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I 
 

Abstract 
 
Condition Based Maintenance (CBM) has been successfully adopted in decades by many 
types of industry, however the naval and shipping sectors have shown low acceptability, 
mainly because lack of or little evidence of value for money (Shorten, 2013; Informa 
Engage, 2020). Although there is extensive literature about CBM and much research has 
been expended on smart technologies and digitalization in the last decade, the 
implementation of data-driven maintenance techniques still presents some challenges to 
be overcome. This work explores these challenges and propose a systematic management 
plan for smart modelling and simulation of maintenance routine of naval and shipping 
sectors. 
 
 
Keywords: Ship maintenance, data-driven maintenance, Discrete Event Simulation, 
workforce demand smoothing, maintenance scheduling, Condition Based Maintenance.  
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Glossary 
 

AI Artificial Intelligence  
ANN Artificial Neural Network 
ARIMA Autoregressive Integrated Moving Average 
CBM Condition Based Maintenance 
CBM+ Condition Based Maintenance concept developed by the USA Department of 

Defence 
CBR Case-Based Reasoning 
CDMA Code-division multiple access 
CGAN Conditional Generative Adversarial Network 
CLIT Clean, Lubricate, Inspection and Tightening 
CM Corrective Maintenance 
CSEM Crew Size Evaluation Model 
D2BTM Device-to-Business 
DAIF Data Assessment Imputation Framework 
DES Discrete Event Simulation 
DGRU Deep Gated Recurrent Unit 
DoD United States of America Department of Defence 
DSS Decision Support System 
EAMS Enterprise Asset Management System 
EIS Engineering Immune Systems 
ETTF Estimated Time To Failure 
EVDO Evolution-Data Optimized 
EWMA Exponentially Weighted Moving Average 
FDILA Flexible Data Input Architecture 
FMEA Failure Mode and Effects Analysis 
FMECA Failure Modes, Effects, and Criticality Analysis 
GA Genetic Algorithm 
GPRS General Packet Radio Services 
IACS International Association of Classification Societies 
IAS Integrated Automation System 
IEEE Institute of Electronics and Electrical Engineers 
IMO International Maritime Organization 
IMS Intelligent Maintenance System 
ISO International Organization for Standardization 
KPI Key Performance Indicator 
KRR Kernel Ridge Regression 
MAR Missing at Random 
MCAR Missing Completely at Random 
MCM Mass Customised Maintenance 
MEMS Micro-Electro-Mechanical Sensors 
MNAR Missing Not at Random 
MTBF Mean Time Between Failures 
OEM Original Equipment Manufacturers 



V 
 

PBL Performance Based Logistics 
PCA Principal Component Analysis 
PdM Predictive Maintenance 
PHM Prognostics and Health Management 
PLC Programmable Logic Controller 
PM Predetermined Maintenance 
PMS Planned Maintenance System 
PvM Preventive Maintenance 
R3M Real-time Model Matching Mechanism 
RBM Risk-Based Maintenance 
RCM Reliability Centred Maintenance 
RNN Recurrent Neural Networks 
RUL Remaining Useful Life 
SAE Society of Automotive Engineers 
SCADA Supervisory Control and Data Acquisition 
SOLAS International Convention for the Safety of Life at Sea 
TD-SCDMA Time-division Synchronous Code-division Multiple Access 
TPM Total Productive Maintenance 
WCDMA Wideband Code Division Multiple Access 

 

See table 1 for maintenance attribute symbols. 
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1 Introduction 
 

1.1 Background 
 

Maintenance techniques evoluted from Corrective Maintenance (CM) to Preventive 

Maintenance (PvM). The philosophy of CM is to make interventions on the systems when 

they have failed, while PvM intents to undertake maintenance activities before the failures 

occur. PvM was further divided into Predetermined Maintenance (PM) and Condition 

Based Maintenance (CBM) categories. The first foresees maintenance activities 

scheduled in intervals based on the expected life of components, and the second includes 

combination of inspections, monitoring and analysis of the actual equipment condition 

which allow the decision making about the maintenance actions (Jimenez, Bouhmala and 

Gausdal, 2020). The improvement for CBM was the Predictive Maintenance (PdM), 

which seeks to forecast the maintenance tasks based on the analysis of condition trends. 

