDI; ALIOUAT; HAROUS, 2018)(CABRA et al., 2018) (SILVA et al., 2019) 

(ABBAS; PRIYA, 2019) (URBINA et al., 2019) (WANG et al., 2019)  

Processing efficiency  

(CHEN et al., 2020)(YU et al., 2017)(HAMMOUDI; ALIOUAT; HAROUS, 2018)(GRECO; RITROVATO; XHAFA, 

2019)(MAITI et al., 2018)(PETRAKIS et al., 2018)(MARKIEWICZ et al., 2019)(KURNIABUDI et al., 2018)(URBINA et 

al., 2019)(CHAVHAN; KULKARNI; ZILPE, 2021)(CABRA et al., 2018; DIAMANTOULAKIS; KARAGIANNIDIS, 
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2019)(EICHSTÄDT et al., 2021)   

Storage Efficiency  
(SHARMA; KAUR; YADAV, 2021)(MOURTZIS; MILAS; VLACHOU, 2018)(HAMMOUDI; ALIOUAT; HAROUS, 

2018)(URBINA et al., 2019)(CHAVHAN; KULKARNI; ZILPE, 2021)  

Energy efficiency  
(SHARMA; KAUR; YADAV, 2021)(OSIFEKO; HANCKE; ABU-MAHFOUZ, 2020)(WU; CHENG; WANG, 

2020)(MALDONADO et al., 2018)(DIAMANTOULAKIS; KARAGIANNIDIS, 2019)(KAUR et al., 2017)  

Maintainability 
(PETRARIU; COCA; LAVRIC, 2021)(SONG et al., 2019)(RUSNACK, 2021)(HALDORAI; RAMU; SURIYA, 

2020)(SHARMA; KAUR; YADAV, 2021)(WU; CHENG; WANG, 2020)(CABRA et al., 2018)(URBINA et al., 2019)  
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3.6 Internet of Everything Database (IoEDB) 

IoEDB (https://ioe.cos.ufrj.br/) is an observatory created specifically for 

cataloging IoE applications and IoE enablers (sensors and actuators).  It is a Knowledge 

Management System (KMS) and a platform to conduct distributed and standardized 

curation of IoE initiatives, expanding the awareness about IoE enabler's interoperability 

and characteristics.    

IoEDB is framed within the theoretical background of the IoE Knowledge-based 

Taxonomy, proposed in this thesis. It is a serendipitous environment for knowledge 

creation as it aims to seamlessly provide the foundation from which researchers and 

developers work together to discover which characteristics of IoE Enablers (knowledge, 

type, observation, and capabilities) are functional and adequate for specific application 

design and expected outcomes. 

It is a collaborative platform that supports the liveness, evolution, and reusability 

(KOTIS; VOUROS; SPILIOTOPOULOS, 2020) of the IoE Knowledge-based 

Taxonomy, preserving it as a suitable live and dynamic artifact considering the IoE 

pervasive environment.  

The main contribution of IoEDB is the curation of IoE enablers (sensors, 

actuators, information, observation dynamics, and technology resources). Furthermore, 

the IoEDB project will provide participants to post their knowledge assets and to 

contribute to the evolution of the taxonomy, creating content related to IoE Initiatives.   

As the taxonomy is available online for collaborative improvement, the IoEDB 

will support its evolution in a top-down evolving process, from the fixed and most 

general categories (knowledge, type, observation, and capabilities) towards related 

dimensions and characteristics. From this, it is possible to classify contents, branching, 

and merging functionalities and features and allow to support multiple streams of work 

independent of each other.  Meanwhile, in the IoEDB platform, users get access to 

research and practice and smart sensors applications and business cases and connect 

with peers and users for the purpose of knowledge sharing.  

With the growing demand for smart sensors, it is important to address the 

challenge of creating knowledge sources that provide information about smart sensors 

and their application in a unified and concise way, regarding distinct domains and 

possibilities. Besides, IoEDB supports classifying smart sensors related to pre-defined 

https://ioe.cos.ufrj.br/
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smartness requirements and ranking knowledge of smart sensors related to these 

requirements presented in Section 3.5.  Figure 23 shows the IoEDB homepage. 

 

Figure 23 - IoEDB Homepage 

 

IoEDB is a web-based application that supports the collaborative design of 

hierarchical taxonomy structures. Developing a taxonomy usually depends on taxonomy 

management, and for this, efficient collaboration tools are needed to support the 

collaborative working task as the taxonomy needs to be maintained frequently by end-

users. To support the IoE Knowledge Management strategy, IoEDB is a content 

management system where content, information, and knowledge resources are 

appropriately categorized and can be browsed, searched, and accessed according to pre-

defined set of categories. 

Figure 24 and Figure 26 show an example of IoE Knowledge-based taxonomy 

(Explicitness and Structure), before and after its evolution in IoEDB.  
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Figure 24- Example of Knowledge category, before evolution 

 

Figure 25- Knowledge category - after the evolution 

 

Figure 26 exemplifies the evolution of the explicitness category. In this case, the 

implicit dimension evolved to address the definition of (SIOW; TIROPANIS; HALL, 

2018b). This demonstrates that IoEDB integrates research and practice information in a 

theoretical knowledge base.  
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Figure 26- Example of Knowledge category, after evolution 

 

Besides, IoEDB is a prototype for an IoE KM system. Content Management 

Systems (CMS) are usually mentioned along with KM for the creation and distribution 

of information. CMS is also about delivering functionalities for supporting knowledge 

management processes from different perspectives, such as knowledge identification, 

evaluation, sharing, and so on. 

The goal that is targeted in this thesis is to build a user-centered Taxonomy 

Management System via WordPress to support the curation of IoE enablers and support 

knowledge sharing between users and experts in the IoE community. For this, 

WordPress was selected because it is a free and open-source content management 

system developed in PHP (MySQL or MariaDB database).  

To support knowledge management in IoE, the IoEDB has its architecture 

divided into three layers: presentation, application, and storage layer as shown in Figure 

27. The Presentation layer is formed by the user interface, where users interact with the 

system. The Application layer is responsible for the entire management of the system: 

access controls, administrative actions, user management, module management, and 

plugins – these are implemented in a modular way, customizing plugins available on the 

platform. This modular implementation means that each functionality is isolated in a 

module, allowing the addition or removal of new functionality when necessary. The 

IoEDB database layer refers to WordPress standard DBMS, and external data from 

external data sources or databases.  
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Figure 27 - Architecture Layers 

 

IoEDB supports both information that can be automatically collected without 

user intervention - such as automated search - and information that requires active user 

contribution - for example, inserting IoE Enablers, uploading a diagram or photo, 

answering a survey, tagging a project or application.  

