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ABSTRACT 

The use of machine learning was explored in the context of electrochemical 

impedance spectroscopy (EIS), with the purpose of overcoming some of its inherent 

complexities and increasing the efficiency in its use for coating performance 

evaluation . For this project, EIS and visual inspection data from marine coatings 

exposed to accelerated corrosion tests for approximately 2.5 years were applied to 

machine learning techniques to acquire a prototyped classification-type algorithm. 

Also, electrochemical tests – including EIS and alternative methods – were applied to 

coated samples immersed in 5 wt.% NaCl to generate data for the training, testing 

and validation of fitting-type machine learning algorithms, “prepared as a proof of 

concept”. An experimental setup using automatable components was adopted, which 

surpassed the necessity of preparing and performing each electrochemical test one-

by-one. Overall, the results have shown that machine learning approaches have the 

potential to overcome several complexities related to EIS, and this combination of 

knowledges should be further exploited.  
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1. GENERAL INTRODUCTION 

 

1.1. IMPACTS OF CORROSION 

When the American mathematical physicist Josiah Willard Gibbs (1839 – 1903) 

published his remarkable paper, “On the Equilibrium of Heterogeneous Substances” 

(1878), his focus was to define the total energy of a thermodynamic system for non-

uniform substances (Scaliger, 2014). Among its achievements, his work has led to 

the definition of the thermodynamic state function now known as Gibbs free energy 

and, more importantly, to a powerful tool to analyse the spontaneity of a given 

chemical reaction (at least, from the thermodynamical aspect).  

When a chemical reaction results in a negative variation in the Gibbs free energy 

(ΔG) of a system, the process is understood as thermodynamically spontaneous, 

which has a profound meaning for metallic materials. In nature, many of them are not 

found as metals, but as ores (such as oxides and sulphides). Therefore, energy must 

be expended to transform these materials into the several important metals and 

alloys used in countless structural and industrial applications, which means that 

these materials remain at higher thermodynamic energy levels. When exposed to 

specific combinations of environments and conditions, reactions that could reduce 

the free energy state of metals would be then thermodynamically favourable 

(Elayaperumal and Raja, 2015).  

This point creates a fundamental question – for example: how to safely utilize metals 

and alloys, and benefit from their mechanical, thermal, electrical and many other vital 

properties for many engineering applications, if they could be chemically triggered to 

transform themselves to something other than metallic materials (in order to return to 

their low energy state), losing much of the design properties on which these 

applications depend? Therein lies the importance of studying the corrosion 

mechanisms and its characteristics (corrosion science), which provides the 
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necessary knowledge for developing methods to provide corrosion protection 

(corrosion engineering) to the materials that surround our everyday life.  

As an example, Figure 1.1 illustrate the thermodynamic cycle related to the 

production of iron from iron ore (Fe2O3), which requires a large amount of energy. At 

high temperatures, and with the presence of coke (carbon) and limestone (CaCO3), a 

chemical reaction transforms the ore into iron (metallic). Since this reaction is non-

spontaneous, it requires an energy input (in this case, thermal). This raw material can 

be later transformed into steel to serve in many engineering applications. However, if 

exposed to the environment in specific conditions, another chemical reaction would 

happen, transforming steel into rust. This later reaction is an example of corrosion, a 

phenomenon that could be seen as the thermodynamic process by which a material 

reacting to its environment can achieve a lower energy state by reverting to its 

natural form, consequently resulting in the degradation of the material’s original 

properties (McCafferty, 2010).  

 

 

Figure 1.1 – Thermodynamic cycle for iron ore. Adapted from Elayaperumal and Raja 

(2015); McCafferty (2010). 
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An important relation for the study of corrosion involves the free energy change 

associated with a chemical reaction and the electrochemical potential, established by 

the German chemist Walther Nernst (1864 – 1941). His equation (which will be 

discussed later in Section 2), makes it possible to describe an electrochemical 

reaction by measurable parameters, enabling the prediction of the corrosion 

tendency on metallic materials. However, it is relevant to point out that the 

thermodynamical aspect is not the only factor governing chemical reactions such as 

corrosion. It does enable the verification whether a corrosion phenomenon is 

possible or not in any given scenario. However, corrosion, as every other chemical 

reaction, is also dependent on the aspect of kinetics, which is not a state function as 

ΔG and depends on the interaction between different electrochemical factors 

(Elayaperumal and Raja, 2015).  

According to McCafferty (2010), the study of corrosion is relevant for social reasons 

regarding human health and safety, for the aspect of conservation of materials and 

for the economic cost of corrosion. The first topic is majorly related to the effect of 

corrosion on the functional integrity of engineering components in service, which can 

result in a catastrophic failure of an entire mechanical ensemble (for example, a 

bridge, a prosthetic implant, or an industrial plant), consequently affecting the lives of 

individuals. Koch et al. (2005) pointed that corrosion was one of the primally reasons 

for the structural deficiency of about 15% of the United States highway bridges (Koch 

et al.), which certainly gives a dimension of the problem.  

The issue of the conservation of materials accrues from the need of replacing 

corroded and degraded structures, consuming a portion of the world’s materials 

supply, which definitely is not infinite. It has been reported that close to 40% of the 

steel produced is destinated for replacing corroded steel. (Pedeferri, 2018) Also, the 

supply of certain ores and metals – for example, the chromium used in the 

composition of corrosion resistant alloys – is geographically restricted, impacting the 

importation strategies of raw materials among the nations (Koch et al., 2005). 
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Finally, the economic impact of corrosion has been often reported as a percentage 

between 3–5% of a nation’s Gross National Product (Elayaperumal and Raja, 2015; 

Koch et al., 2005; McCafferty, 2010). Some authors have organized the costs 

associated with corrosion into different groups, many of them which can be taken as 

indirect expenditures (Elayaperumal and Raja, 2015): the costs associated with the 

selection of a corrosion preventative measure, the loss in production due to 

shutdowns, the loss of product (if stored), product contamination, maintenance costs 

and the costs of applying overprotective measures. Doshvarpassand, Wu and Wang 

(2019) estimated a corrosion management cost of 2 trillion dollars per year across 

different industries. For example, Masunaga (2020) article states that 3 billion US-

dollars were expended in corrosion-related maintenance by the US Navy in 2014. 

Figure 1.2 shows US Navy warships under maintenance at a dry dock. The 

underwater hull area has been treated, removing some previous coating layers. A 

cathodic protection anode, used for corrosion prevention, can be seen on the right 

part of the image, surrounded by the remaining of a reddish coating.  

 

Figure 1.2 – Ships under maintenance – credits to Irfan Khan (Masunaga, 2020). 
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1.2. CORROSION PREVENTION 

In this context, the use of suitable corrosion control methods has a major importance 

in our contemporary society. Unfortunately, there is not a unique tool to deal with the 

problem, which will depend on the corrosion mechanisms taking place, the reactions, 

and the characteristics of the system being studied. Also, the selection of the 

corrosion control method must be economically favourable. In order words, the total 

maintenance costs after the introduction of a corrosion control method should be 

reduced. Gentil (1996) organizes the corrosion control methods in the following 

groups: 

• Methods that modify the environment – e.g.: de-aeration of water; 

• Methods that modify the metallic material – e.g.: changing the composition; 

• Methods that modify the process – e.g.: cathodic protection; and 

• Using protective coatings – e.g.: the use of anticorrosive paints. 

One practical example of the last above-mentioned group became very important for 

the naval shipbuilding sector. As the Industrial Revolution boosted the production of 

iron and steel, a slow and agitated transition from wooden ship hulls towards metallic 

ones began. In the end of the 19th century, steel would be adopted for warships and 

commercial ships construction, due to its higher strength-to-weight ratio and more 

predictable properties. However, this material is not corrosion resistant to seawater. 

Also, the previous common solution to the issue of hull fouling in wooden ships which 

was to use sheets of copper, could not be used directly on steel, otherwise galvanic 

corrosion would occur. It is said that, in the beginning of the transition from wood to 

metals (close to the middle of that century), some warships suffered severe corrosion 

and had to be taken off service after just a few years. The subsequential 

development of anti-corrosion and anti-fouling paints has mitigated the issue of 

corrosion (allied with the development of cathodic protection systems for ships), 

allowing for more widespread adoption of firstly iron and, later, steel as the ship hull 

material (Ferreiro, 2020). Figure 1.3 shows two passenger steamships designed by 
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Isambard Kingdom Brunel (1806 – 1859) for transatlantic services which illustrates 

this transition: the first, SS Great Western, was a wooden-hulled paddle-wheel vessel 

from 1838; in Figure 1.4, the 98-metres long screw-propelled SS Great Britain, an 

iron-hulled ship, which made her maiden voyage about 7 years later, in 1845 (Brunel, 

2011). 

 

1.3. PERFORMANCE EVALUATION 

Paints, also known as organic coatings, are widely used for the protection of metallic 

structures that are exposed to aggressive environments, such as marine atmospheric 

sites or immersion conditions in seawater (ISO, 2017b). Ships and offshore 

installations are subjected to both these situations during their lifespans, which 

increases the performance demands for paint systems used in these applications.  

 

Figure 1.3 – The SS Great Western, a wooden-hulled steamship (Ljungström, 2018). 
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Figure 1.4 – The SS Great Britain, with a hull made of metallic material (Hope, 2022). 

 

To express in practical terms the importance of corrosion protection measures in 

structures such as ships, the effect of corrosion on the steel plating can be assessed. 

Even though their thickness includes a designed corrosion allowance, and despite 

the application of protection methods by paint systems and cathodic protection 

systems, continuous maintenance is essential during ships lifetime, in order to 

prevent corrosion. However, although critical, economic factors may affect the 

regularity and quality of ships maintenance. Therewith, the effective load capacity of 

ships plating is affected by thickness loss, which is caused by unmanaged corrosion, 

compromising their safe operating life and implying in expensive repair costs and 

delays (Gudze and Melchers, 2008).  

Not only the external underwater metallic parts of ships are under great threat of 

corrosion. Ballast tanks (Figure 1.5), which are used to provide manoeuvrability and 

to regulate ships’ stability, draft and stress by controlling the volume of water 
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(generally seawater) in its interior (De Baere et al., 2013) are also worthy of mention. 

In this case, two aggressive environments are developed – an immersion and an 

atmospheric corrosion environment. Therefore, the structural material of these tanks 

is often subjected to repeated wet-and-dry cycles, as the compartments are filled and 

emptied as necessary for ship navigation. This results in high rates of corrosion in a 

critical and hard-to-access area, making maintenance very difficult (Gudze and 

Melchers, 2008).  

In this regard, the evaluation of the corrosion resistance performance of coatings 

becomes an important aspect for product design for the marine sector (LeBozec et 

al., 2015). Coatings with better performance can reduce the degradation of properties 

in materials used for shipbuilding – mainly steel and aluminium alloys (Eyres, 2006) – 

reducing maintenance costs and increase the lifespan of components and 

equipment. However, an interesting question follows this argument: how could a 

coating be classified in good or bad? Also, how could the quality of a coating be 

measured? 

 

Figure 1.5 – Schematic showing how ballast tanks work (Danfoss, 2018). 
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Over the different techniques in which organic coatings may be evaluated – which 

will be further discussed in Section 2 – methods that can provide quantitative 

information about the corrosion protection performance of these products are of great 

interest. For example, the behaviour of coatings as they are exposed to degradation 

processes in aggressive electrolytes in laboratorial experiments can be translated 

into measurements and analysed over time, enabling the evaluation of the changes 

in the properties of the coatings, or even comparison with other formulations. 

A powerful technique for evaluating the corrosion protection provided by coatings 

applied on metals subjected to aggressive environments is the electrochemical 

impedance spectroscopy (EIS), which have been broadly used by researchers as a 

tool to characterize the evolution of corrosion processes on coated samples (Lasia, 

2014; Mansfeld and Kendig, 1985; Mouanga, Puiggali and Devos, 2013). The 

method is also covered on International Organization for Standardization (ISO) 

norms for testing on paints (Lasia, 2014). 

However, despite its advantages, EIS imposes several challenges, from the specific 

hardware and software requirements to the necessity of expertise and a set of skills 

concerning the translation of the acquired data into relevant information (Mansfeld, 

1995). This may be a significant drawback in using EIS as an assessment tool in 

contexts such as product development, for evaluating new coating products for the 

marine sector, for example. 

In a movement to overcome those difficulties, the use of machine learning 

approaches has been considered, in pursuance of a more efficient tool for evaluating 

the performance of organic coatings. In theory, the utilization of machine learning 

techniques may acutely subdue the challenges and the amount of time to interpret 

the data. Ultimately, this could have an important economic impact in the 

development of newer anticorrosive paints. 
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1.4. PROJECT AIM AND OBJECTIVES 

In this sense, this study will focus on the application of machine learning techniques 

for evaluating electrochemical impedance spectroscopy experimental results of 

coated samples. In this context, the aim of this project will be to obtain an effective 

analysis from EIS measurements on coated samples using ML techniques. Following 

that, this work will try to verify if machine learning methods can reduce not only the 

time needed to perform a correct interpretation of the data, but also the dependency 

of experts’ evaluation, which can lead to cost reductions. 

Therefore, the aim of the project described in this dissertation was to explore the 

application of machine learning techniques for evaluating data from electrochemical 

impedance spectroscopy experiments made on coated samples, in order to achieve 

reasonable interpretation of the results, accurate information about the properties of 

the system and an improvement in efficiency in using EIS for the evaluation of 

coatings performance. 

In this direction, this project will intend to conclude the following objectives: 

• Obtain electrochemical impedance spectroscopy data from laboratory 

experiments on coated samples; 

• Define suitable machine learning methods and parameters for the acquired 

data;  

• Develop machine learning “proof of concepts” algorithms that can process 

data from EIS measurements on coatings into classification evaluations and 

quantitative analysis; and 

• Investigate the correlation between machine learning predictions and the 

visual aspects of the coated samples after testing. 
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Also, another line of investigation was purposed. Since EIS testing requires certain 

apparatus that could be relatively expensive, as mentioned by Gong et al. (2019), an 

attempt of using different types of input signals was performed. The objective in this 

case was to verify if these results – that in theory could be acquired by less 

expensive equipment – would be able to provide information about the coating 

conditions if a machine learning algorithm was trained combining this raw data with 

the results values obtained with electrochemical impedance spectroscopy. It is worth 

mentioning that the ML algorithms were developed as proof of concept, i.e., as 

prototypes which purpose was to test the formulated idea. 

In the following sections, an overview of the key concepts related to the project was 

given (Section 2), together with relevant work of the related fields of study and 

identified knowledge gaps. In Section 3, The inputs, the experimental design and the 

methodologies used to investigate the aims and objectives established for the project 

were presented. Section 4 exhibits the obtained results and their critical analysis and 

interpretation, comparing them with the academic literature previously studied (where 

pertinent). A summary of the project and suggestions to further investigations on the 

theme are presented in Section 5 , followed by the references that were used 

(Section 6).  