These trends are built from historical data and can be assessed in real-time if there is 

communication between the sources (files, databases, sensors (Fadzil, 2020)) and the 

analytical system, or in offline mode, when the historical data from sources is logged and 

periodically analysed afterwards.  

 

Although CBM emerged on 1940s in a railway company, then on 1970s, the automotive, 

aerospace, military, and manufacturing industries were already experiencing benefits in 

both efficiencies and cost (Prajapati, Bechtel and Ganesan, 2012), the shipping sector still 

presented low adoption of this technique in 2010s, with only 2% of the world classed 

ships running with CBM (Shorten, 2013). This scenario seemed to be improving in the 

following decade, according to the survey carried out in 2020 by Informa Engage on 

behalf of Inmarsat (Informa Engage, 2020). It shown that on average 23% of respondents 

were testing or deploying digital applications related to fleet and vessel performance, 

which 61% of these respondents had been fully or commercially deploying to engine 

performance monitoring and analysis, and 49% of the same respondents adopted to other 

equipment condition monitoring and analysis.  Furthermore, it had presented that 17% of 

respondents intent to deploy digital applications to fleet and vessel performance in near 

future.  
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Considering CBM a technique developed more than 80 years ago and adopted with 

success by many engineering sectors (Kobbacy and Murthy, 2008, p. 115), it is surprising 

that 77.9% of interviewed maritime companies are not using it, and only 17% intend to 

adopt some sort of condition monitoring technique. Moreover, only about half of the 

companies which adopt CBM applies to equipment other than engines, which evidence 

that there is room for integration of other relevant systems of ships. Furthermore, 

designing reliable systems and adopting affordable monitoring techniques are the 

stepstone of future unmanned/autonomous ships (Brocken, 2016). 

 

The (Informa Engage, 2020) also pointed the concerns that challenge ship 

owner/managers to implement digital solutions on ships. The most quoted challenge 

(22%) was the lack of or little evidence of value for money. Regarding expecting savings 

in operation costs, 58% of respondents expected lower than 10% savings due to adoption 

of digital applications, which means that the investment to adopt CBM cannot be high to 

guarantee satisfactory economical return. Other challenges highlighted up to the third 

rank of answers were risk of cyber-attack, lack of staff training on vessel and ashore, lack 

of data standardisation, disjointed data and systems, management´s lack of awareness, 

hardware cost and installation time, bandwidth availability and cost, and inability to 

analyse and make use of the data in real time. Some of the challenges identified by the 

survey have been addressed in the academic literature, but joining the solutions altogether 

is a work to be done. 

 

The options to implement CBM and smart technologies are vast, and the required degree 

of digitalization is not obvious. Looking back to Informa Engage (2020) survey, 40% of 

respondents tend to seek smaller innovative companies and 36% tend to co-create digital 

solutions with early stage or scale-up companies. According to (Clayton, 2021), “It’s also 

important for digitalisation to deliver real savings to ship owners and operators. For that 

to happen, companies need to understand what is useful and what is not (…) The general 

consensus was that progressive owners are embracing digitalisation but the majority are 

content to wait.” 

 

Considering the expected lifespan of general merchant ships as 25 years (Dinu and Ilie, 

2015) and the respective average age, in 2020, of bulk carriers, oil tankers and container 

ships (which correspond as 85% of total world dead-weight cargo capacity) as 10.2, 19.1 

and 12.7 years old (UNCTAD, 2020), it can be inferred that many ships will operate in 
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the following decades without CBM technologies unless the shipowners get convinced of 

the value for money of such techniques. 