According to BOOCH et al. (1999), Use Case diagrams are essential to model 

the behavior of a system, and important for visualizing, specifying, and documenting 

the behavior of an element. The diagram in Figure 28 presents a set of use cases, along 

with their actors and relationships. A use case involves modeling the context of a 

system.  The list of IoEDB Use Cases – and their respective descriptions – are presented 

in Table 9.  
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Figure 28 - IoEDB use cases 

 

Table 9 – IoEDB Use cases description 

Entity Use Cases Description 

Administrator 
Manage user access Register users in the System 

System Administration Support CMS administrator 
Manage users Manage users roles 

User 

Search Content Search IoE Enablers and applications 
Insert Evaluation Evaluate available IoE Enablers 

Authentication User authentication 

Insert Comments Comment contents 

Share Content Share IoE contents 

Enabler Curator 

Curate IoE Enablers Manage registration information of IoE Enablers 

Manage IoE Enablers Insert IoE Enabler information 

Manage Taxonomy Manage the Taxonomy categories and dimensions  
Tag Contents Insert related tags 
Evaluate IoE Enablers Classify IoE enabler in categories and dimension 

 

❖ User roles 

Default CMS user roles were associated with each role in IoEDB: Administrator, 

Editor (as IoE Curator), and User (as a subscriber). WordPress default user's roles are used 

to grant permissions to enable or deny access to insert Enablers, posts, categories, tags, and 

insert content in the system.  

IoEDB Administrator manage users and the CMS System. The Users role are 

allowed to search for specific information in IoEDB, evaluate smart sensors (optionally), 

share content (optionally), and comment on posts 
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Figure 29-  User management screen 

 

❖ Comments 

The functionality of “Post Comments” provides an opportunity for knowledge 

sharing. The users’ comments are automatically posted in specific debate spaces (posts or 

pages). The comments are moderated by the system administrator. Furthermore, by 

selecting a comment, several buttons are made available to the user, allowing anyone to 

participate in the debate by posting messages, replying to previous ones, up or down to view 

others' commentaries. 
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Figure 30- Post comment screen 

 

❖ Taxonomy Management 

Besides the CMS administrator, there are 2 distinct user roles defined for IoEDB: 

the IoE Curator and the User.  

To insert new IoE enablers or dimensions in IoE taxonomy, the user must be 

registered in the system as a Curator (editor).   

Regular users are allowed to search for specific information in IoEDB or evaluate 

smart sensors regarding smartness requirements. 

As it can be seen in Figure 31, IoEDB provides its users with some information 

about IoE Enablers. To insert a new IoE Enabler, the curator must provide its name, 

description, proposition paper and classify it regarding IoE category and dimension and 

Besides providing basic information about the IoE Enabler, such as title and 

description, the Curator may also upload several different knowledge resources such as 

images, videos, documents (e.g., news, white papers), and links to other resources on 

the Internet (e.g., official website). The user can also inform the research paper 

published and information related to the URL. 
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Figure 32, Figure 33, Figure 34, Figure 35 and shows four images of the system 

that exemplifies the capacity of the system to serve as a knowledge repository about IoE 

Enabler classified related to the IoE taxonomies dimensions. The IoE categories and 

dimensions that can be selected by the User. 

After filling this information in the system, the user will save and publish IoE 

Enablers' information which will be available to any other user that accesses the system. 

 

 

Figure 31 - Add New Enabler screen 

 

❖ Using the Taxonomy 

Having accessed the main screen, which leads to the IoE Enabler main information, 

the user has access to two tabs. In the first one, titled “Knowledge”, the user is asked to give 

his opinion about the knowledge provided by the IoE Enabler, the level of trust, expecting 

outcomes provided, and if it supports automation or transformation of processes or tasks. 

The user can select one of the dimensions and related characteristics or use the +Add New 

link beside each category to insert a new dimension for the related category, evolving the 

taxonomy. It is also possible to search the most used dimensions in which previous users 

classified other IoE Enablers.  

It is important to remark that if a given user inserts a new dimension, the new one 

must be inserted considering the hierarchy of dimensions in the same category. 
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During the cataloging process, it is possible to realize the most used categories, 

contributing to achieving greater convergence of the selected dimensions or to provide 

innovative categories for newly observed IoE enablers characteristics. 

 

 

Figure 32- Knowledge Category and dimensions 

 

Figure 33- Type Category and dimension 
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Figure 34- Observation Category and dimension 

 

Figure 35- Capabilities category and dimensions 

 

❖ Tagging IoE Content  

The curator is allowed to tag the content or associate the enabler to specific tags in the 

system. 

 

Figure 36- Tag Cloud 
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Figure 37- Insert tag screen 

 

It is important to remark that if a dimension is too different from those available in the 

system, the user will be asked to justify his opinion in a brief description. Leaving a 

reference or theoretical foundation about the new dimension is also recommended for 

users to support a body of knowledge about the IoE Taxonomy.  

 

Figure 38- IoE DB insert new dimension screen 

 

❖ Posts and Forum 

Post and related forums are another functionality that is a platform for knowledge 

externalization and knowledge sharing about IoE related content. Curators can create 

posts and moderate its forums to support sharing of information about IoE Enablers. 
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The results of the moderated comments may create a serendipitous “debate” available 

both for users, experts, and the IoE community of interest. This space provides an 

opportunity for knowledge creation. 

 

Figure 39- Post screen 

 

❖ Taxonomy evolution screen 

For each dimension, the user can choose one or more items (characteristics) 

already available in the list of options or easily include a new dimension on the same 

screen where the application is cataloged. For example, Figure 40 shows the insert 

dimension screen on the IoEDB system. 

 

Figure 40- Insert new taxonomy dimension 
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Figure 41- IoEDB body of knowledge example 

 

❖ IoE Enabler Evaluation 

The application architecture allows the researcher to create IoE hierarchical 

classifications related to the IoE entity (the application). In this way, it is possible to 

associate the application with one or more IoE categories. 

From the IoE knowledge-based taxonomy dimensions, starting with the most 

general categories (knowledge, type, observation, and capabilities), the user selects 

dimensions and characteristics previously derived from a theoretical foundation, 

revealing the resulting IoE enablers composition for a given IoE application.  

The IoEDB platform shows IoE Enabler information and evaluation according 

to smartness requirements Figure 42. 
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Figure 42- IoE Enabler screen 

 

IoE Curator can evaluate IoE Enablers regarding requirements presented in 

Section 3.5. The score is calculated using a Rating Algorithm (Average or Bayesian 

Average).  
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Figure 43- Ranking IoE Enabler 

 

 

Figure 44- IoE Enabler ranking 
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4 Evaluation Phase 

 

This Chapter evaluates the proposed artifacts. In Section 4.1 e 

4.2, the IoE Knowledge-based Taxonomy is used to support 

identifying and ranking knowledge in IoE applications and 

smart sensors. Next, an approach for Quality of Service is 

presented to validate Smartness requirements proposed in 

Section 3.5 and demonstrates IoEDB functionalities for 

ranking knowledge in Smart Sensors. Finally, a fictitious case 

study with an IoE system in the military domain demonstrates 

the application of the IoE Integrated Knowledge Management 

Model to conduct a KM strategy.  

 

Evaluation of design artefacts provides feedback for further development and (if 

done correctly) assures the rigor and high academic standards and research quality 

(VENABLE; PRIES-HEJE; BASKERVILLE, 2016).  In DSR methodology, researchers 

must rigorously demonstrate the utility, quality, and efficacy of the design artefact using 

well-executed evaluation methods. However, on March 2020, the COVID-19 global 

pandemic had an unexpected and profound impact on our daily lives and so in this 

thesis research activities, especially in this final phase of Evaluation. The original 

observational study planned to evaluate the IoE IKM Model considering 3 case studies: 

in academia, industry, and military domains. Due to restrictions, the pandemic changed 

the evaluation to fictitious case study instead, presented in Section 4.3. And for 

evaluation of sensors smartness, the impact was mitigated by considering the evaluation 

of industry IoE sensors (Section 4.2). 