Appendices A and B present the visual aspects of the marine and model coatings 

after their corresponded tests, respectively.  
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2. LITERATURE REVIEW 

 

2.1. PRINCIPLES OF CORROSION 

Corrosion reactions that happen in metallic materials when exposed to environments 

such as immersion in aggressive aqueous solutions (wet corrosion) or even exposed 

to the atmosphere (atmospheric corrosion) are examples of electrochemical 

processes. Their mechanism is different from the ones related to other kinds of 

corrosion conditions found, for example, in molten salt corrosion or high-temperature 

oxidation processes, which will not be focused on this thesis. 

The electrochemical corrosion mechanism consists of two basic reactions involving 

the transfer of electrons: an anodic process, related to reactions that cause the loss 

of metal (oxidation), therefore resulting in loss of electrons, and a cathodic process, 

where a reduction reaction consumes the electrons derive from the anodic reactions. 

Figure 2.1, adapted from McCafferty (2010), demonstrates an example of these two 

processes being developed on the surface of iron, when immersed in an acid 

solution. In this case, the anodic reaction is the dissolution of iron (or metal 

dissolution), supported by a cathodic reaction known as hydrogen evolution. It is 

important to note that, in the anodic process, for the Fe element, its oxidation number 

increase (from 0 to +2), while in the cathodic process, the oxidation number of the H 

element decreases (from +1 to 0). Together with the concept of accepting and 

donating electrons, the characterization of the anode and cathode in a corrosion 

system by means of the variation in the oxidation number of the species is also used. 

The anodic and cathodic electrochemical half-cell reactions (which shows electrons 

on the reactants or on the products side) are also given in the image. 
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Figure 2.1 – Schematic representation of anodic and cathodic reactions taken place 

on the surface of iron immersed in an acid solution.  

 

As mentioned above, the anodic and cathodic reactions are supported by the transfer 

of electrons between the anodic and cathodic sites, i.e., the region where each 

reaction occurs. However, that will imply the existence of: (i) an electron flow, through 

the metal, from the anodic area towards the cathodic area, where the electrons will 

be consumed – which means that the conventional current direction will be from the 

cathode towards the anode region; and (ii) a current flow in the solution (electrolyte), 

by means of ion transportation, from the anode to the cathode zone.  

Figure 2.2 shows the four elements that must be present in an electrochemical 

corrosion mechanism, and the current flux among them. In the image, Ia stands for 

the anodic current (in other words, the number of electrons coming from the anodic 

process); Iel represents the current circulating within the electrolyte; Ic is the cathodic 

current; and Im is the current flowing through the metal, from the cathode towards the 

anode region. All these four processes have the same rate, which can also be 

identified as Icorr (Pedeferri, 2018).  
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Figure 2.2 – Current flux in an electrochemical mechanism of corrosion (Pedeferri, 

2018). 

 

Regarding the subject of corrosion, the study of charged interfaces has a major 

importance, especially in the case of the metal/solution interface. In an electrolyte, 

the conduction of a current is due to the presence of dissolved ions. However, there 

is no net charge as the ions are in constant random motion, hydrated by water 

molecules (ionic hydration), and an equal amount of positive and negative charges 

will be present in any volume element of the electrolyte. On the other hand, at the 

interface between an electrolyte and metal (immersed in this solution), a local 

reorganization of charged species takes place, depending on the charge condition of 

the metallic surface. More importantly, as a corrosion process happens, the 

metal/solution interface may not remain stable (McCafferty, 2010). 

When a metal is immersed in an electrolyte, an electrochemical potential difference 

between the metal and the solution is stablished (Gentil, 1996). To illustrate this, the 

motion of a metallic ion from the metal lattice to the solution, as happens in corrosion, 

can be considered. In the lattice, the ions are stabilized by metallic bonds, 

characterized by delocalized electrons. Once in the solution, the ions will now be 

stabilized by water molecules, creating a region with an array of “stacked” charged 

species, called “double layer” (McCafferty, 2010). As the double layer stabilizes the 
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charged metal surface (which will depend on the whether it accepts or donates 

electrons), the solution will now have a local net charge. The bulk solution, however, 

remain neutral. From this inequality accrues the potential difference.  

As listed by McCafferty (2010), there are several models dedicated to describing the 

behaviour of the double layer on the metal/solution interface. The approach used in 

the previous paragraph is known as the Gouy–Chapman model. Furthermore, the 

Stern model considers the layer of charged species proposed by Gouy–Chapman 

and the adsorption of anions and cations at metal surface. A more recent model is 

known as the Bockris–Devanathan–Müller model, which adds to the previous model 

the aspect that the water molecules and ions compete for adsorption sites at the 

interface, therefore water molecules and anions can also be absorbed.  

Finally, the consequence of the electric double layer on the metal/solution interface is 

the local difference in the potential. As corrosion happens, cations and anions move 

across the double layer, making the properties of this layer pivotal for the whole 

process. This scenario can be modelled by the simple equivalent electric circuit 

shown in Figure 2.3. The capacitive parameter Cdl is related to the disposal of the 

charged species at a metal surface, which is similar to a parallel plate capacitor as 

exemplified in Figure 2.4. In parallel, the resistive parameter RP (also referred as Rct) 

is related to the charge transfer resistance across the double layer. The ohmic 

resistance of the solution is modelled by RS, which is inversely proportional to the 

solution conductivity.  

   

Figure 2.3 – Equivalent electric circuit (EEC) model. 
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Figure 2.4 – Schematic example of the electrical double layer. Adapted from Orazem 

and Tribollet (2017). 

 

It is not possible to measure the potential difference across a metal/solution interface 

in absolute terms because a potential-measuring device would constitute a new 

interface in the system, and the measured potential difference would be related to 

both interfaces. Nonetheless, a relative potential difference can be measured, which 

is conveniently measured against a reference. To this, the term electrode potential is 

given, which represents the potential difference across the interface of a given metal 

relative to a reference electrode. The standard hydrogen electrode (SHE) is related 

to chemical equilibrium between the ion H+ in solution and H2 gas in standard states, 

and is arbitrarily defined as having the electrode potential of 0.000 V, making 

potential measurements possible for metals (McCafferty, 2010).  

In laboratory or industrial activities, however, other types of reference electrodes are 

used, since the SHE is not practical since it requires a constant supply of H2 gas. 

Some examples are: copper/copper sulphate electrode, silver/silver chloride 

(saturated), and saturated calomel electrode (Pedeferri, 2018). 

The Gibbs free energy can be described as a function of the entropy and the 

enthalpy associated with a given chemical reaction. The relation these two entities 

with the free energy change is given in Equation (2.1). From differential equations, 
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ΔG can be also expressed as given in Equation (2.2), as a function of the standard 

free energy change and (ΔG) the reaction’s equilibrium constant (K), where R is the 

universal gas constant and T is the absolute temperature (McCafferty, 2010). 

 ∆� =  ∆� − � ∆�   (2.1) 

 ∆� =  ∆� ° + 𝑅𝑇 ln �  (2.2) 

 

Considering a metal/solution interface, the electrochemical potential relates to the 

Gibbs free energy change by Equation (2.3), where n is to the number of electrons 

involved in electrochemical reaction, F is the Faraday constant and E, the 

electrochemical potential. 

 ∆� =  −� · � · 𝛥𝐸  (2.3) 

 

The electrode potential represents a measure on the tendency of metal atoms to lose 

or receive electrons (Gentil, 1996), and therefore has a great importance for the 

studies of corrosion. Combining Equations (2.2) and (2.3), it is possible to calculate 

the electrode potential for non-standard situations. This result in the equation known 

as the Nernst Equation, presented in (2.4). It is important to emphasize that the term 

“standard” in standard electrode potentials was used to describe potential 

measurements that are taken when a metal is immersed in a 1 M solution of its ions, 

which is a specific condition not always found in corrosion systems (McCafferty, 

2010). However, with the Nernst equation, the corrosion tendency of a metal in other 

conditions can be assessing by electrochemical equilibrium potentials of the relevant 

reactions (Elayaperumal and Raja, 2015).  

 � = � ° −  
𝑅𝑇

𝑛𝐹
 ln �   (2.4) 
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By calculating the potentials by the Nernst equation for the generic half-cell reactions 

for the anodic and cathodic processes, ΔE can be expressed as the difference 

between the equilibrium potential of the cathodic reaction (Ec) and the potential of the 

anodic reaction (Ea). Therefore, taking the Equation (2.3(2.3) into account, this 

reaction will only fulfil the thermodynamic condition for a spontaneous process if ΔE > 

0, which provides the conclusion given in Equation (2.5). In other words, in order to a 

corrosion process be thermodynamically possible, the equilibrium potential of the 

cathodic reaction must be more positive than the potential of the anodic process. The 

ΔE term is referred as the driving voltage or potential difference of a chemical 

reaction. It is a powerful tool to understand the likability of a corrosion process by 

evaluating the equilibrium potential of the electrode reactions happening on the 

surface being studied (Pedeferri, 2018).  

 ∆� > 0  ⇒  � � −  � � > 0 ⇒ � � >  � �   (2.5) 

 

The Belgian chemist Marcel Pourbaix (1904 – 1998) explored the field by studying 

the equilibrium potentials related to metal dissolution and typical cathodic processes 

in the presence of water, involving hydrogen and oxygen (Pourbaix, 1974). This gave 

origin to the very important Pourbaix diagrams, which are potential-pH charts 

showing thermodynamic stability areas for the chemical species of a given metallic 

material (i.e., not only the atomic metal but also its ions, oxides, and hydroxides). 

Most notably, three areas – immunity, passivation, and corrosion – are presented for 

every studied metal as a function of the potential and pH (in some cases, also 

concentration and temperature). These diagrams can graphically present the 

conditions where the occurrence of corrosion in a thermodynamical basis are 

expected and are very significant for corrosion studies (Elayaperumal and Raja, 

2015; McCafferty, 2010; Pedeferri, 2018). Figure 2.5 shows a simplified Pourbaix 

diagram for iron, which is of most interest of this Dissertation. 
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Figure 2.5 – Simplified Pourbaix diagram for iron at 25°C. The immunity, passivity 

and corrosion stability areas are shown (McCafferty, 2010).  

 

2.2. CORROSION CONTROL METHODS 

Having discussed the basic elements of a corrosion system, the focus in the following 

Sections will be on how it can be monitored and prevented in industrial and 

engineering applications.  

As stated earlier, corrosion control methods can be divided into different groups, 

depending on which aspect of the corrosion system is explored (Gentil, 1996). It is 

not the intention of this thesis to describe every technique from each one of these 

groups, but actually to compare some of them with the corrosion control method by 

the use of coatings, which will be further examined.  

Corrosion prevention should be considered from the design stages of an engineering 

process or component, in the regarding of achieving the desired functionality when 

exposed to the expected operating conditions, which must be critically evaluated in 

terms of its aggressiveness. Physical and chemical parameters influence how 
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aggressive the environment is, such as the temperature, pH, flow regime, and 

oxygen content for aqueous solutions, for example (Pedeferri, 2018). 

Hence, one way of controlling corrosion is to modify the application surroundings. 

One example of this may be understanded by analysing the diagram shown in Figure 

2.5. As it is known by common sense, corrosion is likely to occur if steel (basically 

made of iron) is exposed to aqueous solutions at acidic or neutral pH. However, if the 

environment is slightly alkaline solutions, with higher pH (between about 9.5 to 12.5), 

than the iron will reach the stability zone of an iron oxides, therefore leaving the 

corrosion zone. Other methods that could be used to modify the corrosiveness of an 

aqueous solution are removing the oxygen content (de-aeration) or adding corrosion 

inhibitors (Gentil, 1996).  

Attention must also be given to the mechanical design of the components. 

Arrangements that could promote crevices, galvanic couplings, turbulence, local 

condensation, or local mechanical stress should be avoided in the design stage. 

Welding procedures should also be carefully inspected, as they may not only create 

crevices but also affect the local microstructure of the material, promoting 

heterogeneities. Finally, some applications include a corrosion allowance in the total 

thickness, what should be done only with adequate knowledge about the corrosion 

behaviour of the component in service conditions (Gentil, 1996; Pedeferri, 2018). 

When selecting a material for a given application, it is fair to say that the mechanical 

requisites are used first for screening the potential candidates. However, the 

corrosion aspect should also be considered at the material selection stage. 

According to Pedeferri (2018), two criteria are used for this: one basic criteria, based 

on the knowledge of corrosion principles about thermodynamic and kinetics, and a 

technological criteria, which it is based on engineering standards. Certainly, the 

economical evaluation must also be present at the material selection. Finally, 

materials can also be altered by means of heat treatments and changing their 

composition (Gentil, 1996). 
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An important corrosion control technique for immersed conditions is the use of 

cathodic protection. It aims to bring the potential of the structure to be protected to 

lower values (in other words, by cathodic polarisation). This can be done in two ways: 

one, by using materials that are more likely to corrode than the structure to be 

protected (which are called sacrificial anodes) or through the use of impressed 

current systems, where a source of direct current is used (McCafferty, 2010). Their 

basic mechanisms are shown in Figure 2.6, where the cathodic reaction is the 

oxygen reduction. 

 

 
Figure 2.6 – Cathodic protection mechanism: (a) by sacrificial anodes; (b) by 

impressed current systems. 

 

In the other way, If the material to be protected can be passivated by oxide films, an 

anodic polarisation could instead be used. This technique, known as anodic 

polarisation, aims to maintain the material in the passive region, where the corrosion 

rate is very low. This method, together with the cathodic protection and the increase 

of pH can be graphically understood by the simplified Pourbaix diagram presented in 

Figure 2.7 (McCafferty, 2010). 
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Figure 2.7 – Simplified Pourbaix diagram (iron at 25°C) showing the basic concept of 

anodic protection, cathodic protection and controlling pH (McCafferty, 2010). 

Finally, corrosion processes may be prevented by means of applying a physical 

barrier separating the environment and the metal surface. Some materials develop 

natural protective layers in conventional conditions by chemical transformations, like 

in the case of stainless steel and aluminium, which have chromium and aluminium 

oxides on their surfaces, respectively. They are insoluble, continuous, impermeable, 

and well-adhered layers. However, this is not the case for steel, whose corrosion 

product is non-continuous, soluble, permeable, and may grow indefinitely until the 

complete degradation of the metal. Therefore, corrosion protection is needed, which 

can be accomplished by the use of coatings (Gentil, 1996). 

Coatings can be grouped into four categories, as organized by Pedeferri (2018): 

metallic coatings (for example, galvanized steels), inorganic coatings (e.g., glass 

lining or cementitious coatings), conversion coatings (e.g., chromating and 

phosphatizing), and paintings (or organic coatings), which will be further discussed in 

a dedicated Section.  
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2.3. REVIEW ON ORGANIC COATINGS 

2.3.1. COMPONENTS 

Anticorrosive paintings are mainly used as a corrosion control method because of 

how its cost-benefit relation and easiness of application (Gentil, 1996). Two main 

mechanisms are involved in the corrosion protection by paints: in addition to the 

physical barrier separating the metal substrate from aggressive environments, paints 

may also have specific elements in its composition, like corrosion inhibitors, that 

could prevent corrosion (McCafferty, 2010). 