 

Although there is extensive literature about CBM and much research has been expended 

on smart technologies and digitalization in the last decade, the implementation of data-

driven maintenance techniques still presents some challenges to be overcome. This work 

explores these challenges and the solutions found in academic literature and propose a 

systematic management plan for maintenance routine of naval and merchant systems. 

This management plan was exemplified using a maintenance dataset from a Brazilian 

navigation company, which was kept anonymous to comply with confidentiality 

requirements. 

 

1.2 Aims and objectives 
 

Bringing forward the Brazilian company’s case to the state-of-art developments, this 

work aims to identify the challenges and propose a methodology for smart data 

acquisition for a modern simulation and modelling of maintenance routine applied to 

naval and shipping sectors. 

 

The first objective is to identify technical solutions to overcome the challenges to adopt 

CBM methodologies, which includes some applied to other industries that can be adapted 

to naval and shipping sectors. This goal will be reached by reviewing the current literature 

that aims to provide solutions for the challenges of implementing maintenance routine 

management with data-driven approaches. 

 

The second objective is to propose a methodology for managing smart data acquisition 

considering a significant level of information which do not overstate or unnecessarily 

burden installation cost and system complexity. The proposed framework includes 

modelling and simulation of maintenance routine of ships considering real-time approach 

or periodic historical based analysis. The Brazilian company’s case will demonstrate its 

applicability. 

 

The design of the maintenance system infrastructure will be not part of the scope of this 

work since the main concern is to apply the maintenance data to a management plan. 
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Since all these techniques start from the data acquisition, this work presents a proposal of 

a systematic selection of maintenance attributes required for a management model of 

data-driven maintenance system. 

 

1.3 Methodology and dissertation structure 
 

Initially, the challenges for implementation of a data-driven maintenance system will be 

identified and detailed through literature review, followed by an analysis to organise and 

compare different existing approaches that can be applied. This task will help to identify 

the data-driven maintenance approaches that can be applied to the naval and shipping 

sectors, as stated for the first objective of the work, and will be developed in the literature 

review, chapter 2. A summary of the challenges and solutions are presented in the 

Appendix. 

 

The second part is to develop a management plan to make the acquired data available to 

be applied to modern maintenance systems, considering a systematic selection of 

approaches according to the findings of the first task. The Brazilian company case will 

illustrate the proposed management plan. This task will be developed in the chapter 3, 

and its results and discussion in the following chapters, respectively. 
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2 Literature review 
 

The organization of the literature review aims to expose the technical/academic solutions 

for the challenges of implementing data-driven maintenance and decision support 

systems. Each challenge is followed by works that explored some solutions. A summary 

of the challenges and solutions are presented in the Appendix. 

 

2.1 Challenges for implementation of data-driven 

maintenance techniques  
 

Lack of or little evidence of value for money and management´s lack of awareness. 

 

(Psarommatis et al., 2022) purposed a model to provide a tool aiming to assist production 

managers to understand five generic key performance indicators (KPIs) which were 

translated into a continuous real-time cost function. The translation of engineering data 

of physical systems and operations into a common financial language make clear and 

easier to company departments seek their priorities and identify profitable decisions. 

Although the model was validated only in a batch order-based manufacturing 

environment, the concepts can be exported to ship industry to overcome the challenge of 

giving evidence to value for money and better understanding and awarening managerial 

issues in a real-time engineering system. 

 

Lack of data standardisation, disjointed data and systems and lack of staff training on 

vessel and ashore. 

 

The work of (Ford, McMahon and Rowley, 2013) described the challenge of the Royal 

Navy to exploit vast quantities of information regarding maintenance of complex fleet of 

warships and submarines. The authors cite (Kane and Alavi, 2007) definition of 

“exploitation” as “incremental learning focused on diffusion, refinement, and reuse of 

existing knowledge”, and highlighted the attention that should be taken about the 

information regarding to fuzziness (lack of detail), incompleteness (what is unknown or 

left out), and randomness (lack of pattern). The work concluded that in-service phase, 

which includes operation and maintenance and most cost of ownership of assets, presents 

stakeholder information exploited by “Suitable Qualified and Experienced Personnel”, 
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which is a limited and expensive resource, and identify key data elements to better exploit 

information about marine surface ship domain. 