 

4.1 Ranking Knowledge in IoE Applications  

The IoE Integrated Knowledge Management Model, in its Second Quadrant: 

(Establishment (E) and Evaluation), defines that towards service evolution in IoE, 

sensors and actuators attributes (which contributes to knowledge creation) should be 
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qualitatively evaluated by a composition of characteristics in IoE applications. For this 

evaluation, selected categories (knowledge, type, observation, and capability) from the 

IoE knowledge-based taxonomy (FARIAS DA COSTA; OLIVEIRA; DE SOUZA, 

2021), support the qualitative analysis as follows: (a) knowledge sources regarding the 

kind of knowledge provided, (b) the type of sensors and actuators, (c) the observation 

within ever-changing contexts and (d) the technological capabilities of sensors.  

In this sense, specific elements, adapted from (GUTWIN; GREENBERG, 2004)  

were used to answer basic “who, what, where, when, and how” questions related to 

awareness of sensors and actuators in IoE context, as presented in Table 10. 

Table 10 - Categories and Elements of awareness applied to IoE domain 

Elements of workspace awareness IoE Taxonomy  

Category Element Specific questions Categories 

What Action 

Intention 

Artifact 

What are sensors doing? 

What are they willing to do? 

What kind of knowledge do they 

provide? 

Knowledge 

Who Presence 

Identity 

Authorship 

Who are the IoE enablers? 

Who is doing what? 

Who is the knowledge source? 

Type of sensors 

Where 

When 

Location 

Gaze 

Where are IoE enablers? 

When are they observing? 

Observation 

How View 

Reach 

How much can they see? 

How far they can reach? 

Capabilities 

 

The proposal depicted in Figure 45, presents four categories: knowledge, type of 

sensors, observation and capability, and detailed knowledge category in its dimensions 

(explicitness, outcome, action, trust, and structure (FARIAS DA COSTA; OLIVEIRA; 

DE SOUZA, 2021).  These dimensions are described below:  
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Figure 45 IoE Taxonomy: Knowledge Category 

 

To evaluate the IoE Knowledge-based taxonomy’s practical applicability and its 

benefits in evaluating knowledge in IoE applications to support the research goal of 

“leveraging awareness of the knowledge hierarchy, considering knowledge interaction 

and transformations of IoE enablers”.  The categories from (FARIAS DA COSTA; 

OLIVEIRA; DE SOUZA, 2021) and elements of awareness (GUTWIN; GREENBERG, 

2004) were considered and applied to the IoE domain, as presented in Table 10. 

For this, regarding knowledge category and characteristics of 40 applications 

observed by (MELO et al., 2017) in a Crowd Application Database 

(http://cadb.demoro.net).   

Participatory sensing enables ordinary citizens to share data (from personal 

experiences or the environment in which they find themselves). However, to understand 

the transformative potential of collaboration between people and things in IoE 

applications (M2P, M2M, P2P), there is a research gap, regarding insights into the 

characteristics of knowledge creation, actions, and transformations provided using IoE 

applications and the value created from people and things in this context. 

According to (MELO et al., 2017), there is a need to create mechanisms to 

ensure users the purpose of the use of their data or inform users that their data is being 

collected, to generate a sense of trust.  

Explicitness dimensions were chosen from the knowledge category of the IoE 

taxonomy proposed in (FARIAS DA COSTA; OLIVEIRA; DE SOUZA, 2021) because 

understanding and managing knowledge in IoE enablers are surely to be a key challenge 

in IoE applications systems. The selected sub-dimensions of the knowledge category 

http://cadb.demoro.net/


141 

(explicitness, outcome, and action) have specific attributes, which are the values that the 

sub-dimensions may take, as presented in Table 11.  

The selected questions are: “what kind of knowledge is provided by knowledge 

enablers”, to evaluate knowledge in terms of its “explicitness” to what degree of tacit, 

explicit, and implicit knowledge is used in IoE application.  Action dimension supported 

the evaluation of value created in IoE applications, provided in automation of processes 

and transformation of life in a disruptive environment.  And the intention of knowledge 

sources as collaborators (complements) or knowledge providers (substitutes) was 

evaluated in terms of Outcomes provided. 

The attributes are listed in Table 11, for the degree to which each characteristic 

contributes to the knowledge sub-dimension (explicitness, outcome, and action). To 

support qualitative evaluation, we defined attributes levels: 3 (high), 2 (moderate), or 1 

(low). We attributed 0 (zero) for not applicable attributes. 

Table 11 - Qualitative attribute levels 

Characteristic Attribute 

E
x

p
li

ci
tn

e
ss

 

(A
rt

if
a

ct
) 

 

Tacit 

3. high: participatory sensing and expert human knowledge 

2. moderate: crowdsourcing or thing-human collaboration 

1. low: opportunistic sensing 

Explicit 

3. high: expert and critical knowledge explicit in data sources 

2. moderate: support of explicit knowledge in data sources 

1. low: eventual use of explicit knowledge on demand 

Implicit 

3. high: discovery and predictive analytics, to predict future outcomes 

or prescriptive analytics to provide the best course of action and 

foresight on time 

2. moderate: diagnostic analytics to find out the root cause and 

explanations for the sensor data 

1. low: descriptive analytics when data are decoded, interpreted in 

context, 

O
u

tc
o

m
e 

(I
n

te
n

ti
o

n
) 

Complement 

3.  high: provide foresight on time considering uncertainty 

2. moderate: provide insights about what happened and context 

awareness 

1.  low give hindsight and information for decision-support 
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Characteristic Attribute 

Substitute 

3.  high: provide critical knowledge that leads to the best course of 

action to act on foresight promptly 

2.  moderate: provide knowledge using data to detect something novel 

to support decision making 

1.  low hindsight on what and why things have happened 

A
ct

io
n

 

(A
ct

io
n

) 

Automation 

3. high: automated without human intervention. 

2. moderate automated with little human intervention. 

1. low: physical components act as a connection bridge to network 

cyber-physical things. 

Transformation 

3. high: create pervasive and global cyber-physical systems (CPS) 

ubiquitous cyber-physical world 

2. moderate use of artificial intelligence, machine learning to support 

actions and services 

1. low data-intensive applications and services 

 

From the 40 applications analyzed from (MELO et al., 2017), a range of 11 top 

knowledge-intensive applications were selected: Noisetube  (MAISONNEUVE et al., 

2009), CenceMe (MILUZZO et al., 2008), MicroBlog  (GAONKAR et al., 2008), Ubifit 

Garden (CONSOLVO et al., 2008), GarbageWatch (ESTRIN et al., 2010), Galaxy Zoo 

(MASTERS et al., 2011), eBird  (WIGGINS, 2011), SenSay (SIEWIOREK et al., 

2003), Jog Falls (NACHMAN et al., 2010), MobAsthma (KANJO et al., 2009) e 

Transafe (HAMILTON et al., 2011). This evaluation was presented in CSCWD 2021  

- Noisetube (MAISONNEUVE et al., 2009) is a people-centric data 

collection application. The main fact is that people play an important 

role in perceiving what they consider annoying noise.  