According to Pedeferri (2018), the components of a paint may be divided into two 

groups: the binder (or vehicle) and solvent (such as plasticizers) are in the liquid part; 

the pigments and addtives are in the solid group.  

Binders are the most important constituent of the paints, and basically defines the 

coating type, according to its nature. It is the film-forming agent and transform itself 

into the continuous phase in which the remaining components of the paint are 

incorporated. Therefore, the film properties are very influential in the coating 

characteristics. Solvent evaporation, oxidation, crosslinking, and chemical reaction 

are some of the mechanisms by which the binders are converted from liquid to solid 

state on a substrate (McCafferty, 2010; Pedeferri, 2018). 

Among the several types of paints, the ones from epoxy resins are among the most 

used coatings for industrial applications. They are obtained by the reaction of its 

reactive compounds – epoxy and hydroxyl groups – with a crosslinking agent 

(normally polyamide and polyamines, although many other can be used). One of the 

main factors supporting its widespread use is the wide variety of compositions and 

properties that can be achieved with this material, for many applications (Pedeferri, 

2018). 

Pigments and additives are solid particles added to the composition of paints to 

provide them specific properties that the binders do not possess. Among the 
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additives, some examples are: anti-foaming agents, anti-fungal agents, levelling 

agents, thixotropic agents, and many others (Gentil, 1996; Pedeferri, 2018). 

The pigments can be classified by their main purpose in the coating, that can be, for 

example: to modify its performance properties, to alter the application properties, to 

provide colour, to hide the underlying material, or to reduce costs. According to 

Jones, Nichols and Pappas (2017), they can be grouped into four categories: inert, 

white, colour, and functional pigments.  

White and colour pigments are related not only with the aspect finish of coatings, 

but also with provide them the characteristics of opacity and hiding power, which 

can be understood as the ability to obscure the underlying contrasting colours. On 

the other hand, inert pigments, also known as fillers or extenders, are mainly used 

to reduce costs, as they are generally not as expensive as other pigments. As some 

properties are a function of the volume of pigments in the film, inert pigments could 

increase this number and ultimately modify features in the paint such as mechanical 

and rheological properties.  

Table 2.1 provides some examples of pigments from these categories (Gentil, 1996; 

Jones, Nichols and Pappas, 2017). 

Functional pigments can alter the appearance, application characteristics and 

properties of the coatings, including its corrosion prevention performance. Several 

functions could be listed, although only a limited fraction of some relevant pigments is 

displayed in Table 2.2. Important types of functional pigments are used for purposes 

like anticorrosive, flatting (to reduce gloss), biocidal, antimicrobial, fire retarding, or 

infrared reflecting. Jones, Nichols and Pappas (2017) also report recent research 

achievements on nano-pigments, in application such as UV absorbing, for example,  
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Table 2.1 – Examples of inert, white and colour pigments (Jones, Nichols and 

Pappas, 2017). 

Pigment Use 

Barium sulphate Inert pigment with relative high density (4500 kg/m³) 

Titanium dioxide Principal white pigment used in coatings 

Zinc oxide Another white pigment 

Calcium sulphates Used in addition to other white pigments 

Iron oxides (group) Different oxides present in several colour pigments 

Table 2.2 – Examples of functional pigments organized by their application (Jones, 

Nichols and Pappas, 2017). 

Application Pigments (examples) 

Corrosion inhibitor 
Zinc phosphate*, zinc chromate, strontium chromate, 

barium phosphosilicates, barium borosilicates 

Cathodic action Zinc metal, in zinc-rich primers 

Antifouling Cuprous oxide 

Fungicide Zinc oxide 

Fire retardment Antimony oxide + chlorinated/ brominated polymers 

Gloss reduction Silicon dioxide 

Viscosity modifiers 
Quaternary ammonium salt-treated bentonite clay, fine 

particle size silica 

*Note: the corrosion prevention mechanism of zinc phosphate is not entirely

understood. Some authors disagree on categorizing it as a corrosion inhibitor 

pigments because of its low solubility in water (Santos, 2018). 

The pigment volume concentration (PVC) – i.e., the volume percent of pigment in a 

dry coating layer, as defined in Equation (2.6) – is a parameter used to analyse the 
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effects of pigmentation in coatings, proposed by Asbeck and Loo (1949). They 

observed that at a certain value of PVC, an abrupt change in several properties takes 

place. This point is known as the critical pigment volume concentration (CPVC), as it 

is related to the pigment particle distribution in the paints. Depending on the paint 

application, a specific PVC-to-CPVC ratio is desired for the coating to achieve the 

required properties (Jones, Nichols and Pappas, 2017). 

 (2.6) 

Anti-corrosion paints can be classified using the PVC-to-CPVC ratio, as shown in 

Figure 2.8. Depending on the ratio value, the coating protection mechanism changes 

from acting as a physical barrier to an active-type coating, as discussed further 

(Pedeferri, 2018). 

Figure 2.8 – Corrosion protection mechanisms as a function of the PVC-to-CPVC 

ratio – adapted from Pedeferri (2018). 
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Solvents, the volatile components, are another important constituent in paints, 

although it could be not present in some products. Their main contribution to the 

product is to facilitate its application and allow the formation of the film, after which 

they must evaporate thoroughly. A good solvent composition is critical to avoid the 

formation of film defects. Plasticizers are used to interact with the polymeric chains 

the binder and improve their properties of flexibility and plasticity (Pedeferri, 2018). 

Finally, despite not being a component of the paint itself, the surface preparation 

prior to the application of coatings is vital for their performance against corrosion. As 

a matter of fact, in standardized coating systems for corrosion protection of 

components, where several layers of paints with different purposes are used, the 

surface preparation is one key component of these systems, as exemplified in 

standards such as ISO 12944-5 (ISO, 2018). For achieving a prepared substrate free 

of contaminants, and with an adequate surface profile for the application of paints, 

standards, such as ISO 12944-4 (ISO, 2017a), specify methods for water, solvent, 

acid, chemical and mechanical cleaning. For steels substrates, specific visual 

aspects after blast-cleaning procedures are normally required, which correspond to 

standardized grades covered in standards as ISO 8501-1 (ISO, 2007). 

2.3.2. MARINE COATINGS 

The materials used in ships, offshore structures and onshore facilities near seawater 

are subject to very aggressive environments. The use of coatings, together with 

cathodic protection systems, are the two major control methods against corrosion in 

these applications (Pedeferri, 2018).  

Coatings applied on ship surfaces that are not underwater (above the waterline) are 

exposed to atmospheric corrosion, combined with high humidity and intense UV 

radiation conditions. Polyurethane and alkyd coatings are generally used, but the 

latter, although easiness of application, requires frequent maintenance. Another 
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interesting aspect about this area is found on military ships, where the colour grey is 

generally used for reduced their visibility. However, among the pigments used for this 

colour, carbon black, which is a great infrared absorber, was often present. This 

feature resulted in increased temperature inside the ships, motivating its substitution 

for other pigments (Jones, Nichols and Pappas, 2017). 

Coatings used in interior spaces often require low levels of solvents for reducing fire 

hazards. For exterior deck surfaces, requirements on durability, abrasion resistance 

and often non-skid are stablish for coatings selection. Ballast tanks, mentioned in 

Section 1.3, also represent an important corrosion challenge, where epoxy 

formulations are applied. Fuel, oil, and septic tanks are often painted. According to 

Jones, Nichols and Pappas (2017), fuel tanks must be coated because seawater 

ballast is often transferred for these spaces after fuel is consumed.  

Coatings subjected to seawater immersion conditions have to deal not only to the 

challenge of corrosion but also to the marine growth on their surfaces (fouling), which 

raise the ship drag, increase fuel consumption, and implies dry docking maintenance 

periods, resulting in high costs. That is the reason why coating systems for 

underwater areas are composed of anticorrosive and antifouling paints. Coatings in 

the splash zone (the structure areas close to the water surface) are particular 

challenging, since they are exposed to alternated cycles of salt water, dryness, and 

UV radiation. Additionally, glass reinforced fibre crafts are generally coated with 

polyester gel coats (Jones, Nichols and Pappas, 2017). 

2.3.3. PROTECTION MECHANISMS 

The prime consideration about the protection mechanism of coatings is the barrier 

effect, which aims to reduce the oxygen and water diffusion from the environment to 

the material to be protected. It is a function of the coating basic composition, its inner 

components and thickness. If a dense film is obtained after curing, the resistance to 
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water, oxygen and ions diffusion tends to be higher. Some pigments can enhance 

that resistance by acting as obstacles to the passage of ions or molecules through 

the coating, depending on their shape, content, and size. Solvents can also play a 

role in coatings permeability, as remaining volumes of solvent can favour water 

absorption (Gentil, 1996; Pedeferri, 2018).  

Still, the corrosion protection of metals by organic coatings is not restricted only to 

their barrier properties. The first reason for this statement that, although the barrier 

effect does prevent water and oxygen from reaching the substrate, they do not 

prevent it eternally; therefore, these species permeate the coating eventually, 

creating and interface with the underlying metal. However, it was verified by authors 

that the rate of permeated species entering the films is substantially great than their 

consumption rate in corrosion processes in the metallic interface (Jones, Nichols and 

Pappas, 2017; Mayne and van Rooyen, 1954). Therefore, the barrier effect was not 

the only mechanism acting against corrosion. 

Pedeferri (2018) refers to this other mechanism as an active effect. Actually, it relates 

to the specific pigments that, once adsorbed on the substrate, perform some type of 

“active protective action”, depending on the pigment. For example, zinc particles, in 

an adequate composition, promote a cathodic protection effect on the metal. This is 

the case of organic and inorganic zinc-rich primers. Other examples of active effect 

mechanisms are performed by corrosion inhibitors pigments, in which a passivating 

protective film is generated or strengthened on the metal surface, and self-healing 

coatings, which general mechanism relies on chemically reactive molecules that 

react with the matrix in the presence of a mechanical, thermal, or chemical stimulus, 

promoting sealing of inhibiting action. Figure 2.8 exhibits some of these mechanisms. 

Additionally, a topic on the adhesion could also be discussed. Besides the paramount 

importance of surface preparation to the performance of a coating system, elements 

that could retain the adhesion the coating even in the occasion when water 

permeates through the film. Hence, pigments that act promoting wet adhesion 
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contribute to the corrosion prevention performance (Jones, Nichols and Pappas, 

2017). 

2.3.4. CORROSION 

It is also important to discuss how corrosion could degrade an underlying coated 

substrate (underfilm corrosion). It will be a function of the permeation of water, 

oxygen and/or ions through the organic coating. 

McCafferty (2010) describes the sequence of events that result in a coating failure 

due to corrosion. Water and oxygen molecules penetrate the organic coating, Water 

permeates into the paint by three mechanisms, which can be by diffusion, capillary 

action through pores and cracks, or by osmosis mechanisms (which could be 

enhanced by the presence of soluble salts or impurities on the substrate). Once 

reaching the substrate, the dissolution of metal starts at a local anodic site, which 

becomes acidic. If chloride ions are present in the environment, they also permeate 

through the paint, toward these sites. Supporting the anodic reaction, a local cathodic 

site is generated, which locally becomes alkaline. This promotes the disbanding of 

the coating from the metal substrate (a mechanism known as cathodic delamination 

– see Figure 2.9), degrading the coating and exposing the substrate. On the other

hand, anodic undermining process can also occur, where the metal dissolution 

happens underneath the coating causes loss of adhesion, exposing the substrate. 

According to Schweitzer (1998), coated steel is more susceptible to cathodic 

delamination, while anodic undermining tends to be more common in coated 

aluminium. 

The corrosion rate under coatings is also dependent on the electrical resistance of 

the paint. This will also be a function of the amount of water absorbed by the paint, 

which will depend on the properties of the coating. The salt content of the solution 

influences the coating conductivity (Pedeferri, 2018). 
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Figure 2.9 – Schematic representation of the cathodic delamination process. 

2.4. COATING PERFORMANCE EVALUATION 

The behaviour of organic coatings on preventing corrosion can be assessed by 

several methods such as accelerated tests, experimental electrochemical 

measurements, or field exposure tests (LeBozec et al., 2015; McCafferty, 2010). 

However, no test is capable to predict the performance of new coating systems 

(Jones, Nichols and Pappas, 2017). 

The latter group (also referred as use testing) relates to data acquired on applying 

the coating systems and observing its conditions in actual use along the years. The 

information acquired can provide knowledge about the factors influencing the 

corrosion performance and support new formulations (Jones, Nichols and Pappas, 

2017). Nevertheless, several years are necessary in order to acquire data. For 

example, in their article about the performance of marine and offshore coatings, 

LeBozec et al. (2015) collected data from coatings exposed to marine atmospheric 

corrosion for 3 years in dynamic conditions (where the paint was applied in a vessel) 

and 4 years in a static arrangement. 
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Simulated or accelerated tests are relatively reliable for analysing coating 

performance. They intent to simulate practical operating conditions, generally by 

using alternate cycles of different corrosion conditions to evaluate the coating 

behaviour. These cycles could be, for example: the continuous spray of salt water in 

an enclosed chamber, with high-humidity conditions; immersion cycles; exposure to 

several levels of relative humidity, temperature, and ultraviolet light. Several 

standards establish various accelerated corrosion tests, with different cycles, such as 

ISO 20340 and ISO 16701, resumed in Figure 2.10, in which the coating was subject 

to a 35°C/ 95% RH (relative humidity) condition, followed by a 45°C/ 50% RH cycle, 

alternated with a simulated salt rain (1 wt.% NaCl, pH 4) applied two times each 

week (LeBozec et al., 2015). 

Figure 2.10 – Wet-and-dry cycles in ISO 16701 standardized accelerated test. “R.H.” 

stands for relative humidly and “T” for temperature (LeBozec et al., 2015)  

Electrochemical methods, such as the electrochemical impedance spectroscopy 

(EIS), are used for studying coatings, which will be further studied in the following 

Sections. It is a non-destructive method based on the application of alternating 
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electrical signals at a range of frequencies, and the analysis of the apparent 

opposition to the current flow in the system (impedance). Based on the electrical 

circuit model shown in Figure 2.3, if EIS measurements were made in a coating 

sample exposed to an aggressive environment, it would be possible to acquire 

quantitative information on its behaviour like the rate of coating delamination, which 

is proportional to an increase in the capacitance signal. On the other hand, a coating 

with a good corrosion prevention performance would show a slow rate of increase in 

the capacitance response. Therefore, it is a powerful technique for comparing several 

coating formulations (Jones, Nichols and Pappas, 2017). 