 

(Michala, Lazakis and Dikis, 2016) worked with the accident/incident record keeping 

system of a shipping company and proposed a method for evaluating the existing data 

and combining to the Planned Maintenance System (PMS). The first review of the record 

system found problems such as duplication of information, manual handing of the data, 

lack of automation and disjoined systems between company departments. After 

automating and integrating of the record keeping system with the PMS and records of 

Safety and Environment departments, they proposed the introduction of a CBM system.   

 

(Cullum et al., 2018) revised the Reliability Centred Maintenance (RCM) framework of 

a naval fleet, which were conducted together with PM and CBM. The authors identified 

that the condition-based and PM actions were scheduled at non-uniform intervals due to 

the assessment of the condition of the equipment in a non-favourable approach from a 

managerial perspective. Other factors such as lack of appropriate training, human error 

and subjectivities introduce some uncertainty into maintenance scheduling, which 

decisions were conducted manually by personnel. They suggested a Risk-Based 

Maintenance (RBM) to deal with the limitations of PM and RCM and schedule 

maintenance dynamically using risk assessment as a trigger.  

 

The work of (Koons-Stapf, January, 2015) provided a guidance to implement CBM+, 

which is a concept developed by the USA Department of Defence (DoD) that embraces 

all the maintenance structure of a system’s life-cycle. She broke down CBM+ activities 

into CBM tools, such as RCM and Failure Modes, Effects, and Criticality Analysis 

(FMECA), CBM enablers, such as sensors and information tools, and CBM ancillary 

enablers like redesigning systems to allow monitoring of all failure modes. She also 

identified elements of business/management and technical categories. Among the first, 

there are the DoD polices and doctrines to establish process, procedures, technological 

capabilities, information systems and logistics concepts; the business strategy to increase 

effectiveness and efficiency by avoiding unnecessary maintenance activities; and the 

relationships between RCM analysis and failure management strategies. The technical 

elements are the infrastructure of hardware and software; the architecture for CBM+ that 

may cross the functional, organizational and physical boundaries; and the data strategy, 

which should be based on open systems that follow commercial standards established by 
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institutions such as the International Organization for Standardization (ISO), Institute of 

Electronics and Electrical Engineers (IEEE), Society of Automotive Engineers (SAE) etc. 

The data strategy also determines the level of predictive activities and health assessments 

of systems. A business case should support and validate these aspects of CBM+ 

implementation, which can be gradually applied to life-cycle activities of a system. 

Although this model for CBM implementation was developed for the USA military 

forces, it is easily adaptable to commercial organizations. However, she also highlighted 

that Performance Based Logistics (PBL) contracts with DoD sometimes do not 

contemplate CBM strategies due to high investment and the long-term required for 

perceiving cost savings. 

 

Hardware cost and installation time 

 

(Michala and Lazakis, 2016) defended that the adoption of CBM in ships is mostly 

inhibited by the cost of installation, the capital investment in training staff, the lack of 

trust in the prediction capabilities of the technology and the security of data. Therefore, 

they presented a novel method to reduce installation costs based on wireless data 

transmission, which makes easier the installation and lower the time to setup, and a novel 

decision support system (DSS) solution to be used onboard a ship with minimal initial 

training. 

 

Bandwidth availability and cost 

 

(J. Zhao et al., 2013) provided an alternative to the still expensive and limited bandwidth 

satellite communication (Informa Engage, 2020) by applying communication technology 

such as 3G (WCDMA/CDMA EVDO/TD-SCDMA) and GPRS with lower cost, higher 

bandwidth, and satisfied coverage for ships on inland waterways. They standardized the 

data across a fleet of hundreds of tenders and developed a fleet management centre system 

in a web application. Therefore, operating parameters and alarms were snapshot 

periodically, coded, packaged, and uploaded to shore fleet technical management centre 

when connection was available. To conduct the CBM of a ship, the information was 

replicated both onboard of each ship and onshore. 
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Inability to analyse and make use of the data in real time 

 

(Fadzil, 2020) developed a novel architecture that accounts for known and unknown 

parameters, such as environmental conditions like humidity, into machine learning 

algorithm and prediction of state, and linked to embedded systems, with capacity to self-

organize the parameters in order of its importance in real-time, providing system status 

based on KPIs. The proposed architecture provides adaptive strategies to optimise the 

performance of systems in real-time. 