- In Micro-Blog (GAONKAR et al., 2008), the transformation is provided 

by “the collaborative inputs from phones” that “may enable a high-

resolution view of the world”.  It is a people-centric application that 

uses sensors of participatory/sensory inputs from local surroundings. 

Micro-Blog can be a deployable tool for sharing, browsing, and 

querying global information.  
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- In CenceMe (MILUZZO et al., 2008), it is important to note the 

“different degrees of a user’s sensing presence”.  It exploits off-the-

shelf sensor-enabled mobile phones to automatically infer people’s 

sensing presence. It is a device-centric application with sensing and 

classification algorithms. 

- In Ubifit Garden (CONSOLVO et al., 2008), the activity inference (data) 

and the mobile display (thing) “encourage physical activity” for people 

in on-body sensing, activity inference. 

- In Garbage Watch (ESTRIN et al., 2010), people are actuating in 

“capturing relevant information to improve the recycling program”. 

These systems can be leveraged by individuals and communities to 

address a range of civic concerns, from safety and sustainability to 

personal and public health. 

- In Galaxy Zoo (MASTERS et al., 2011), the knowledge sharing between 

astronomers and users' activities is the value created by the application, 

optimizing the classification of shapes in contrast to a completely 

automated approach and classifications. 

- For eBird (WIGGINS, 2011), knowledge sharing with a global 

community of educators leads to a better understanding of bird 

distribution. eBird is an online checklist program that enables reports 

and access to information about birds, promoting improved scientific 

outcomes. 

- SenSay (SIEWIOREK et al., 2003) provides communication between 

people and the application (things). The application makes suggestions 

to users so that they can make better decisions about their lives. It 

combines sensory data, user information, and history information to 

create a context-aware phone. 

- Jog Falls (NACHMAN et al., 2010) connects expert users (nutritionists) 

with their patients. The application works closely with physicians. The 

main goal of the system is to empower patients to manage their 

lifestyles. 
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- In MobAsthma (KANJO et al., 2009), the patients’ locations are made 

available (by things) to allergists and asthma specialists (people) to 

investigate the personal relationships between asthma attacks and 

exposure to air pollution (data). 

- Transfer (HAMILTON et al., 2011) captures and analyses public 

perceptions of safety to deliver `crowdsourced' collective intelligence 

about places.  

These applications are intrinsically composed of knowledge-intensive tasks for 

the expected purpose and value creation. The transformations or automation provided 

by these applications consists of conversions of tacit-explicit-implicit knowledge when 

people, things, and data are connected in the IoE environment to provide relevant 

services and collective intelligence.  

Application characteristics were analyzed, evaluated the degree of tacit, explicit, 

and implicit knowledge, and identified the requirements for value created by the IoE 

applications about its expected outcomes and actions supported by intelligence in the 

IoE network. This analysis will support future IoE application requirements. While 

many of these applications provide useful features, this work has demonstrated that 

there are still gaps in fully addressing ranking knowledge in IoE applications. 

Considering the IoE knowledge-based taxonomy categories (explicitness, outcome, and 

action), this conceptual analysis facilitates the visual comparison of how knowledge 

contributes to the value creation of the applications surveyed, as illustrated in Figure 46, 

Figure 47, and Figure 48.  

 

Figure 46 - Explicitness evaluation 
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Figure 47 - Outcome 

 

As presented in Figure 48, in Galaxy Zoo, the knowledge sharing between 

astronomers (experts) and users' activities (wisdom of the crowd) and implicit 

knowledge in artificial intelligence and systems of its domains reflects in the value 

created by the Galaxy Zoo application, representing the highest rank of knowledge 

between the applications considered in this study. 

 

Figure 48- Knowledge ranking in IoE applications 
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4.2 Ranking knowledge of Smart Sensors in Industrial Internet of 

Things 

The IoE Integrated Knowledge Management Model, in its Second Quadrant: 

(Establishment (E) and Evaluation), defines that, to support intelligent services in the 

IoE context, sensors and actuators attributes should be qualitatively evaluated by a 

composition of characteristics that contributes to knowledge creation. 

The following evaluation is limited to electronic sensors and actuators used in 

Industry 4.0. Considering the definitions of smart sensors discussed in Section 2.2, 

characteristics were selected to characterize an intelligent sensor or actuator. The IoE 

Taxonomy dimensions were selected from Knowledge, Type, and Capability categories, 

and, from them, seven characteristics were also chosen according to their semantic 

value for intelligence classification of smart sensors.  

Figure 49 presents IoE Knowledge-based taxonomy and the selected dimensions 

are represented in yellow. 

 

Figure 49 - Selected  dimension in yellow 

 

Regarding Knowledge category: 

• Outcome: Refers to what extent smart sensors contribute to value creation and 

IoE intelligent services. Smart sensors contribute to knowledge creation (in 

collaboration processes) or may represent the main knowledge sources of the smart 

environment, substituting all others. 
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• Action: Refers to knowledge in action. Smart sensors may support the 

automation of processes or may be a main driver of the IoE transformation experience.  

• Structure: Refer to raw data, and data transformations supported by smart 

sensors. Sensor data may be unstructured, semi-structured, or structured. 

Regarding Type category 

• Role: Refers to smart sensors task as sensors or actuators, perform sensing 

and/or actuating functions and according to defined rules under various scenarios.  

Regarding Capability category 

• Communication: Refers to sensors' ability to communicate and change local 

information. It varies from device to device, device to server, or server to server. 

• Processing: Refers to sensor's ability to process data locally or in the cloud/fog 

or edge infrastructure. 

• Storage: Refers to the storage capacity of sensors at cluster-level, network-

level, or device-level. 

The evaluation will apply metrics to evaluate smart sensors. It is assumed that 

when a feature adds little relevance to the smart status, it receives a score of 1, when the 

contribution is median, it receives a 2 score, and when it is relevant and contributes to 

overall smartness it receives a 3 score. The scores and classifications are presented in 

Table 12.  The scores and definition are empiric values just to demonstrate the IoE 

knowledge-based taxonomy applicability and future research will address formal 

evaluation methods. 

Table 12 - Score values 

IoE knowledge-based Taxonomy 

Score 

1 2 3 

K
n

o
w

le
d

g
e 

Outcome Complement Substitute Both 

Action Automation - Transformation 

Structure Unstructured Semi-structured Structured 

T
y

p
e Role Sensor Actuator Both 

C
a

p
a

b
il

it
y
 

Communication Device to device Device to server Server to server 

Processing Local Fog Cloud 
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IoE knowledge-based Taxonomy 

Score 

1 2 3 

Storage Device-level Network-level Cluster -level 

 

The maximum intelligence score that a sensor may reach is 21 points, given that 

it will receive 3 points for having at the highest level (related to 7 taxonomy 

dimensions). Similarly, the minimum score will be 7 points for having only the 

minimum requirements (1 point for each dimension). From this score range (7 to 21 

points), the intelligence level was divided into three levels: low intelligence (low), 

medium intelligence (medium), and high intelligence (high). The metrics and 

intelligence levels are shown in Figure 50 

 

Figure 50 - Scores of smartness and intelligence levels 

 

To exemplify the qualitative approach to evaluate the degree of intelligence in 

smart sensors, sensors from different categories were selected, with distinct 

characteristics and application domains: image sensors, temperature sensors, proximity 

sensors, speed sensors, and sound sensors. 