Several electrochemical techniques are used for evaluating the efficiency of 

corrosion prevention techniques and analyse the acting mechanisms on corrosion 

systems. The linear polarisation resistance (LPR) aims to measure the polarisation 

resistance of a corroding system by measuring the current response under a low 

applied potential. This technique is considered to be simple and non-destructive in 

nature. The potentio/galvano dynamic method is also used for evaluating the 

corrosion current density, the corrosion potential, and several parameters of 

corrosion systems. However, it is considered to be more expensive because of its 

required instruments. Another noteworthy method that can be used for on-line 

corrosion measurements is the zero-resistance ammeter (ZRA), where the corrosion 

rate is taken from measuring the galvanic current flowing between two dissimilar 

metals. These devices are used as part of electrochemical noise measurements 

which, unlike any other electrochemical method, allow the study of corrosion systems 

without introducing any electrical perturbation, providing the evaluation of free-

corroding systems. Finally, an alternative electrochemical test was developed for 

evaluating the rates of cathodic delamination for different coating systems (Curioni, 

Monetta and Bellucci, 2015; Elayaperumal and Raja, 2015; Jones, Nichols and 

Pappas, 2017; McCafferty, 2010). 
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2.5. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 

Since electrochemical impedance spectroscopy (EIS) measurements were used in 

this project for studying coated samples, a dedicated section about this method is 

given in this Chapter. Nevertheless, this technique is not restricted to coating 

evaluation and corrosion assessment in metals, being instead related to a wider 

range of application such as characterization of batteries and fuel cells, quality 

inspection of foods, human body analysis, and bacterial concentration detection, for 

example (Grossi et al., 2019).   

2.5.1. FUNDAMENTALS 

The EIS technique is based on the development of the double-layer theory and 

derived equivalent circuit modelling on impedance data. Lvovich (2012) presents the 

sequence of authors and studies that have pavemented the progress on the 

electrochemical impedance theory. 

Advances in equipment and computer technology had significantly impacted the area 

of electrochemistry, allowing the conception of techniques that could be applied to 

practical applications, such as the evaluation of coated metals during exposure to 

corrosive environments (Lvovich, 2012; Mansfeld, 1995). 

The impedance can be defined as the resistance to current flow in a circuit and also 

its ability to store electrical energy. These two aspects are combined in a complex 

number and represent, respectively, its real and imaginary part. When evaluating the 

electrochemical behaviour of a coated sample, generally a sinusoidal AC voltage 

potential signal, with small amplitude, is applied in a range of frequencies. The 

current response (in a linear or pseudolinear system) in this case is also sinusoidal, 

but shifted in phase, and will depend on the characteristics of the electrochemical cell 

being studied (Lvovich, 2012).  
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The evolution of a coated sample exposed to an aqueous solution will depend on the 

evolution of the many interfaces in this system, which are not homogeneous. Each 

interface will be polarized in a particular manner when subjected to a potential 

difference and will change in a different way when this potential is reversed. For 

example, the double layers at a given metal/electrolyte interface will respond 

according to the distribution of their relaxation times, with a particular capacitive 

reactance (Macdonald and Johnson, 2005). Exploring the equivalent circuit 

previously mentioned in Figure 2.3, these and other responses of a coated sample 

under EIS measurement can be modelled by equivalent electric circuits (EEC), such 

as the one presented in Figure 2.11 where, in addition to the already mentioned 

polarisation resistance and double layer capacitance (respectively RP and Cdl), other 

parameters are used to represent the characteristics of the system: RΩ (also 

represented as Rs by some authors) represents the resistance between the reference 

electrode and the test electrode (also referred as “solution resistance”), CC 

corresponds to the capacitance of the coating, and Rpo is the resistance associated 

to the emergence of pores, which act as ionically conducting paths across the 

coating.  

Figure 2.11 – Equivalent electrical circuit for a coated metal sample (Mansfeld, 1995). 

The coating capacitance is defined by Equation (2.7), where A is the test electrode 

exposed area, d is the coating thickness, ε is the coating dielectric constant, and ε0 is 

the dielectric constant of free space, equals to 8.85 × 10–14 F·cm-1. It should be 
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highlighted that, as a coating degradation process happens, an increase in the 

capacitance would be measured by EIS, since the exposed area would increase 

(delaminated area) and, also, the thickness could be reduced (Mansfeld, 1995).  

 � � = � · � 0 · � /�   (2.7) 

The impedance output is generally expressed in terms of the impedance modulus |� | 

and the phase angle shift, represented by Φ (phi). This data can be represented in 

two different plots, known as Nyquist and Bode plots. The first is composed of the 

real component of the impedance in the x-axis, and the negative value of the 

imaginary parts in the y-axis, creating the semicircle-shaped plot seen in Figure 2.12.  

 

Figure 2.12 – Nyquist plot example for the corresponding EEC (Lvovich, 2012). 

 

However, although this graph could provide useful insights on the conduction 

mechanisms of kinetic controlling the system, some authors are not keen on 

presenting EIS data using this kind of graph. The main critique relies on the fact that 

on detailed information about the frequency of each point is presented, which would 

require several labels in the plot indicating each frequency value. Additionally, 
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changes in the coating performance are not easily detect in this type of plot, as they 

are for the Bode plot. (Lvovich, 2012; Mansfeld, 1995).   

The Bode plot is composed of two graphs: one showing the logarithm of the 

impedance modulus plotted against the logarithm of the applied frequency, and a 

similar one showing the phase angle versus the logarithm of frequency. Figure 2.13 

shows the theoretical response of three coated samples with different degradation 

conditions. By using this representation, the effect of corrosion processes can be 

more clearly seen, as the impedance modulus in the low frequency range decreases 

in (a). Less evidently, as the capacitance increases, the slopped segment line at 

medium frequencies shifts to the left. Also, as the coating degrades, an initial pure 

resistive behaviour evolves to a condition related to a two time constant equivalent 

circuit, represented as an intermediate plateau at curve “3”. It could also be 

commented that, at higher frequencies, the impedance reading is close to RΩ, while 

for lower frequencies, the measurement is close to the sum of RΩ + Rpo + RP. Finally, 

each of these events is also reflect in changes in the phase shift graph. The 

parameters values used for these simulations can be found in the article by Mansfeld 

(1995). 

Figure 2.13 – Theoretical Bode Plots: (a) Impedance Modulus; (b) Phase angle shift. 

Curves “1”, “2” and “3” represent different degradation stages of the coating. Adapted 

from Mansfeld (1995). 
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Additionally, if the sinusoidal values of voltage and current were used as axis in a x-y 

plot, the result would be an oval plot known as Lissajous figure. Figure 2.14 shows 

theoretical plots for this representation, depending on the phase shift angle.  

 

 

Figure 2.14 – Theoretical Lissajous figure (Potential vs. Current) for impedance data, 

for different phase shifts angles (in degrees) (Lasia, 2014). 

 

For extracting quantitative information about EIS experiments, a suitable equivalent 

electrical circuit model must be selected for the fitting procedure, which basically 

means to correspond the impedance acquired data to the impedance response 

generated by the selected circuit. Generally, it is recommended to start this 

proceeding using one simple model and compare it with the measured data, which 

can be done graphically using adequate software. Adding new parameters may 

improve the fitting but should be use if they correspond to physical aspects of the 

corrosion system. Several parameters and circuits could be used for data fitting, 

depending on the characteristics of the sample being studied (Lasia, 2014).  
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Table 2.3 shows some ideal circuit elements used in EEC models. However, it is 

important to realize that, as stated by Lvovich (2012), to fit an equivalent circuit to a 

data acquired from a corrosion system is to resume a complex event that combine 

chemical, mechanical, electrical and mechanical aspect into purely electrical terms. 

Hence, there may be cases where the fitting could deviate from the acquired data. 

Table 2.3 – Some circuit elements used in EEC models (Lvovich, 2012). 

Components Impedance 

Resistor �  

Capacitor 1/𝑗𝜔 �  

Inductor 𝑗𝜔 �  

Infinitive diffusion � � /√𝑗𝜔 

Constant phase element (CPE) 1/[� (𝑗𝜔) �  

 

2.5.2. APPLICATIONS 

Regarding corrosion studies, EIS has been broadly used for coatings evaluations. In 

the marine coatings sector, Kiosdou, Karantonis and Pantelis (2014) studied the 

barrier properties of two types of antifouling paints, an epoxy self-polishing and a 

silicone foul-release coatings, applied on steel substrates, by testing with 

electrochemical impedance spectroscopy, among other methods. EIS measurements 

were performed in laboratory conditions, using a three-electrode cell in a 3.5 wt.% 

NaCl solution with aerated deionized water, and also in specimens immersed in 

2.5 m depth in field exposure conditions in the Gulf of Elefsina. The results shown 

that the silicone foul-release samples had better barrier properties compared to the 

self-polishing specimens, where a pore resistance value was detected after 4 months 

of tests in laboratory conditions.  
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Marine coating systems for underwater ship hull areas were evaluated by Stojanović 

et al. (2019). Steel plates previously shot-blasted to Sa 2½ condition according to 

ISO 8501-1. Each tested paint system had the same anticorrosive layers, totalling a 

400 µm. For the antifouling component, two group of plates, with different types of 

products were tested – a group with self-polishing antifouling paints and another with 

biocide-free foul-release coatings. EIS measurements were used to evaluate the 

corrosion tendency for each plate in seawater, for 60 days, at room temperature. A 

sinusoidal 10 mV signal was used, in the frequency range of 100 kHz to 0.1 Hz. 

Three different equivalent circuit models, with 1-, 2- and 3-time constants, were used 

for fitting EIS data. At the beginning, the data was used using the EEC presented in 

Figure 2.3. With time, a non-porous coating behaviour and the presence of biofilm 

implied the used of more complex equivalent circuits. In opposition to the previous 

presented study, these authors have concluded that, after immersion, samples with 

the self-polishing products in their paint systems had better corrosion resistance, for 

the same thickness. An increase in corrosion with the development of biofilm on the 

plates was also verified, and the microbiological development was higher in plates 

where the solution was agitated. The variation between the results in the two studies 

about antifouling coatings could be due to environmental conditions or differences in 

the products used in each project. 

For analysing the effects of microbiologically influenced corrosion (MIC) in 

submerged steel bridge piles, Permeh, Lau and Duncan (2019) have conducted EIS 

measurements in order to identify microbial activity and coating degradation related 

to the action of sulphate reducing bacteria (SRB). The levels of degradation were 

categorized using the measurements results. It was also noticed that SRB action 

have created layers with depleted biocide on the surface of antifouling paints. The 

frequency range used was from 1 MHz to 1 Hz. Four different equivalent circuits were 

used to fit EIS data. All of them had the constant-phase element (CPE), probably due 
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to the fact that the surfaces had not remained parallel during the test and deviated 

from an ideal capacitor. 

An interesting project was conducted by Grossi et al. (2019), where a low-cost 

portable EIS measurement system was designed. The authors considered that the 

combination of scientific hardware and specific software normally required for 

impedance measurements virtually makes it unable for the method to be used in the 

field, that is, outside laboratory conditions. This has motivated the development of 

simpler and portable impedance analysers that attempt to fill that gap. For the teams’ 

project, a 3D-printed structure, and an in-house electronic board for controlling the 

EIS measurements were designed. The conceived solution demonstrated good 

accuracy when tested with four distinct saline solutions.  

The challenge of selecting equivalent electrical circuit to EIS data was explored by 

Van Haeverbeke, Stock and De Baets (2021). They purposed an identification 

algorithm, validated in impedance measurements from biological application. The 

algorithm was based on gene expression programming and was adjusted to search 

for the simplest circuit capable to fit a set of EIS data. 

A method called localized electrochemical impedance spectroscopy (LEIS) was used 

in the studies by Dong et al. (2008) and Gong et al. (2019) for evaluating underfilm 

corrosion in steel samples. This technique utilises a scanning microprobe and is able 

to measure impedance in a microscopic scale. For example, the water diffusion in a 

localised coating defect, such as a blister. The results shown that LEIS depends on 

the defect size, and that the corrosion product creates a diffusion dominated process, 

which also in influenced by geometric factors.  

A LEIS mapping procedure was conducted by the group of Mouanga, Puiggali and 

Devos (2013), around a defect area in a low carbon steel coated with a Zn-Ni-

chromate conversion layer. Three-dimensional graphs, measuring the impedance 

modulus as a function of the x-and-y coordinates, were achieved. LEIS was also 
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used for the evaluation of pit growth controlling mechanisms, evaluated in iron-

chromium alloys (Annergren, Zou and Thierry, 1999).   

To evaluate the reproducibility of EIS method, a combined exercise was made 

between 19 laboratories, where the objective was the characterization, by impedance 

measurements, of three different systems, among which a dummy cell (an electrical 

circuit made of real electrical components) was used. The reproducibility results were 

better for the dummy cell, and relatively more scattered for the other two tested 

systems. The authors concluded that, despite being an excellent technique for 

evaluating electrochemical systems, requires careful planning and reproducibility 

verification. This exercise was referred as a round-robin and was published by Ritter 

et al. (2021).  

Mansfeld (1995) explored other parameters obtained in EIS plots, namely the 

breakaway frequency, which is defined as the point in frequency where the phase 

angle equals 45°. His approach was to have a sensible evaluation criterion for coated 

samples that could be acquired outside the low frequency range, which requires time 

for acquiring data. Although useful, it was not precisely determined what quantity was 

actually related to the read parameter. Nevertheless, the proposed technique 

presented the benefit of acquire parameters about the coating in short time. Other 

“alternative” parameters were evaluated by Akbarinezhad et al. (2009) for ranking the 

performance of coatings, such as the area under Bode plot. However, the use of this 

parameter has yet not being found in many other academic resources. 

2.5.3. DISADVANTAGES 

Despite being a technique capable to provide a great amount of information about 

the coating corrosion prevention performance, impedance spectroscopy is a very 

challenging method. The main disadvantages can be summarized as: (i) its inherent 
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complexity; (ii) the specific requirements; and (iii) the difficulties in extracting 

quantitative data through fitting. 

As EIS is based on impedance and complex numbers, which are intrinsically 

challenging, a solid background on mathematics, such as complex numbers, Laplace 

and Fourier transforms is necessary to understand the fundamentals behind the 

technique, so the interpretation of the results can be correctly assessed (Lasia, 2014; 

Macdonald and Johnson, 2005). 

Electrochemical impedance measurements also demand special hardware 

equipment, specific procedures for acquiring data and the use of software that are 

often proprietary. A frequency response analyser (FRA) is necessary for translating 

the systems responses into sensible data, creating a build-up plot such as the Bode 

plot (Cogger, Webb and Wellstead, 1997). The software used for collecting data 

should have features such as the capability of reading at high and low-frequency 

regions and current auto-ranging on the measuring resistor, which should be 

adjusted in the course of the experiment since changes of several orders of 

magnitude are measured when testing coated samples. Also, a sufficient number of 

measurements at each frequency should be taken to reduce scattering. All these 

requisites, as mentioned by Mansfeld (1995), defines the material resource barrier 

that must be dealt in order to utilize EIS. 

Finally, the challenge of circuit analysis and data fitting cannot be overlooked. A point 

could be made on the fact that circuit fitting present some limitations itself, as in 

situations where a theoretical system condition cannot be described as a complete 

equivalent circuit because some components may dominate the measurements, or 

when circuit elements can be rearranged in different ways, but the measured 

impedance is the same (Macdonald and Johnson, 2005). But, even a more important 

consideration resides on the fact that the interpretation of the EIS data additionally 

requires the presence of someone capable of dealing with all those challenges, in a 

near case-by-case rate. In summary, the individual would need, among other things, 
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to have the required knowledge about EIS, to be able to perform the experiments 

with the required equipment to acquire sensible data, to be able to interpret and 

select the appropriate equivalent circuit, and to perform a good data fitting. Overall, 

the resources in time, personnel, and equipment necessary to perform EIS 

measurements are quite overwhelming. 

 

2.6. MACHINE LEARNING  

The intrinsically complexity of electrochemical impedance spectroscopy and the hard 

obstacle of selecting and fitting equivalent electric circuit models into impedance data 

has apparently hindered EIS a more spread application of EIS outside academic 

researches (Bongiorno et al., 2022). However, approaches to increase the efficiency 

of time-consuming steps, like interpreting the data, and alternatives to the resource 

input requirements are being proposed. Among then, machine learning techniques 

present a possibility of efficiency improvement. 

 

2.6.1. FUNDAMENTALS 

Machine learning corresponds to a segment of computer science where attempts are 

made to identify patterns between input and output data, aiming to create a way to 

predict outputs from new data and make sense of previously unknown inputs. 

Identification part is refereed as “learning”, which gives name to this field of study. 

Machine learning (ML) algorithms can deal with a huge amount of data, transforming 

inputs into a great amount of output knowledge, and it is used for tasks such as 

image recognition, pattern identification, and strategy optimisation. In short, ML can 

be used whenever data needs to be interpreted, based on mathematical algorithms 

(Ghatak, 2017; Schuld, Sinayskiy and Petruccione, 2015).  

The term “machine learning” has relations with deep learning and artificial 

intelligence. Ghatak (2017) separates their definitions as follows: 
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• Artificial intelligence (AI): a broad term used to encapsulate any method in 

which computers mimic human intelligence through logic methods; 

• Machine Learning (ML): a subset of AI that uses statistical techniques to 

improve the accuracy of functions connecting inputs and outputs. Although it is 

impossible to find this exact function, the best approximate function is 

searched through the ML process. In another sense, the ML techniques try to 

better perform – according to a specific metric – the task of predicting outputs 

from inputs using the acquired experience in training; and 

• Deep learning: it is defined as a scalable adaptation of machine learning, 

which expands the range of estimated functions, using multi-layered neural 

networks to large amounts of data. 

To perform its task of learning, algorithms must be trained using a data set of inputs 

and outputs, where the relations between these instances are evaluated according to 

a model, which basically represents the path that is used from assessing the 

connection between the input and the output. The training results needs to be 

checked, which is done through cross-validation. The generated errors provide 

information on the algorithm performance. 

Some common tasks that ML could execute are (Ghatak, 2017): 

• Estimation of a probability function: for clustering tasks; 

• Classification: i.e., to identify in which class a certain input belongs; and 

• Regression: used for predicting numeric values. 

Schuld, Sinayskiy and Petruccione (2015) divide the learning effort of ML algorithms 

in three categories. The supervised learning is where an inferred mapping is 

extracted from a dataset of correct input-output relations, in which patterns are 

recognized and classified. In the unsupervised learning type, patterns are scanned 

with the use of prior examples, creating subgroups (or clusters) that can summarize 
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an extensive volume of information. Finally, the reinforcement learning step is where 

feedbacks are applied to the predictions made by the algorithm, in order to optimize 

them. 

Several models of machine learning algorithms can be used. A resume of some of 

these algorithms was presented in the works of Galvão et al. (2020): 

• k-Nearest neighbours: measures the similarity between data instances to

classify them into classes, to then predict if a new data point should be

grouped as belonging to one class or another, depending on its features;

• Decision trees: data is divided into smaller subsets until patterns are

recognized. These different groups are similar to tree branches, connected at

nodes that represent decision alternatives. Several sets of branches and

nodes can be created, in such a way that the final “leaf” consisted of data that

could not be further divided;

• Classification rules: based on “if-else” analytical statements to logically

evaluate the data. If a rule is suitable for a subset, this is separated from the

rest of the data, until no more data remains unclassified. This method is better

used for non-numerical data;

• Artificial neural networks: inspired by how a human brain works, this method

uses nodes (artificial neurons) that can transmit information from one to the

other (resembling brain synapses). These neurons are organized as input,

output, and intermediary (hidden) layers. In these latter layers, neurons are

arranged in a model using activation functions, which basically command the

way information is pass from one neuron to the next and which criteria must

be used;

• Support vector machine method: combines features of the linear regression

modelling and the k-nearest neighbour algorithm to generate a surface

(hyperplane), separating data according to different characteristics; and
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• Ensemble methods: allow the combination of different models by varying the 

data artificially. 

 

2.6.2. APPLICATIONS IN CORROSION STUDIES 

Organic corrosion inhibitors performances were studied by various ML techniques, 

aiming to verify which of these inhibitors are most efficient for aluminium alloys used 

in aeronautical applications. An extensive range of results from the different ML 

algorithms was acquired and evaluated. For the created datasets, the random forest 

algorithm has provided the best accuracy and precision (Galvão et al., 2020). 

Parameters obtained by a Fe/Cu galvanic corrosion sensor for the atmospheric 

corrosion of steel were used in machine learning algorithms by Pei et al. (2020). 

Support vector regression, artificial neural network and random forest models were 

used, but the latter has shown the higher accuracy. Among the tested parameters, 

relative humidity, temperature, and rainfall were verified as having more impact than 

the effect of carbon monoxide, nitrogen dioxide, ozone, sulphur dioxide and airborne 

particles. 

The evaluation of an image corrosion classification method was the aim of Sanchez, 

Aperador and Cerón (2019). The ML method used was support vector machine, and 

visual features from microscopic surface images were used as input. The results 

were later compared to electrochemical techniques. 

Machine learning techniques were used on electrochemical noise measurements 

data of localised corrosion processes on steel samples passivated in Na3PO4 by 

Alves et al. (2018) in order to identify corrosive substance and classify different types 

of localised corrosion mechanisms. 

Diao, Yan and Gao (2021) studied the corrosion resistance of low-alloy steel used in 

marine environment to develop corrosion rate prediction models using ML algorithms. 

The input parameters were the steel composition and environmental factors, and the 
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random forest ML model was selected. Other methods were later used to identify the 

dominating factors on the corrosion rate. The analysis of the predictions shown a 

good level of accuracy of the corrosion rate, stating the usefulness of machine 

learning for corrosion evaluation studies. 

An artificial neural network algorithm was used for developing a corrosion prediction 

model for carbon steel in mixtures based on methyl-diethanolamine (MDEA), an 

aqueous amine solution used for absorbing gases such as CO2 and H2S out of 

natural gas production lines, also contributing for reducing greenhouse gas 

emissions. Data on multiple parameter conditions and corrosion rates were used to 

train and test the machine learning model, which architecture is shown in Figure 

2.15. The input layer had five input variables – MDEA concentration, total amine 

concentration, pH, conductivity, and solution type; the hidden layer had eight 

neurons; and the output layer had one variable, the corrosion rate. The prediction 

results were evaluated using plots where the experimental values were on the x-axis 

while the ML predicted values were at the y-axis (Li et al., 2021). 

 

 

Figure 2.15 – Artificial neural network model used by Li et al. (2021). 
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Machine learning methods have been also applied in combination with 

electrochemical impedance spectroscopy. Wang et al. (2020) used EIS and an 

artificial neural network ML algorithm to study the corrosion on steel buried pipelines 

under stray current excitation. The machine learning approach was used to measure 

the effect of the parameters on the impedance data, which were the stray current 

density, corrosion time and chloride ion concentration. Equivalent circuit modelling 

fitting showed a dual-capacity reactance characteristic arc. The authors also 

considered that the selected ML algorithm could be used to evaluate the acquired 

EIS data, providing a monitoring solution for the problem of stray current corrosion. 

Bongiorno et al. (2022) investigated the application of artificial neural network 

algorithm to the task of EIS data interpretation, which represents a time and 

resource-consuming task. Two different types of algorithms were developed: one for 

identifying the suitable equivalent circuit (classification-type) and other to calculate 

the values of the EEC parameters (regression or fitting-type). Computer generated 

simulated EIS data was used in order to evaluate the influence of the dataset size on 

the ML algorithms performance. It was discovered that a dataset with a number of 

about 200 examples are approximately sufficient for the training of both types of 

algorithms, stimulating the use of ML approaches for interpretating data from actual 

EIS experiments. 

The goal in the project of Gong et al. (2019) was to generate polarisation curves and 

electrochemical impedance spectra for pure copper in different chloride ion 

concentration, using experimental data. The justification for this objective was the 

consideration that electrochemical measurements are time-consuming, expensive, 

and generate a relative high amount of waste since several experiments are needed 

to characterize different environment conditions. A number of machine learning 

algorithms were tested for this objective, where the random forest algorithm shown 

the best results. 
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2.7. IDENTIFIED KNOWLEDGE GAPS 

As it was presented in the previous Sections, the use of machine learning for 

corrosion systems evaluations has been recently acquiring more space on academic 

production. Several models have been development for different areas of studying, 

including for electrochemical impedance spectroscopy. 

EIS has been broadly used for the evaluation of coating performance, as was 

presented in Section 2.5.2. Marine coatings are among one of subject of these 

studies. However, this technique presents some challenges, especially for its 

complexity, resource-consuming and equipment requirements. 

In this sense, research has been developed in order to overcome these 

disadvantages. One of the approaches is the use of trained machine learning 

algorithms that could interpret EIS data, whether for classification of fitting purposes.  

Therefore, in this project, EIS experiments were performed in order to generate real 

impedance data to be used for the training and testing of a ML fitting-type algorithm. 

Also, data from electrochemical impedance measurements from marine coatings 

tested in accelerated corrosion conditions were used for the testing and training of a 

ML classification-type algorithm. These two approaches were used to explore the use 

of machine learning for improving the efficiency of coating performance evaluation. 

Finally, an alternative for EIS measurements was tested, in an attempt to create a 

similar kind of coating performance evaluation solution, based on machine learning, 

using electrochemical signals that could be acquire from less expensive equipment. 
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3. MATERIALS AND METHODS 

 

3.1. PROJECT PLAN 

3.1.1. INVESTIGATION PATHS: PROOF OF CONCEPTS 

The project will investigate the use of machine learning approaches on analysing 

data from electrochemical impedance spectroscopy experiments through three 

distinctives paths, as introduced below: 

1. By using EIS raw data taken from samples coated with different formulations 

of anticorrosive epoxy paints (“marine coatings”), subjected to accelerated cyclic 

corrosion tests over approximately 2.5 years, together with images from visual 

inspections of the samples in various moments in time. The visualized objective in 

this case is to verify if a trained machine learning algorithm could perform a 

classification evaluation of the coatings, based on their impedance spectra and their 

visual aspect; 

2. By performing electrochemical impedance spectroscopy on six samples 

coated with paints containing different sets of pigments in their composition, and 

which corrosion prevention performance is consciously distinct among then (“model 

coatings”). After performing several EIS experiments, the coating parameters were 

extracted by fitting equivalent electrical circuit on the obtained spectra, in order to 

create datasets for a machine learning algorithm that would be able to analyse new 

EIS data and evaluate their performance quantitatively, without the need for a new 

equivalent electrical circuit fitting step. The parameters calculated by after testing the 

algorithm were compared with the visual aspect of the samples after the 

experiments; and 

3. By applying methods using different electrochemical signals to the same 

above-mentioned samples to create new datasets, combining the system responses 

to these experiments and the parameters obtained from the previous item. The new 



  67 

trained machine learning algorithm would then, in theory, be able to evaluate the 

coatings performances without the necessity of the specific hardware and software 

required for EIS.   

 

3.1.2. PROJECT INPUTS 

3.1.2.1. MARINE COATINGS 

The electrochemical impedance spectroscopy data from marine coatings was 

provided by AkzoNobel. The coatings were applied on mild steel panels, previously 

blasted cleaned to the Sa 2.5 (or Sa 2 ½) condition according to ISO 8501-2 (2007) 

to create the adequate surface profile. The method of application of the paints was 

airless spray. Two coating layers with dry film thickness of 160 µm were applied, 

totalling 320 µm.  

Four different anticorrosive marine coatings were evaluated in the accelerated cyclic 

corrosion test, identified below as Coatings A to D. They vary on the level of solids 

and the quantity of aluminium flakes in their composition. A brief description of the 

products is shown in 

Table 3.1. A total of twelve coated samples were tested, since three panels were 

prepared for each coating.  

 

Table 3.1 – Coatings used in the accelerated cyclic corrosion tests (information 

provided by AkzoNobel) 

Coating Type of coating Level of solids Al flake content 

A Anticorrosive epoxy-amine primer Moderate 9 wt.% 

B Anticorrosive epoxy-amine primer High 9 wt.% 

C Anticorrosive epoxy-amine primer Moderate 0 wt.%. 
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D Anticorrosive epoxy-amine primer High 3 wt.% 

Each panel received a different code, with the last number ranging from 71 to 82, 

according to the Table 3.2. Figure 3.1 (coating A), Figure 3.2 (coating B), Figure 3.3 

(coating C) and Figure 3.4 (coating D) show the condition of the panels before the 

beginning of the accelerated test. In the images, the marked rectangles indicate the 

areas that were periodically tested by EIS, as further described in the following 

paragraphs. 

 

Table 3.2 – Coated panels and their respective coatings. 

Panel Codes Coating 

TC3778 / 71 TC3778 / 72 TC3778 / 73 A 

TC3778 / 74 TC3778 / 75 TC3778 / 76 B 

TC3778 / 77 TC3778 / 78 TC3778 / 79 C 

TC3778 / 80 TC3778 / 81 TC3778 / 82 D 

 

After the total cure of the paints, the samples were subjected to an experimental 

accelerated cyclic corrosion test, developed by AkzoNobel, simulating the in-service 

conditions present in ships water ballast tanks. The cycles included cyclic thermal 

and immersion stress, in such a way that the coating degradation mechanisms were 

stimulated. Periodically throughout the test the samples were removed and visually 

assessed for defects. In the occasion of detecting a corrosion induced defect on the 

surface of the panels, the week number was marked beside it. Also, EIS tests were 

performed on the panels surface when they were removed for inspection, to evaluate 

the coatings conditions as the cycles went by. 
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Figure 3.1 – Coated panels for Coating A (credits do AkzoNobel). 