1. Image Sensors: Image sensors convert electrical signals triggered by light 

into optical form to display or store the images electronically. Examples are digital 

cameras, night vision cameras, radar, sonar, thermal imaging, biometrics 

(SEHRAWAT; GILL, 2019). 

Table 13 - Case Study with Image Sensors 

Relevant IoE dimensions 

and characteristics * 

Smart Sensor 

FH Series Vision 

System OMRON 

Industrial 

SENS Vision Sensor 

with CVU 

Processing Unit 

IMX500 

Intelligent Vision 

Sensor 

Knowledge Outcome Both Complement Complement 
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Relevant IoE dimensions 

and characteristics * 

Smart Sensor 

FH Series Vision 

System OMRON 

Industrial 

SENS Vision Sensor 

with CVU 

Processing Unit 

IMX500 

Intelligent Vision 

Sensor 

Action Transformation Automation Automation 

Structure Structured Structured Structured 

Type Role Both Sensor Sensor 

Capability 

Communication Server to server Device to server Device to device 

Processing Local Edge Edge 

Storage Device-level Device-level Device-level 

Final Score 19 (high) 12 (Medium) 11 (Low) 

* Dimensions selected from IoE Knowledge-based Taxonomy 

 

2. Temperature Sensors: According to (SEHRAWAT; GILL, 2019), these 

sensors are useful to detect physical changes in the body and objects, also measuring 

their thermal energy. They are also used for monitoring environmental conditions in 

certain locations. 

Table 14 - Case Study with temperature sensors 

Relevant IoE dimensions 

and characteristics * 

Smart Sensor 

Govee Indoor 

Bluetooth 

Thermometer 

Hygrometer 

Thermostat Nest 

Learning Google 

T3007ES 

Temperature 

Sensor Google 

Nest T5001SF 

Knowledge 

Outcome Both Substitute Complement 

Action Automation Transformation Automation 

Structure Structured Structured Structured 

Type Role Both Both Sensor 

Capability 

Communication Device to device Device to device Device to device 

Processing Edge Cloud Fog 

Storage Device-level Cluster-level Network-level 

Final Score 14 (Medium) 15 (Medium) 11 (Low) 

* Dimensions selected from IoE Knowledge-based Taxonomy 
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3. Proximity Sensors: According to (SEHRAWAT; GILL, 2019) proximity 

sensors are those that detect objects or people within a certain location. There are 

different types of proximity sensors such as inductive, capacitive, ultrasonic, 

photoelectric, magnetic, etc. To classify the taxonomy, three proximity sensors with 

different degrees of use were selected. 

Table 15- Case Study with proximity sensors 

Relevant IoE dimensions 

and characteristics * 

Smart Sensor 

Xiaomi intelligent 

wireless motion 

detector sensor 

XM389BRA 

Industrial 

Reflective 

Infrared Sensors 

E18-d80nk 

Arduino 

AGL presence 

sensor 

 

Knowledge 

Outcome Complement Substitute Complement 

Action Automation Automation Transformation 

Structure Structured Structured Structured 

Type Role Sensor Sensor Both 

Capability 

Communication Device to device Device to device Server to server 

Processing Edge Fog Edge 

Storage Network -level Cluster-level Network-level 

Final Score 12 (Medium) 9 (low) 20 (high) 

* Dimensions selected from IoE Knowledge-based Taxonomy 

4. Speed sensors: According to (SEHRAWAT; GILL, 2019), speed sensors are 

sensors that calculate the rate of change in measuring the position of objects or people. 

Three-speed sensors with different degrees of use were selected  

Table 16 - Case Study with Speed sensors 

Relevant IoE dimensions and 

characteristics * 

Smart Sensor 

Cadence Speed 

Sensor Garmin 

Training Roller 

Zwift Gps Bike 

24 Pulse Street 

Fighter Drum Speed 

Sensor 

Bryton Smart 

Speed Sensor 

Knowledge 

Outcome Complement Complement Complement 

Action Transformation Automation Transformation 

Structure Structured Structured Structured 

Type Role Both Sensor Both 

Capability Communication Server to server Device to device Server to server 
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Relevant IoE dimensions and 

characteristics * 

Smart Sensor 

Cadence Speed 

Sensor Garmin 

Training Roller 

Zwift Gps Bike 

24 Pulse Street 

Fighter Drum Speed 

Sensor 

Bryton Smart 

Speed Sensor 

Processing Edge Edge Edge 

Storage Network -level Cluster-level Network-level 

Final Score 12 (Medium) 9 (low) 20 (high) 

* Dimensions selected from IoE Knowledge-based Taxonomy 

 

5. Sound Sensors: The sound sensor is used to receive acoustic waves and 

display the sound vibration image. It usually has a built-in capacitive microphone that is 

sensitive to sound. The microphone vibrates with the acoustic wave, resulting in a 

change in capacitance and subsequent micro voltage.  

Table 17 - Case Study with sound sensors 

Relevant IoE dimensions and 

characteristics * 

Smart Sensor 

Smart Sensor 

AS834+ Industrial 

Noise Meter Sound 

Level Meter Decibel 

Detector 

Polysense sound 

smart sensor 

wxs8800-004b (30-

130db range 

environmental 

indoor) 

Pepperl Fuchs 

industrial 

ultrasonic sensor 

24V 25-400mm 

 

Knowledge 

Outcome Complement Complement Complement 

Action Automation Transformation Automation 

Structure unstructured unstructured unstructured 

Type Role Sensor Actuator Sensor 

Capability 

Communication Device to device Device to server Device to device 

Processing Edge cloud Edge 

Storage Device-level Cluster-level Cluster-level 

Final Score 11 (Low) 9 (Medium) 20 (High) 

* Dimensions selected from IoE Knowledge-based Taxonomy 
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4.3  Quality of Service (QoS) approach for ranking knowledge in 

smart sensors 

The IoE Integrated Knowledge Management Model, in its Second Quadrant: 

(Establishment (E) and Evaluation), defines that, to support the evolution of intelligent 

services in the IoE context, awareness of IoE Enablers is essential. And Section 3.5 

presented requirements for smart sensors in IoE applications, supported by theoretical 

background. These requirements may be translated to evaluate the quality of intelligent 

services (QoS) in IoE applications.  

The satisfaction of QoS requirements is critical in diverse application areas. 

Smart sensor nodes sense the dynamic environment in which it is deployed and gather 

the information for different applications such as industrial monitoring, wildlife fire 

tracking, agricultural monitoring, defense system (PUNDIR; SANDHU, 2021). To 

address the dynamic and nature of knowledge provided by smart sensors (including 

humans) a specific knowledge management approach is required. In this sense, the IoE 

Knowledge-based Taxonomy (Section 3.2) aims to identify and categorize sensors, their 

attributes.  

The parameters of QoS in IoE applications are categorized into IoE Knowledge-

based taxonomy categories goals:  

• To support Knowledge goals: Effectivity, Interpretability, Integrity, 

Accuracy, and Security.  

• To support Sensor’s characteristic (Type) goal Adaptability, Usability, 

and Durability.  

• To support Observation capability’s goal: Mobility, Availability, 

Scalability, and Monitorability.  

• To support Technological Capabilities goal: Communication efficiency, 

Processing efficiency, Storage Efficiency, Energy efficiency, and Maintainability. 

QoS parameter is classified based on measurability (PUNDIR; SANDHU, 2021) 

in functional parameters (which can be measured considering a specific range) and non-

functional (non-measurable parameters). 

For a holistic approach, this work applied non-functional parameters of the QoS 

that cannot be measured using Likert-type Scales (COOK et al., 2001). To provide a 
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quantitative characterization of the intelligence in Smart Sensors, Likert-type Scales 

were adopted that evaluates the perceived attendance of the requirements of the smart 

sensor as an IoE Enabler.  

As a KM System IoEDB (presented in Section 3.6) supports comparative 

assessments of smart sensors their strengths and weaknesses related to smartness 

defined.  

The smart sensors collaboration in machine-to-machine (M2M) technologies are 

the first phase of the IoE, with collaboration and knowledge creation with human and 

non-human sensors collaboration to deliver automated intelligent applications. In 

addition, a challenge in this domain is to support the control and orchestration of 

intelligent sensors (things and people) embedded in smart systems. As future research, 

IoEDB may be used as a platform for the curation of sensors and actuators, summarized 

in terms of its intelligence levels as presented in Figure 51. 

 

Figure 51- IoEDB Knowledge Ranking page 

 

The IoEDB supports cataloging IoE Enablers related to smartness requirements 

and Communication Efficiency. The IoE Integrated Knowledge Management Model 

(Section 3.4) presented the approach for the evaluation of the Interoperability Maturity 

Assessment (IMA) that is the ability to exchange and use information during 

internalization (support self-learning) and combination of knowledge in H2H, M2H, 

and M2M interactions.  
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Figure 52- Ranking knowledge of IoE Enablers 

 

 

4.4 Planning IoE Integrated Knowledge Management Model 

evaluation 

In preparing for digitalization, the Brazilian government issued the Brazilian 

Digital Transformation Strategy (E-Digital), the strategy coordinates different 

governmental initiatives to further the digitalization process to enable economic growth 

and societal benefits (MCTIC, 2018). In the military field, digital government strategy 

regards Defense Preparation Transformation of public services offered by the Army, 

Navy, and Air Force (SCHEDLER; GUENDUEZ; FRISCHKNECHT, 2019). During 

peace, crisis, or conflict situations, intelligence activity is crucial to assist the decision-

making process of political and military authorities and support the planning and 

conduct of military operations (BRASIL - ESTADO-MAIOR CONJUNTO DAS 

FORÇAS ARMADAS, 2020) necessary for the global age dynamics (FARIAS; 

OLIVEIRA; SOUZA, 2009). IoE applications support intelligence activities and 

situational awareness in military operations. The use of intelligent sensors (things and 
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humans) and data analysis enhances the intelligence scenario and supports decisive 

actions to influence operations. To support knowledge acquisition plans of military 

intelligent services during situations of peace (SCHEDLER; GUENDUEZ; 

FRISCHKNECHT, 2019), this work analyzed how military IoE applications should 

benefit from the collaborative classification of IoE enablers, using the IoE knowledge-

based taxonomy (FARIAS DA COSTA; OLIVEIRA; DE SOUZA, 2021) in the IoE 

Database, and from a IoE KM strategy supported by the proposed IoE Integrated 

Knowledge Management Model.  

 

Figure 53- IoE Monitoring System 

 

IoE Integrated KM Model applied in a military context 

As a fictitious case study, this section will consider that the Brazilian Navy, in 

partnership with government agencies, coordinates the implementation of the Ocean 

Monitoring System. The referred system was selected as an example and case study 

because Monitoring Systems are tools for governance that contribute to developing 

technological capabilities for societal benefit and value co-creation. The information is 

used in this case study is available at IoEDB (https://ioe.cos.ufrj.br/?enablers=navy-

monitoring-system). The IoE System will integrate a network of terrestrial and maritime 
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sensors (humans and things), command and control centers, environmental monitoring, 

and information fusion from several collaborative marine monitoring systems.  

Knowledge Management in military operations is paramount (FARIAS; 

OLIVEIRA; SOUZA, 2009). In this context, Servitization (with Serendipity focus) 

applied to the Monitoring System is a business model in which collaborative marine 

monitoring systems (providers) deliver their products as services, in this case, especially 

intelligent services (GOBBLE, 2018), and may benefit from serendipitous M2M and 

H2M interactions. For instance, when sensors are used to transmit environmental data 

from a marine monitoring system, that is digitization. When that transmitted data is used 

to respond promptly to any threat or environmental disaster and improve the Navy 

mission to monitor and control areas of Brazilian responsibility, it is digitalization. So 

Servitization is an operational model powered by digitalization (in IoE) and knowledge 

management.  

Reinforcement (R) and Governance in IoE come from the allocation of decision 

control to guide and organize the intelligent service activities. It defines the regulatory 

context that includes social competencies and technological capabilities to 

institutionalize service systemic evolution. Governance for digitalization in military 

activities is integrated and supported by the reference model for the decision-making 

process in military command and control (C2), which integrates intelligence and 

decision to ensure the coherence of the action-oriented outcomes (BRASIL - ESTADO-

MAIOR CONJUNTO DAS FORÇAS ARMADAS, 2020).  

Intelligence activity for joint operations that combine Army, Navy, and Air 

Force (BRASIL - ESTADO-MAIOR CONJUNTO DAS FORÇAS ARMADAS, 2020) 

adopts an Intelligence Cycle, called the OODA (Observe, Orient, Decide, Act) loop.  

The IoEDB as a platform for curation and cataloging of IoE Enablers may 

support command and control centers in awareness of resources available in the IoE 

context. Especially during the military observation phase of the OODA cycle, IoEDB 

may support operation planning providing a collaborative classification of knowledge 

sources: the network of terrestrial and maritime sensors (humans and things), their 

observations capabilities, and technology resources and trends.  

Additionally, to validate conceptually the IoE Integrated KM Model proposed in 

this work, the benefits of the proposed service evolution approach were analyzed to 
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support intelligent services in military joint forces activities. The intelligence activities 

of the military (C2) consist of intelligent services centered on intangible elements, so the 

IoE Integrated KM cycle starts from the second quadrant, Establishment (E), and 

supports the military (C2) OODA loop as follows: 

• Observe: Refers to Intelligence Establishment through knowledge internalization 

and learning. In the IoE context, joint operation planning regards artificial 

intelligence system and their relationships with human sensors. Intelligence 

enablers are sources and systems used to observe, perceive, and transmit 

information about conditions, situations, and events, which will allow the 

acquisition of critical knowledge to the Operations Command.  It refers to First 

Quadrant: Servitization (S) and Serendipity 

• Orient: Refers to Intelligence Reinforcement through knowledge socialization. 