 

 

Figure 3.2 – Coated panels for Coating B (credits do AkzoNobel). 
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Figure 3.3 – Coated panels for Coating C (credits do AkzoNobel). 

 

 

Figure 3.4 – Coated panels for Coating D (credits do AkzoNobel). 
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The electrochemical impedance measurements were performed in two distinct areas 

of the panel surface, on an area of 8cm×7cm (42cm²). In a few cases, and extra area 

was tested in the opposite side of the panel, also coated. A two-electrode system 

was used. A small uncoated area of steel served as the working electrode (WE), 

located under the small yellow triangular band in the top left corner of the panels, as 

shown in Figure 3.1 to Figure 3.4. The counter electrode (CE) was a small piece of 

stainless steel placed inside a sponge probe soaked with an electrolyte of 3.5 wt.% 

NaCl solution. A sinusoidal potential signal with an amplitude of 200 mV at the open 

circuit potential was applied to the system, in the frequency range from 104 Hz to 1 

Hz. The tests were made utilizing an Ivium® Compactstat™ potentiostat.Figure 3.5 

shows the schematic arrangement of EIS measurement on the marine coating 

samples.  

 

Figure 3.5 – Schematic arrangement of the two-electrode system used for 

electrochemical impedance measurements on the marine coating samples  

 

The total duration of the accelerated cyclic corrosion test was 145 weeks. However, 

for four samples, one of each coating, the test was stopped after cycle week 101 

(panels 73, 74, 78 and 82). Later, for four other panels, the test was interrupted after 

week 127 (panels 71 and 72, from coating A, and panels 77 and 79, from coating C). 

The remaining panels, from coatings B (75 and 76) and D (80 and 81) were tested 

until week 145. 
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The complete mass of obtained data consisted of nearly 480 log files with the EIS 

spectra and about 240 photographs showing the conditions of the panels at different 

moments throughout the test. A spreadsheet containing the values of the impedance 

modulus for the EIS analysed areas on the samples, per cycle week, was also 

provided. Credits to AkzoNobel. 

 

3.1.2.2. MODEL COATINGS 

For the project studies described in items 3.1.1.2 and 3.1.1.3, six coatings with 

dissimilar sets of pigments were used. In spite of having the same pigment volume 

concentration (PVC), which was about 30%, the types of pigments in their 

composition were different, in such a way that their expected corrosion prevention 

performance could vary. These coatings are henceforth referred as “model coatings”. 

Table 3.3 show the sets of pigments that distinguish each of the six model coatings. 

For facilitate their identification, they shall be referred by as the combination of the 

main element of their pigments, as seen in the Table. The remaining composition of 

these paints are similar. 

The model coatings were applied on panels of two different types of substrates: cold 

rolled mild steel and AA2024-T3, an aluminium alloy with copper as the principal 

alloying element. Before the application of the coatings, the steel panels were 

degreased with solvents, air dried, and sanded using a P180 grit with a lubricant 

composed of water and 10 wt.% of alabastine. After, the steel was rinsed with 

distilled water and dried with a paper towel. On the other hand, the aluminium alloy 

panels were prepared by wet abrasion, followed by a solvent cleaning step. The 

model coatings were provided by AkzoNobel.  
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Table 3.3 – Distinctive sets of pigments in each model coating. 

Coatings  Characteristic pigments 

TiCa Titanium dioxide; calcium sulphate 

TiBaCa Titanium dioxide; barium sulphate; calcium sulphate 

TiBaCaZn Titanium dioxide; barium sulphate; calcium sulphate; zinc phosphate 

TiBa Titanium dioxide; barium sulphate 

TiBaZn Titanium dioxide; barium sulphate; zinc phosphate 

TiZn Titanium dioxide; zinc phosphate 

 

Smaller samples were prepared from the received panels, so they could be used in 

the electrochemical cells, which will be described in Section 3.3.1. The steel coated 

samples had dimensions of approximately 100 × 45 × 0.5 mm, while the aluminium 

alloy coated samples were about 70 × 50 × 0.8 mm. Every panel had the information 

about the thickness of the applied coating. Figure 3.6 shows the general aspect of 

the model coatings on aluminium alloy and steel before the beginning of the 

experiments.  

Prior to the actual project tests, the experimental design prepared for this part of the 

study was tested using two model coatings (TiCa and TiZn) applied on steel. After, 

the experiment was made using all the samples. Table 3.4 displays the coatings 

applied on steel, identified by their pigments and thickness. Simarly, Table 3.5 

presents the information about the coated aluminium samples.  
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Figure 3.6 – Model coatings on aluminium alloy (on top) and mild steel (below) 

substrates. 

 

Table 3.4 – Information about model coatings on steel substrate 

Coatings  

Coating thickness [µm] 

Preparation tests Experiment 

TiCa 34.7 34.7 

TiBaCa – 40.3 

TiBaCaZn – 34.3 

TiBa – 37.7 

TiBaZn – 40.1 

TiZn 33.4 33.4 
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Table 3.5 – Information about model coatings on aluminium alloy substrate 

Coatings Coating thickness [µm] 

TiCa 38.9 

TiBaCa 38.6 

TiBaCaZn 36.7 

TiBa 39.7 

TiBaZn 38.6 

TiZn 37.2 

 

3.2. MACHINE LEARNING FOR EIS SPECTRA CLASSIFICATION 

3.2.1. DATA CURATION 

In order to prepare the data for exploring the possibilities of machine learning 

approaches, the EIS raw data and image files of the visual aspects of the coated 

panels were labelled according to the coating, samples, and cycle week. This data 

curation made it possible to investigate possible correlations between the EIS signals 

and the physical aspect of the measured areas in specific moments of the 

accelerated cyclic corrosion test. In this context, some examples of the data provided 

by the industrial manufacturer (AkzoNobel) will be presented in this Section to make 

the correlation analysis clearer. 

From Figure 3.7 to Figure 3.10, the evolution of the maximum values of the 

impedance modulus are presented. The values were acquired at the lower frequency 

range of the EIS measurements, throughout the cycle weeks. It is possible to see 

that the samples from coating C have suffered the greater reduction in the 

impedance modulus values during the test. The plots were made using the software 

OriginPro 2020b 9.7.5.184. 
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Figure 3.11 to Figure 3.14 show the visual aspect of the marine coated samples after 

week 101. This particular moment in time was selected since none of the samples 

were yet removed from the accelerated cyclic corrosion test run. The images show 

the several marked defects that were developed in different moments, until that stage 

of the test. The numbers beside the defects indicate in which week they were 

noticed. As it can be seen, in the cases where defects happened, many of them were 

outside the EIS testing area (which were the rectangles marked with the letters “A” 

and “B” on the coatings surface). However, some of them did happen inside the EIS 

measurement areas, especially in coating C. Hence, the EIS spectra related to the 

presence of defects where analysed and compared to other spectra measured when 

defects were not present. The condition on the back of the panels is also presented 

in Figure 3.15 to Figure 3.18. The cases where an extra area was measured by EIS 

(area “C”) can also be seen. 

 

 

Figure 3.7 – Maximum impedance modulus evolution (coating A). 
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Figure 3.8 – Maximum impedance modulus evolution (coating B). 

 

 

Figure 3.9 – Maximum impedance modulus evolution (coating C). 
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Figure 3.10 – Maximum impedance modulus evolution (coating D). 

 

 

Figure 3.11 – Coating A panels at week 101. 
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Figure 3.12 – Coating B panels at week 101. 

 

 

Figure 3.13 – Coating C panels at week 101. 



  80 

 

Figure 3.14 – Coating D panels at week 101. 

 

 

Figure 3.15 – Coating A panels at week 101 (opposite side). 
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Figure 3.16 – Coating B panels at week 101 (opposite side). 

 

 

Figure 3.17 – Coating C panels at week 101 (opposite side). 
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Figure 3.18 – Coating D panels at week 101 (opposite side). 

 

After analysing the data provided on the visual aspect of the panels, each marked 

defect was mapped according to its area and cycle week, which was registered in a 

spreadsheet that could correlate the week in which a defect was noticed and the 

respective value of the impedance modulus. By comparing the impedance modulus 

evolution before and after the emerging of a defect, and also by studying the 

corresponding EIS spectra, it was possible to detect correlations between the 

presence of defects on the EIS tested areas and changes in the electrochemical 

measurements. Figure 3.19 illustrates one example of this correlation, where a drop 

in the impedance modulus was detected, what could be due to the presence of a 

defect on the tested area. 

This has motivated an approach for pre-processing the data for a machine learning 

algorithm that could receive values from the EIS measurements made on areas with 

or without defects. The objective here was to check if this algorithm would be capable 
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of performing a classification evaluation of the EIS data generated in the accelerated 

cyclic corrosion tests.  

 

Figure 3.19 – Correlation example between the impedance modulus evolution and 

the detection of a defect at Panel 78 (Coating C), area “B” (lower rectangle).  

 

3.2.2. PRE-PROCESSING DATA 

EIS raw data contained the values for the impedance modulus and for the phase 

angle shifts obtained at each frequency point during the electrochemical 

measurement. As indicated in Section 3.1.2.1, EIS was performed in a frequency 

range from 104 Hz to 1 Hz. There was a total of 81 frequency points for every EIS 

measurement, each having a corresponding value for impedance modulus and 

phase angle shift. These values would be later used as input for the machine 

learning algorithm. 

Subsets of electrochemical impedance spectra were divided into two groups: “without 

defects” (subset A) and “with defects” (subset B). A screening step had to be made, 

in order to select representative spectra. As the total number of electrochemical 

impedance measurements on areas with defects was not high, the total number of 
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spectra in the subsets was relatively low. For each group, the spectra with the higher 

and the lower impedance modulus in the low frequency range were selected for 

equivalent electrical circuit (EEC) fitting. The spectra selection and EEC fitting were 

made using the ZView™ 3.5i software from Scribner Associates, Inc.®. Figure 3.20 

illustrates the ranges of each subset. Figure 3.21 presents the equivalent electrical 

circuits that were used for fitting and obtained parameters values for solution 

resistance, charge transfer resistance and for the constant-phase element instances 

related to the double layer capacitance. 

For the training dataset, the obtained parameters values were used to create 

simulated EIS spectra for each subset. By using the maximum and minimum values 

of the parameters, the created simulated spectra remained in the ranges shown in 

Figure 3.20. The reason for using this approach was to have a larger amount of data 

for the training phase of the machine learning. The training dataset had 1000 spectra 

data. Subsequently, the frequencies, the impedance modulus, and the phase shift 

angles of the simulated spectra for each subset were combined with their 

corresponding subset identification letter (“A” or “B”) in a comma-separated values 

file (csv). 

 

Figure 3.20 – EIS Bode plot for the impedance modulus showing the spectra ranges 

of the two subsets used for classification: “without defect” (subset A) and “with defect” 

(subset B). 
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Figure 3.21 – Equivalent electric circuits for fitting and obtained parameter values for 

the upper and lower spectrum of each subset. 

 

The testing dataset was pre-prepared by using the data of every original spectrum in 

the subsets, combined with their group identification letter. The total number of 

instances in the testing dataset were 31. 

A final preparation step before uploading the datasets to the machine learning 

software was made, which consisted of arranging the data of each input instance as 

arrays, in which all the values of a specific entity (e.g., the frequency) were separated 

by semicolons (“;”), while the different inputs were separated by commas (“,”), as 

indicated in Figure 3.22, where the example shown had an output of three 

dimensions (in order words, three values of “results”). With the software LabView™ 

from National Instruments®, an in-house application was developed to prepare the 

data to the correct format – credits to Bongiorno et al. (2022). After that, the csv files 

were saved in compressed folders, as required by the ML software that was used. 
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Figure 3.22 – Example of dataset format preparation before uploading to the machine 

learning software. 

 

3.2.3. MACHINE LEARNING 

The software used in the project was the Deep Learning Studio 1.1.0, from 

DeepCognition. In this case, the software was running in a Lenovo Thinkpad X240 

(Intel® Core™ i5, 8 GB RAM).  

An artificial neural network (ANN) machine learning model was used, consisting of 

three sets of alternated dense and dropout layers (Figure 3.23), closed by a final 

dense layer. The model architecture is credited to Bongiorno et al. (2022). In these 

sets, the dense layers had different numbers of neurons at each step. The last dense 

layer had the same dimension of the output array element (in this case, only one).  

For training a classification-type ML algorithm, the activation function used in the first 

three dense layers was the rectified linear unit (ReLU), while for the last one, the 

Softmax activation function was applied. For the dropout layers, the dropout fraction 

used was 0.1. The loss function used binary crossentropy. Additional information 

about the parameters used in the ML model architecture can be seen in Table 3.6. 

The data in the training dataset was divided, so there 80% of the input-output sets 

where used for actually training the algorithm, and 20% used for the validation step. 

After the machine learning training and testing, the results were evaluated according 

to its accuracy, its precision and its classification’s recall.  
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Table 3.7 summarizes the equations used for the evaluation of the ML classification-

type algorithm performance. 

 

Figure 3.23 – Basic scheme of the machine learning model used for machine 

learning training. Credits to (Bongiorno et al., 2022).  

 

 

Table 3.6 – Additional parameters for used for training the classification-type ML 

algorithm. Credits to Bongiorno et al. (2022). 

Epoch number: 1000 Optimizer: Adam Decay: 0 β1: 0.9 

Learning rate: 0.001 Batch size: 32 ε: 10–8 β2: 0.999 

 

 

Table 3.7 – ML classification-type algorithm performance calculations 

Accuracy =  
𝑁𝑢𝑚𝑏 � �  𝑜𝑓 � � � ℎ�  𝑝𝑟 � 𝑑𝑖𝑐𝑡� � � �
� � � � �  � � 𝑚𝑏 � �  𝑜𝑓 𝑝𝑟 � 𝑑𝑖𝑐𝑡� � � �

 (3.1) 

Recall – for class “x” =  
𝑁𝑢𝑚𝑏 � �  𝑜𝑓 𝑐𝑜� � � 𝑐𝑡 𝑝𝑟 � 𝑑𝑖𝑐𝑡� � � �  𝑓𝑜�  "𝑐𝑙 � 𝑠𝑠 � "
𝑁𝑢𝑚𝑏 � �  𝑜𝑓 "𝑐𝑙 � 𝑠𝑠 � " � 𝑥𝑎𝑚𝑝 � � �  𝑖𝑛 � ℎ�  𝑑𝑎 � � 𝑠𝑒𝑡

 (3.2) 

Precision – for class “x” =  
𝑁𝑢𝑚𝑏 � �  � �  𝑐𝑜� � � 𝑐𝑡 𝑝𝑟 � 𝑑𝑖𝑐𝑡� � � �  𝑓𝑜�  "𝑐𝑙 � 𝑠𝑠 � "
𝑁𝑢𝑚𝑏 � �  𝑜𝑓 � � 𝑚𝑒 �  "𝑐𝑙 � 𝑠𝑠 � " 𝑤𝑎 �  𝑝𝑟 � 𝑑𝑖𝑐𝑡� �

 (3.3) 
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3.3. MACHINE LEARNING FOR EIS QUANTITATIVE ANALYSIS 

3.3.1. SAMPLES PREPARATION 

Before starting the electrochemical experiments on the model coatings, the samples 

went through a preparation step. Firstly, the samples edges and their opposite sides 

were painted with a two-components high-solids epoxy coating (Interzone 954™). 

Then, a mixture of beeswax (CAS registry number 8012-89-3) and Gum rosin (or 

natural resin; CAS registry number 8050-09-7), in a 3:1 ratio, was prepared, heated, 

and applied over the edges and faces of the samples, leaving only a squared 

exposed area of the coating of 3 × 3 cm (9 cm²). This masking procedure on the 

samples was made so their interaction with the electrolyte remained concentrated on 

the squared exposed area. Figure 3.24 and Figure 3.25 illustrate the aspect of the 

samples after this step. 

 

3.3.2. EXPERIMENTAL SETUP 

The model coatings samples were tested by electrochemical impedance 

spectroscopy using a three-electrode cell, as described in Figure 3.26. The 

electrolyte used was a solution of 5 wt.% NaCl solution. The counter-electrodes were 

small titanium strips, of approximately 1 cm width. The reference electrodes were 

prepared using the procedure described in the following paragraphs. 

Silver wires were immersed in 0.1M HCl solution and superficially treated by a 

galvanostatic method applying a 10 mA/cm² fixed current for 4 minutes, resulting in a 

superficial thin layer of AgCl. This treatment was carried with using a Solatron 

Analytical® ModuLabXM™ potentiostat. Afterwards, the treated wires were placed in 

small plastic tubes (made from new plastic pipettes with their upper extremity 

removed) filled with 5 wt.% NaCl solution, where they remained in equilibrium with 

the surrounding solution. 
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Figure 3.24 – Steel model coating panels after sample preparation. 

 

 

Figure 3.25 – Aluminium alloy model coating panels after sample preparation. 
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Figure 3.26 – Schematic representation of the three-electrode cell used in the 

electrochemical experiments showing the working electrode (WE), reference 

electrode (RE), and counter electrode (CE). 

 

For the salt bridge of the reference electrodes, a solution containing 5 wt.% NaCl and 

4 wt.% of Agar (CAS registry number 9002-18-0) was prepared, with the aid of a 

heater and stirrer. Once the mixture was ready, the lower extremity of the pipette was 

immersed in it, in such a way that the solution went inside. After cooling, the Agar 

solidified inside the tube, creating the salt bridge. At the upper part of each reference 

electrode, the silver wire was connected to an electric cable, and the tube was sealed 

using beeswax, as shown in Figure 3.27. 

Figure 3.28 shows one of the actual three-electrode electrochemical cell, where the 

sample (working electrode), the counter electrode and the reference electrode are 

placed in a plastic bag and supported with a sample holder. Rubber bands were also 

used to secure the plastic bag on the holder. The electrolyte was later inserted in the 

cell with the aid of a syringe. 



  91 

Two LattePanda computers (4G RAM, 64G eMMC specifications) were used for the 

experiments. A Ivium® Compactstat™ and a Ivium® Vertex™ potentiostats were 

used for the aluminium alloys and steel samples, respectively. The electrochemical 

experiments were controlled using the IviumSoft™ by Ivium Technologies®. Also, the 

EIS methods were prepared using this software.  

The EIS test varied from 105 Hz to 10–2 Hz, with a sinusoidal input of 100 mV versus 

the open circuit potential, which was monitored for 30 seconds, with an interval of 1 

second. Ten points were acquired per each decade, and the total number of 

frequency points in each measurement was 71. The acquisition period was 1.5 

second. 

 

Figure 3.27 – Reference electrode prepared for the electrochemical experiments. 

 

For the purpose of acquiring enough data for a satisfactory machine learning 

algorithm training, the experimental setup used two 10-channels multiplexer 

electronic board (Figure 3.29), connected between the electrochemical cells and the 

potentiostat, to control the sequence of experiments. The benefits of its use were 

many – for example, it was not necessary to manually load each electrochemical 
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method for every cell and start each experiment one by one. On the contrary, once 

the cells were correctly connected to the board channels, and the test methods were 

properly loaded into the potentiostat software, the experiments were performed on 

the samples one after the other. For controlling the sequence in which the board 

channels were activated, and the electrochemical measurement methods that were 

performed, another in-house application, elaborated on LabView™, was created. The 

credits for the board’s design and for the LabView™ programme are from Bongiorno 

et al. (2022). 

The channels of the multiplexer boards were previously tested by using a “dummy” 

cell in which electrical components were arranged as two different circuits similar to 

the expected conditions of the EIS experiments on the coatings. By analysing the 

acquired data, it was possible to verify which channels were not working properly. 

Figure 3.30 shows the electrical circuits used with the “dummy” cells for testing the 

channels on the multiplexer board. 

Figure 3.28 – Detail of one electrode cell (TiCa model coating on steel). 
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Figure 3.29 – Multiplexer board 

 

The electrochemical impedance spectroscopy experiments were performed in two 

different runs for approximately two weeks each, in the days when the laboratory was 

accessible. In each day of measurement, two EIS tests were executed, one before 

and one after the electrochemical methods presented in Section 3.4. Previously, the 

methods were tested in a shorter run, with only two steel coated samples. 

Electrochemical experiments, with all methods, were performed in the model 

coatings. The time points (i.e., the number of hours between the experiment and the 

initial immersion of the model coating samples in the electrolyte) are indicated in . 

Table 3.8.  

After the conclusion of the experiments, the samples were removed from the 

electrochemical cells, slightly cleaned with deionized water for removing any excess 

of electrolyte, and then photographed. Subsequently, a non-caustic dichloromethane-

free gel paint stripper (Rustings® Strypit™) was used to remove the model coating 

and expose the condition of the underlying substrate, which were also photographed. 
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Figure 3.30 – Circuits used in the dummy cells for testing the multiplexer board: (a) 

circuit with one time constant, and (b) circuit with two time constants. 

 

Table 3.8 – Time points for the electrochemical tests.  

0h 120h 

2h 144h 

24h 168h 

48h 192h 

72h 312h 

96h 336h 

 

3.3.3. DATA TREATMENT 

The obtained electrochemical impedance spectra were analysed and selected for the 

equivalent electrical circuit fitting step. Measurements that were unusable due to 

some disarrangement during the test were not used for the datasets. The equivalent 
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circuits were fitted to the remaining EIS data, using the software ZView™ 3.5i 

software from Scribner Associates, Inc.®. It was possible to see that some spectra 

shown the aspect of an equivalent electric circuit with two time constants, while the 

rest had the one time constant characteristic aspect. Therefore, two EEC models 

(Figure 3.31) were used for fitting the EIS spectra. In the image, Rs, R1, R2 are the 

resistive parameters, while CPE1 and CPE2 constant phase elements represent the 

capacitive parameters. 

 

Figure 3.31 – Two equivalent electric circuits used for fitting the EIS spectra: (a) EEC 

with one time constant, and (b) EEC with two time constants. 

 

Once the parameters for each spectrum were obtained, they were ready to be 

combined to the data from the electrochemical measurements to prepare the 

datasets for machine learning. However, as some EIS spectra had a total of three 

fitted parameters, while the others had five (as it can be seen in Figure 3.31), two 

separated datasets would then have to be made, since their output array dimensions 

would be different, preventing the use of the whole data for the same model 

(considering the software being used for this project). In order to avoid this, the 

values from the resistive and capacitive elements were combined into two 

parameters – total resistance and total capacitance. In this way, the whole amount of 

data could be used, once the output array dimension was now equal to 2. 

Initially, two distinctive datasets were created, one for each substrate, using the data 

acquired in the tests with the model coatings. 
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The LabView™ in-house programme cited in Section 3.2.2 was used to prepare the 

data to the correct format – credited to Bongiorno et al. (2022). After that, the csv 

files were saved in compressed folders. 

 

3.3.4. MACHINE LEARNING 

The software used in the project was also the Deep Learning Studio™ 1.1.0, from 

DeepCognition®, in this case installed on a Lenovo ideapad 320-15IKB (Intel® 

Core™ i7-7500U CPU, 2.70 GHz, 8 GB RAM). 

An artificial neural network (ANN) machine learning model was also used, consisting 

of three sets of alternated dense and dropout layers, closed by a final dense layer, as 

proposed by Bongiorno et al. (2022). However, the purpose in this case was to train 

a ML fitting algorithm. Therefore, its model is slightly different from the one prepared 

for the ML classification-type algorithm. The linear activation functions were applied 

for all the dense layers for this model, while the loss function chose was the mean 

squared error. The other model parameters are similar from Section 3.2.3. The 

machine learning model separated the amount of data for training, validation and 

testing as 60%, 20% and 20%, respectively. 

After the ML training, the predicted values were compared to the original values 

obtained via fitting. Also, the performance of the fitting-type algorithm was assessed 

by calculating the mean squared error and the average percent error for each 

parameter, as described in Table 3.9.  

 

3.4. MACHINE LEARNING USING DATA FROM OTHER METHODS 

3.4.1. EXPERIMENTAL SETUP 

The same three-electrode electrochemical cells that were used for the EIS 

measurements were also tested using different electrochemical signals, as 

introduced in item 3 from Section 3.1.1. In summary, they consisted of one of the six 
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model coatings as the working electrode, the titanium strip as the counter electrode, 

the manufactured Ag/AgCl reference electrode (described in the Section 3.3.2), 

immersed in the 5 wt.% NaCl solution. As there were six coated samples for each of 

the two substrates, a total of 12 electrochemical cells were tested. 

 

Table 3.9 – ML fitting-type algorithm performance evaluation measurements 

Mean squared error, for “x” 𝑀𝑆𝐸� =
∑ (� � − � � )2�

� =1
�

 (3.4) 

Average percent error, for “x” 𝐴𝐸� =  
√𝑀𝑆𝐸�

𝐴𝑉�
 (3.5) 

Note: 𝐴𝑉�  corresponds to the average value (for “x”)  

 

The methods for the different electrochemical signals were prepared using the 

software IviumSoft™ by Ivium Technologies®. For the purpose of facilitating their 

identification, these signals will henceforward be denominated as “sweeps” and 

“pulse” signals.  

The “sweep” electrochemical methods were based on the standard cyclic 

voltammetry measurement option, available in IviumSoft™ software. They basically 

consisted of a cyclic linear fluctuation of the potential, above and below OCP. Three 

amplitude ranges were tested, in separated methods: a higher range, from –1.00 V to 

+1.00 V; a medium one, from –0.20 V to +0.20 V; and, lastly a lower sweep, from  

–0.05 V to +0.05 V. The use of different scan rates was also investigated — thus, for 

each amplitude range, two methods were prepared, one with a higher scan rate and 

another one with a lower one. In total, six “sweep” methods were used, as described 

in Table 3.10. Each “sweep” method had three cycles of potential variation. In those 

methods, the open circuit potential was monitored for 10 seconds, with a 1 second 

interval. The equilibration time used was 15 seconds, with an interval time of half a 
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second. A schematic representation of the different “sweeps” is presented in Figure 

3.32, where the potential increment (ΔE) range of each method can be perceived. 

Table 3.10 – Sweep electrochemical methods 

Sweep method Potential amplitude Scan rate 

“High-Fast” ± 1.00 V 100 mV/s 

“High-Slow” ± 1.00 V 10 mV/s 

“Medium-Fast” ± 0.20 V 50 mV/s 

“Medium-Slow” ± 0.20 V 5 mV/s 

“Small-Fast” ± 0.05 V 5 mV/s 

“Small-Slow” ± 0.05 V 0.5 mV/s 

 

 

Figure 3.32 – Schematic representation of the potential “sweep” methods. 
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The “pulse” electrochemical method was created using the ChronoAmperometry 

measurement type, available on the Transients menu of methods in IviumSoft™. It 

consisted of alternated potentiostatic-like cycles, where the potential was held at 

specific values for the duration of the cycle. Figure 3.33 represents the general 

aspect of the method, showing the potential increment ΔE over time. In summary, 

after an initial period of 3 seconds at open circuit potential, each following cycle had 

10 seconds, in which the potential was raised and decreased to the plateaux of 

±0.10 V, ±0.15 V, and ±0.20 V, in different cycles. Between the positive and negative 

input signal, the potential was kept at OCP for one cycle. With a last cycle of 3 

seconds, where the potential was also held at OCP, the total number of cycles in the 

method were 13. Additionally, the following parameters were used: the OCP was 

monitored for 3 seconds, with an interval time of 1 second. The equilibration time was 

2 seconds, with an interval time of half a second.  

 

 

Figure 3.33 – Schematic representing the “pulse” electrochemical method. 
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The “sweep” and “pulse” methods were loaded in the LabView™ application that 

controlled the electrochemical measurements. An initial “void” method, with no 

electrochemical input, had to be created for enabling the application to run properly. 

A total of ten electrochemical methods were performed on the coated samples at 

each time Table 3.11 show the methods used in the test. For the “sweeps” and 

“pulses” methods, data was collected for each of the time points indicated in Table 

3.8, except for the first, at 0h. For the EIS experiments, the 0h data was collected. 

As stated in Section 3.3.2, after the conclusion of each run, the samples were 

removed from the electrolyte, cleaned, and photographed before and after the 

stripping of their respective coating. 

Table 3.11 – Electrochemical methods used in the test. 

1* “Void” 6* Sweep Medium-Slow 

2* EIS 7* Sweep Small-Fast 

3* Sweep High-Fast 8* Sweep Small-Slow 

4* Sweep High-Slow 9* Pulses 

5* Sweep Medium-Fast 10* EIS (last) 

 

3.4.2. DATA TREATMENT 

Data from the “sweep” and “pulse” electrochemical experiments were used to created 

new datasets. For each specific sample and time point, the acquired values from the 

different methods were used as inputs, and the outputs were the respective values of 

the fitted parameters (see Section 3.3.3). For the dataset created from the “sweep” 

data, the inputs were the values of potential, the variation in potential (delta-

potential), and the current. Each generated “sweep” log file had 160 data points. For 

the “pulse” dataset, the inputs were the registered values of the potential, time, and 

current. In this case, every “pulse” log file had 232 data points.  
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For each method, three comma-separated dataset files were created, using the 

LabView™ application: one using only data from the steel coated samples, one using 

only data from the aluminium alloy coated samples, and one using both data. The 

files were later saved in compressed folders, as mentioned in previous sections. 