Intelligence Needs (IN) are knowledge gaps that clarify the uncertainties that 

may influence the decision-making process. Intelligence must be supported by 

integrating all sources in the knowledge production process through the 

Knowledge Acquisition Plan (KAP) (OURIQUES et al., 2019)(BRASIL - 

ESTADO-MAIOR CONJUNTO DAS FORÇAS ARMADAS, 2020). It refers to 

Second Quadrant: Establishment (E) and Evaluation 

• Decide: Refers to Intelligence Infrastructure through knowledge externalization 

to minimize or eliminate uncertainties that involve any decision-making process. 

Joint forces must develop actions under permanent monitoring and systematic 

exploration. The intelligence activity must have a governance committee to guide 

the codification of conventional rules aligned with implicit shared values (PITT; 

OBER; DIACONESCU, 2017). It refers to the Third Quadrant: Reinforcement 

(R) and Governance. 

• Act: Refers to preparing technological infrastructure for intelligent service 

delivery (Servitization) and knowledge combination where collective action is 

composed of collective decision (knowledge aggregation), collective 

coordination (knowledge alignment), and collective memory (knowledge 

codification). The focus is on acting intelligently in terms of an ideal 

performance called rationality. So AI acts to achieve the best result or 

uncertainty, the best-expected result (PASCHEN; KIETZMANN; 
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KIETZMANN, 2019) combined with human intelligence. Fourth Quadrant: 

Infrastructure (I) and Technology. 

In an attempt to offer some preliminary validation for the practicality of this model, a 

qualitative methodological approach to understanding how IoE enablers are utilized 

by Monitoring System designers /employees/customers/ managers and how the 

knowledge obtained from it creates value in the IoE context. By applying concepts 

that are deeply rooted in knowledge management literature, the intention was to 

focus on the phenomenon rather than constructs or variables.  

In the evaluation emphasizes the application of the IoE Integrated KM Model in IoE 

to derive actionable knowledge from it.  
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Table 18- IoE Integrated KM Model case study 

Service Cycle 

Process IoE Enabler Knowledge Knowledge Process Contextual recommended activities 

Servitization (S) 

And Serendipity 

Tacit:  

Society and military human 

sensors 

 
Explicit: 

Plans, Rules, Regulations, and 

Data Sources  
Environmental data from a 

marine monitoring system 

 
Implicit:  

Intelligent sensors (things) and 

Data analysis 
Analysis of situational 

awareness in military operations  

Combination 

H2M and M2M knowledge 

flows 
 

Internalization: 

Machine Learning. Self-
learning and Organizational 

Learning  

 
 

Acquisition 

Acquisition of critical knowledge to the Operations Command. 

Instrumentation intelligence due to IoT based, military sensor networks and the semantic web, 
Enable smart systems to socialize with the user and understand its social context. 

Analyze big data generated by IoT devices as a rich source of the user’s context. 

Analyze generated social data to achieve collective intelligence (eg. using joint military operations) 

Maintain context-awareness in joint operations considering social relationships in M2M and H2M interactions. 

Maintain context-awareness of infrastructure capabilities as well as information semantic perspective. 

Utilization. 
Sources and systems used to observe, perceive, and transmit information about conditions, situations, and events 

Transmitted data is used to respond promptly to any threat or environmental disaster and improve the Navy mission  

providing real-time  information 
Data from alerts and forecasts, 

Personalized services and customized content according to the operation’s social context. 

Use of artificial social agents to generate and manage actionable knowledge within the IoE environment. 
Allow devices in the execution of automatic tasks without the involvement of the humans 

Support collaboration and cooperation between IoE devices and interoperability of services on behalf of the humans. 

Interact with big data tools and other analytical software to gain the experience 
Learning 

Support flexibility of learning and knowledge. 

Cultivate processes of meta-learning (learning how to learn) 
Allow sensors and actuators to take advantage of knowledge and experience to perceive and interact with the IoE environment. 

Cultivate learn by doing (related to sensors and actuators environment) 

Support domain adaptation to allow models to be trained over exhaustive datasets of a dynamic environment 
Support end-to-end learning approaches to train the decision-making pipeline from perception to action 

Establishment (E) 

And Evaluation 

Tacit:  

Command and control centers 

intelligent sensors (humans) 
Explicit: 

Joint operation planning  

Plans, Rules, Regulations, and 
Data Sources  

Implicit:  

Intelligent sensors (things) 
Data analysis 

Analysis of situational 

awareness in military operations 

Internalization 

Machine Learning. Self-

learning and Military training 
operations 

 

Socialization 

Artificial intelligence systems 

Network of terrestrial and 

maritime sensors (humans and 
things) 

Joint Operation Centers  

 

Identification 

intelligence Orchestration  

Maintain context-awareness and record the resulting interactions through learning by doing. 

Understand environment monitoring context’s semantic and customize the services and applications accordingly. 
Identify potential M2M and M2P interactions in the monitoring environment (physical or cyberspace)  

Evaluation  

Maximize the system knowledge about the social dimension of the users and machines. 
Maximize context-awareness of knowledge in IoE applications, computational capability perspective as well as information 

semantic reasoning perspective. 

Support knowledge acquisition plans of military intelligent services, through environmental monitoring 
Integrate knowledge tasks that are distributed among the population, the institutions, and infrastructures 

Support partnership with government agencies and coordinates the implementation of joint monitoring  

Support information fusion from several collaborative marine monitoring systems.  
Plan military operations 
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Service Cycle 

Process IoE Enabler Knowledge Knowledge Process Contextual recommended activities 

Reinforcement 

(R) and 

Governance 
 

Tacit:  
Command and control centers 

Intelligent sensors (humans)  

The joint forces governance 
committee  

 
Explicit: 

Joint operation planning  
Plans, Rules, Regulations, and 

Data Sources  
Knowledge Acquisition Plan 

(KAP) 
 
Implicit:  

Intelligent sensors (things) 
Data analysis 
Analysis of situational 

awareness in military operations 

 

Externalization 

Knowledge Acquisition Plan 

(KAP) 

Joint operation planning  
Plans, Rules, Regulations, and 

Data Sources  

Curation of a live knowledge 
network of IoE Enablers 
 

Socialization 

Artificial intelligence systems 

Network of terrestrial and 

maritime sensors (humans and 
things) 

Joint Operation Centers  

 

Update 

Intelligence Empowerment  
Create a social relationship network between sensors and actuators (M2M, H2M, H2H). 

Support a live knowledge network, as the observed nodes' activities and profiles change over time due to IoE environment 

dynamics. 
Develop machines’ thinking abilities side-by-side with their social integration abilities. 

Maintain tight coupling of AI techniques merged with the humans´ and machines’ social context. 

Cultivate a serendipitous environment through the collaboration of IoE devices. 
Protection  

Improvements of human skills (military, joint forces, and society) and know-how to minimize or eliminate uncertainties that 

involve any decision-making process 
Evaluate the trust level of IoE sensors (human and machines) and IoE applications and infer the reliability among devices. 