 

3.4.3. MACHINE LEARNING 

The same artificial neural network model, described in Section 3.3.4, was used for 

the training a fitting-type machine learning algorithm, which aim was to predict the 

PARAMETER values related to the coating conditions, but based on the acquired 

data from different electrochemical measurements, from the “sweeps” and “pulse” 

methods. The algorithm was later evaluated by comparing the original used values 

with the ML predictions. 

 

3.5. FLOW CHARTS 

The figures below illustrate the resumed project paths as basic flow charts. Figure 

3.34 presents the steps in exploring the EIS data from the marine coatings (item 

3.1.1.1). Figure 3.35 shows the route from electrochemical impedance spectroscopy 

experiments to a trained machine learning algorithm (item 3.1.1.2). Finally, Figure 

3.36 displays the use of different electrochemical measurements, aiming for the 

development of an algorithm that could provide coating evaluation with different 

techniques then EIS (item 3.1.1.3). 
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Figure 3.34 – Flow chart for item 3.1.1.1. 

 

Figure 3.35 – Flow chart for item 3.1.1.2.  
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Figure 3.36 – Flow chart for item 3.1.1.3. 
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4. RESULTS AND DISCUSSION 

4.1. RESULTS FOR MARINE COATINGS 

4.1.1. EIS FROM ACCELERATED CORROSION TEST 

Figure 4.1 show representative impedance spectra evolution of selected samples 

from coatings A to D, throughout the accelerated cyclic corrosion test, as Bode plots. 

The intention at this point is to show the general aspect of this evolution. Therefore, 

the data from some cycle weeks were omitted in order to make this representation 

clearer. Also, spectra data with noise had to be removed. 

As previous mentioned in Section 3.2.1, coating C demonstrated a higher decrease 

in the value of the maximum impedance modulus. As a result, their spectra evolution 

has shown some of the characteristic changes related to coating degradation, as 

studied in Section 2.  

 

 
Figure 4.1 – EIS from accelerated cyclic corrosion tests. 
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By comparing the EIS spectra from Figure 4.1 with the characteristics of the marine 

coatings used in the accelerated cyclic corrosion tests, presented in Table 3.1, it is 

possible to understand why coating C had an inferior result compared to others, 

since it has no addition of aluminium flakes pigments and a moderate level of solids. 

The other three coatings, that had from 3 wt.% to 9 wt.% of the aluminium pigments, 

were more resistant to the test conditions, which is in part due to their composition. 

However, the amount of taluminium flakes in the composition has shown a smaller 

effect when compared to the level of solids. That can be understand by comparing 

the composition of coatings B and D with their impedance spectra measurements, 

which are very similar, even though the amount of Al is different. Actually, it seems 

that the level of solids had a bigger effect on the coating corrosion resistance, since 

these coatings, both high-solids, had a better performance than coating A, which had 

a moderate level of solids, albeit having 9 wt.% of aluminium pigments. 

 

4.1.2. VISUAL ASPECT 

The visual aspect of each panel, at each last registered condition, is shown in 

APPENDIX A – MARINE COATINGS ASPECT AFTER ACCELERATED TEST. At 

the front side, although the general aspect of the coatings does not show a 

generalized degradation, defects have emerged in coatings A and C, starting from 

week 57 (according to the provided data). At the back side, the degradation was 

more accentuated in some panels. 

 

4.1.3. MACHINE LEARNING  

After the training of the machine learning classification-type algorithm, the testing 

dataset was used to predict the designed classes, i.e., “without defect” (A) and “with 

defect” (B). This dataset used real values of impedance modulus (in log), phase shift 
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angles, and frequency (in log), acquired from the EIS measurements on the marine 

coating samples. 

For this proof of concept, the 31 predicted classes have shown an accuracy of 100%, 

in relation to the actual classification. Table 4.1 shows the evaluation details. The 

obtained results are probably a consequence of the small size of the testing dataset, 

and also due to the facts that: (i) only one of the four coatings evaluated has shown a 

significant reduce in measured values; and (ii) the emergence of the defects was not 

concentrated on the areas tested by EIS. Therefore, only a fraction of the whole 

generated spectra was effectively related to a defect, reducing the availability for 

creating a greater testing dataset.  

Nevertheless, the performance of the application of this ML approach in extracting 

sensible evaluations about the performance of coatings was considered to be gainful, 

since the trained solution has the potential to perform several spectra evolution at a 

much lesser time then it would be required in a case-by-case analysis.  

  

Table 4.1 – ML classification-type algorithm testing results 

N° of predictions (total) 31 N° right predictions – class A 18 

N° of total right predictions 31 N° right predictions – class B 13 

N° of examples – class A 18 Recall – class A 100% 

N° of examples – class B 13 Recall – class B 100% 

N° of predictions – class A 18 Precision – class A 100% 

N° of predictions – class B 13 Precision – class B 100% 
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4.2. RESULTS FOR MODEL COATINGS 

4.2.1. VISUAL ASPECT 

The visual aspect of the modal coatings after the electrochemical tests, before and 

after the stripping of the paint, is presented in APPENDIX B – MODEL COATINGS 

AFTER ELECTROCHEMICAL TESTS. 

It is worth to mention that some of the coatings remained very adhered to their 

substrate. Therefore, scratches and residual paint can unfortunately be seen in some 

images, especially in the group of the aluminium alloy panels. 

By the visual aspect, it was possible to verify the effect of the different pigmentation 

(see Table 3.3) on the corrosion performance of the model coatings, as it supposed 

to be. Coatings with the anticorrosive pigment (zinc phosphate) had better 

performances. The samples with higher amount of calcium sulphate have suffered 

more degradation in the experiment conditions, which made their removal from each 

substrate very easy, as the coated seemed disbonded. This could be the result of an 

underfilm corrosion process, such as cathodic delamination, discussed in Section 2. 

 

4.2.1. EXPERIMENTAL DATA RESULTS 

At this point, a disclaimer needs to be made: the basic objectives in performing 

electrochemical impedance spectroscopy measurements on the coated samples in 

the project were to acquire a significant number of EIS spectra, fit equivalent electric 

circuits into the data, and acquire the parameters, so that information could be built in 

datasets for training, validating, and testing machine learning algorithms. Therefore, 

albeit the experiments were made at different time points, the main goal was not to 

study the time evaluation of the coatings. Nevertheless, this information would be 

interesting to report in the dissertation, since it could provide insights about the entire 

context being studied. 
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However, despite allowing the acquisition of enough useful data for the fitting step, a 

considerable part of the spectra data presented too much noise. Up to a point, this 

was an understandable issue that happened when the measured signal was too 

small for a proper reading by the potentiostats employed in the tests. Worse, some 

other measurements data were lost due to connection problems in the multiplexer 

board, when unsensible spectra was acquired. 

The reason why this have not affected the fitting step in a critical way is due to the 

fact that, in this stage, all the acquired spectra was fed as one for the datasets. In the 

case of presenting the time evolution of each coating, however, the spectra would be 

separated into smaller groups, and the effect of having unusable data caused some 

of these studies to be, in resume, incomplete – i.e., there was not useful data 

covering the whole timespan of the experiment. 

Another critical issue happened with the electrochemical “sweep” methods, in the 

“high” and “low” designs. The data obtained with these methods was not conclusive. 

Therefore, only data from the “medium-fast” and “medium-slow” sweep methods, 

together with the “pulse” method, was used for feeding the datasets for the ML fitting-

type algorithm. 

 

4.2.2. MACHINE LEARNING 

4.2.2.1. USING EIS DATA 

The results after the training, validation and testing of the machine learning model for 

the fitting-type algorithm are presented in the form of a graph, where the x-axis 

represents the experimental values, and the y-axis represents the values predicted 

by the machine learning after being trained. 

A sloped line with a function ƒ(x) = x was introduced to facilitate the understanding of 

the results, in the following way: if the points in the graph are close to the line, that 
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means that the prediction values are close to the experimental value and, so, the and 

the prediction is relatively satisfactory. Conversely, if the data points are scattered 

away from the slopped line, the prediction was not precise. 

Figure 4.2 shows the results for the predictions of the total resistance and total 

capacitance using data from the steel coated samples. On the other hand, Figure 4.3 

shows the results for the same parameters for the aluminium alloy coated samples. 

The results have shown a satisfactory prediction capability for both substrates. The 

better results were achieved in the algorithm prepared with the aluminium alloy 

coated samples.  

Additionally, Table 4.2 show the mean squared error (MSE) and average percent 

error (AE) for each case. 

 

 

Figure 4.2 – Algorithm cross-plot – EIS – data from steel coated samples 

 

4.2.2.2. USING OTHER ELECTROCHEMICAL METHODS DATA 

The same presented approach was used for evaluating the results obtained by the 

ML algorithm fed with data from the other electrochemical methods. However, in this 

case, the dataset was prepared using data from both substrates. The results are 
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presented in Figure 4.4 and Table 4.3 for the “Pulse” method. In the cross-plot of 

total resistance, it appears that some kind of shift in the values had occurred, since 

them seem to be aligned below the ƒ(x) = x line. However, no apparent reason was 

found. 

 

Figure 4.3 – Algorithm cross-plot – EIS – data from AA coated samples 

 

 

 

Figure 4.4 – Algorithm cross-plot – pulse method 
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Table 4.2 – EIS based algorithm classification 

Steel 

Total resistance Total capacitance 

MSE= AE= MSE= AE= 

5.29 37% 1.60 41% 

AA 

Total resistance Total capacitance 

MSE= AE= MSE= AE= 

0.10 6% 0.11 11% 

 

Table 4.3 – Pulse based algorithm evaluation 

Pulse 

Total resistance Total capacitance 

MSE= AE= MSE= AE= 

2.07 23% 1.78 48% 

 

For the “sweeps”, the data was acquired from the medium amplitude swaps. 

Therefore, Figure 4.5 and Table 4.4 shows the results for the “medium-fast” and 

“medium-slow” sweep method. 

Table 4.4 - Sweep based algorithm evaluation 

Medium-

Fast 

Total resistance Total capacitance 

MSE= AE= MSE= AE= 

0.37 10% 0.68 30% 

Medium-

Slow 

Total resistance Total capacitance 

MSE= AE= MSE= AE= 

0.07 5% 0.39 17% 
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Figure 4.5 – Algorithm cross-plot – sweep methods 

 

Despite being more scattered than the results from the ML using data sourced from 

EIS, these results represent a very satisfactory achievement since they were 

acquired from alternative methods. The achieved performance motivates further 

investigation and development of the technique. 

However, a valid critique could be made on the fact that the output values used for 

the training and predicted by the algorithms do not correspond precisely to the 

parameters of a given corrosion system. Since, for this project, a strategy for 

overcoming the necessity of preparing different algorithms due to different number of 

fitted equivalent circuit elements that could emerge from an evolving corrosion 

system, at the end the achieved values are not capable of discern the type of 
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equivalent circuit and, ultimately, the corrosion conditions at the coated metal. 

Nevertheless, this approach has been used to evaluate the capability of the machine 

learning algorithm to identity the relations between electrochemical data inputs and 

outputs, which has been achieved. 
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5. CONCLUSIONS AND FUTURE WORK 

This project has sought to implement machine learning approaches to the context of 

electrochemical impedance spectroscopy. The objective was to explore if the 

inherent complexities of this method could be better processed by machine learning, 

in order to achieve an improvement in efficiency. 

EIS and visual inspection data from marine coatings, exposed to accelerated 

corrosion tests, were curated, and allowed the preparation of a classification-type 

algorithm. Impedance measurements, together with alternative proposed methods, 

were applied to model coatings, with different pigmentation sets, in order to generate 

datasets for the training, validation and testing of a different fitting-type algorithm. 

Both of these developments were proposed as “proof of concepts”. 

By using an artificial neural network model and real data from coated samples, the 

machine learning algorithms have performed satisfactorily. The results motivate 

further investigation of the experimental methods. The simplifications used in this 

project, especially in the issue of selecting the suitable equivalent electric circuit for 

the fitting step, should be further investigated. Also, experimental tests that could 

provide more useful data would allow more points in the datasets to be fed into the 

machine learning algorithms. However, an efficient trade-off should be found, since 

the increase in the dataset size would require more time spent in the fitting step, 

which is still a task that has to be performed in a case-by-case scenario. Despite the 

fact that, using the machine learning approach, this would only had to be done a few 

times, for preparing the datasets, this challenge still represent a matter that could be 

targeted by future researches.  
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APPENDIX A – MARINE COATINGS ASPECT AFTER ACCELERATED TEST 
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Coating A - Panel 71 - Front - Wk.127 Coating A - Panel 71 - Back - Wk.127 

  

Coating A - Panel 72 - Front - Wk.127 Coating A - Panel 72 - Back - Wk.127 
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Coating A - Panel 73 – Front - Wk. 101 Coating A - Panel 73 – Back - Wk. 101 

  

Coating B - Panel 74 - Front - Wk. 101 Coating B - Panel 74 – Back - Wk. 101 
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Coating B - Panel 75 - Front - Wk.145 Coating B - Panel 75 - Back - Wk.145 

  

Coating B - Panel 76 - Front - Wk.145 Coating B - Panel 76 - Back – Wk.145 
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Coating C - Panel 77 - Front - Wk.127 Coating C - Panel 77 - Back - Wk.127 

  

Coating C - Panel 78 - Front - Wk.101 Coating C - Panel 78 - Back - Wk.101 
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Coating C - Panel 79 - Front - Wk.127 Coating C - Panel 79 - Back - Wk.127 

  

Coating D - Panel 80 - Front - Wk.145 Coating D - Panel 80 - Back - Wk.145 
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Coating D - Panel 81 - Front - Wk.145 Coating D - Panel 81 - Back - Wk.145 

  

Coating D - Panel 82 - Front - Wk.101 Coating D - Panel 82 - Back - Wk.101 
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APPENDIX B – MODEL COATINGS AFTER ELECTROCHEMICAL TESTS 

Note: for details about the model coatings, see Section 3.1.2.2. 
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MODEL COATING SAMPLES – STEEL 

 

BEFORE COATING STRIPPING AFTER COATING STRIPPING 

  

TiCa model coating Substrate under TiCa  

  

TiBaCa model coating Substrate under TiBaCa 

  

TiBaCaZn model coating Substrate under TiBaCaZn 
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BEFORE COATING STRIPPING AFTER COATING STRIPPING 

 
 

TiBa model coating Substrate under TiBa 

  

TiBaZn model coating Substrate under TiBaZn 

  

TiZn model coating Substrate under TiZn 
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MODEL COATING SAMPLES – ALUMINIUM ALLOY 

 

BEFORE COATING STRIPPING AFTER COATING STRIPPING 

  

TiCa model coating Substrate under TiCa  

  
TiBaCa model coating Substrate under TiBaCa 

 
 

TiBaCaZn model coating Substrate under TiBaCaZn 
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BEFORE COATING STRIPPING AFTER COATING STRIPPING 

  

TiBa model coating Substrate under TiBa 

  

TiBaZn model coating Substrate under TiBaZn 

  

TiZn model coating Substrate under TiZn 

 