Implement a social privacy preserving scheme to support trust. 

Protect sensitive information to support the customization of offered services. 
Provide a knowledge protection strategy on behalf of critical knowledge identified for IoE applications.  

Governance 

Support a governance strategy and control to leverage intelligent connections in IoE applications 
Maintain awareness of governance paradox and promote service innovation  

Define governance directives to support an evolving degree of reconfiguration of roles and responsibilities based on the 

codification of conventional rules aligned with implicit shared values  
 

Infrastructure (I) 

And technology 

Tacit:  

Command and control centers 

Intelligent sensors (humans)  

The joint forces governance 

committee  

 
Explicit: 

Joint operation planning  

Plans, Rules, Regulations, and 
Data Sources  

Knowledge Acquisition Plan 

(KAP) 
 

Implicit:  

Intelligent sensors (things) 
Data analysis 

Analysis of situational 

awareness in military operations 

Externalization 

Knowledge Acquisition Plan 

(KAP) 
Joint operation planning  

Plans, Rules, Regulations, and 

Data Sources  
Curation of a live knowledge 

network of IoE Enablers 

 
Combination 

H2M and M2M knowledge 

flows 

 
 

Storage 
Support data management activities at the unit IoT level, involving pre-processing and filtering tasks, such as data aggregation 

and data compression.  

Support IoT sensor data acquisition IoT and complements it with external data such as open linked data and knowledge graphs 
or codified knowledge from data sources 

Transfer  

Support social networks and IoT to the scalability of interconnected sensors and actuators. 
Support service recommendation system to leverage the social relationships and serendipity in IoE interactions (M2M , H2M 

and H2H). 
Support a social connected community of sensors and actuators 
Integrate communication and processing technologies near end-user devices 
Improve the network performance, reducing unnecessary network traffic and increasing the throughput  
Provide state-of-the-art technologies, software, databases, and repositories acting intelligently in terms of an ideal performance 
called rationality 
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5 Conclusion and future research 

Nevertheless, to entirely understand the transformative potential of collaboration 

between people and things in IoE applications, this thesis addressed the research gap of 

defining a KM strategy to support people and machine knowledge flow towards IoE 

value creation and intelligent services. This work contributes to the development of a 

knowledge-based taxonomy related to IoE applications, which will guide both interested 

researchers in this field, as well as application developers, in the design of knowledge-

intensive IoE services. The proposed taxonomy is extendable: it allows for the inclusion 

of additional dimensions and new characteristics within the IoE paradigm and other 

emerging paradigms under the IoE umbrella or concerned with intelligent network 

connections. Thus, I believe there is still significant room for future research and work 

on this topic. 

The main contributions are (i) a novel knowledge-based IoE taxonomy which 

provided guidelines and a comprehensive overview of the topic, (ii) the proposition of a 

platform to conduct distributed and standardized curation of IoE initiatives capable and 

allowing the collaborative evolution of the dynamic IoE knowledge-based taxonomy; 

(iii) development of the IoE Integrated Knowledge Management Model to address 

specificities of IoE KM, (iv) expanding the awareness about IoE enablers through a 

knowledge base focused on this topic, this thesis presented intelligence requirements for 

smart sensors so that it supports qualitative evaluation of smart sensors intelligence.  

The goal of this thesis is to contribute to value creation in the adoption of IoE 

applications by developing a model that allows the knowledge identification of IoE 

Enablers regarding intelligence and efficiency in supporting the IoE lifestyle.  

5.1 Reviving Research Questions 

The trajectory of the research for the thesis started with a comprehensive 

exploration of the Internet of Everything paradigm and related challenges. 

My interest in KM research started back in my master's degree thesis about 

knowledge management applied to organizations. At that time, the challenge was to 
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drive knowledge creation and learning through a knowledge management strategy with 

a focus on learning and knowledge sharing in human-to-human interactions.  

Since then, challenges with the advent of the Internet of Thing is much more 

than just about connecting the unconnected and using things on behalf of humans. But 

the Internet of Everything challenge presents a new era, where things are self-governing 

without human intervention. I identified research gaps in modeling knowledge sharing 

between people and things for knowledge creation. Where self-* behavior of humans 

and machines, will drive serendipitous opportunities for knowledge creation, and a KM 

strategy will support conducting service evolution and improvement. This exploration 

of the IoE paradigm and my background in knowledge management made me decide 

that the best contribution that I could give in this field of research would be to organize 

a body of knowledge about the IoE paradigm considering previous studies related to IoT 

paradigms and somehow help society coping with the impact and benefiting from the  

IoE Lifestyle.  

RQ1: How to apply knowledge management strategy in the context of IoE 

with a focus on collective intelligence and knowledge flows between M2M, P2P, 

and M2P interactions? 

This work contributes to IoE KM research, with the development of the IoE 

Integrated KM Model that addresses KM research and Service Science on behalf of an 

IoE KM strategy for intelligent services evolution. 

RQ2: How to promote service enhancement and evolution in the IoE 

context to deliver greater value to connected society?  

This work contributes to the development of a knowledge-based taxonomy 

related to IoE applications, which will guide both interested researchers in this field, as 

well as application developers, in the design of knowledge-intensive IoE services. 

RQ3: How to identify and evaluate (rank) knowledge sources in the IoE 

context? 

This thesis presented requirements for smart sensors in IoE applications, 

supported by theoretical background. These requirements may be translated as a means 

to evaluate the quality of intelligent services (QoS) in IoE applications.  
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5.2 Limitations 

The work presented in this thesis is limited because it needs to go beyond the 

creation of the proposed artifacts (The Knowledge-based taxonomy, The IoE Integrated 

KM Model, and IoE Database) to track their practical applicability in real IoE use cases.  

Regarding the evaluation of intelligent requirements for smart sensors, it can be 

considered a limitation of the fact that some of the work in the methodology, such as the 

evaluation of the degree of intelligence considered a simple scale. This limitation was 

mitigated by the effort of the author to go beyond this research field and validate the 

artifacts evaluation in IoE and IoE relevant publications and forums. 

5.3 Publications and Future works 

Table 19 complements the contributions mentioned above, listing the 

publications that were accepted or submitted during the period of production of this 

thesis, and that is directly related to this research. 

Table 19- Publications 

# Title Fórum Status 

1 Internet of Everything (IoE) Taxonomies: A Survey and a 

Novel Knowledge-based Taxonomy 

MDPI Sensors 2021 Published 

2 Towards a taxonomy for ranking knowledge in Internet of 

Everything 

CSCWD 2021 Published 

3 A collaborative approach to support interoperability and 

awareness of the Internet of Everything (IoE) enablers 

ICHMS 2021 Published 

4 Relatório Técnico: Internet of Everything (IoE) Taxonomy PESC Publications Published 

5 Internet of Everything (IoE) Taxonomies Scholarly Com. 

Encyclopedia 

Published 

6 An approach for intelligence evaluation in smart sensors CSCWD 2022 Accepted 

7 Smart Sensors for the Internet of Everything (IoE): A 

Survey 

MDPI Sensors 2022 Ready to 

submit 
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