 

2.2 Data-driven maintenance approaches 
 

Choosing data-driven maintenance approaches 

 

According to (Liao and Köttig, 2016) the methods to estimate the remaining useful life 

(RUL) of a system are data-driven, model-based or a combination of them. The first 

method relies on previous or observed data to make predictions, which are generally 

calculated by statistical methods, reliability functions and/or artificial intelligence 

methods. Model-based method attempts to describe the failure mechanisms by 

mathematical descriptions of the degradation process, which is often evaluated as case-

based (Behera and Misra, 2021). Considering Prognostics and Health Management 

(PHM) systems as integration and augmentation of CBM and RCM, (Ellefsen et al., 2019) 

represented the diagnostics and prognostics approaches as shown in figure 1. 

 

 
Figure 1. Diagnostics and prognostics approaches (Ellefsen et al., 2019). 
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(Liao and Köttig, 2016) grouped the hybrids approach as: 

• “Use a data-driven method to infer a measurement model and a model-based 

method to predict RUL. 

• Use a data-driven method to replace a system model in a model-based RUL 

prediction method. 

• Use a data-driven method to predict future measurements which are used within 

a model-based method. 

• Combine a data-driven method and a model-based method for prediction by 

“averaging” their results.” 

 

Due to modern enablers such as sensors, instruments, servers and connected systems in a 

big data, there is a shift towards data-driven (Ellefsen et al., 2019; Fadzil, 2020; Behera 

and Misra, 2021) and hybrids approaches that uses data-driven methods to predict future 

conditions to be used in a model-based maintenance system (Liao and Köttig, 2016). 

Hybrid approaches that fuses sensor-based data and model-based information may be 

more complex to design and implement but they often take advantages over a single 

model approach (Hansen, Hall and Kurtz, 1995; Kristensen, 2021). 

 

Defining input parameters 

 

Considering that the purpose of maintenance is to avoid breakdowns by scheduled or 

unscheduled downtimes, (Roosefert Mohan et al., 2021) classified the five sources of 

breakdowns as “poor usage condition, poor basic condition, deterioration, operating error 

and designing error”, where condition refers to the basic operation without any functional 

failure, deterioration and defect. They grouped the countermeasures for breakdowns as 

reactive, the actions taken after happening breakdowns, and proactive, which englobe a 

variety of actions and programmes such as Clean, Lubricate, Inspection and Tightening 

(CLIT), PM checklists, CBM, Kaikaku Hozen (HZ), Kaizen, Total Productive 

Maintenance (TPM), and many other selected according to the company’s maintenance 

strategy. All these approaches rely on exhaustive lists/steps of maintenance actions, 

expert evaluations or both, as well as all the modern data-driven approaches developed 

recently. 

 

The work of (Jimenez, Bouhmala and Gausdal, 2020) focused on developing a predictive 

maintenance solution based on real-time monitoring and artificial intelligence for the 



 

10 
 

maritime industry. They collected data from main engines and compressors and analysed 

their correlation with software R®. The data came from lube oil laboratory reports, 

vibration analysis and performance data taken from 537 relevant parameters selected by 

experts among many others monitored by the Integrated Automation System (IAS) of the 

ship. The work shown practical challenges of data acquisition and processing such as the 

delay in obtaining the results of lube oil analysis, which often strikes CBM 

implementations in maritime sector. Therefore, oil contamination sensors such as used by 

(Roosefert Mohan et al., 2021) could provide real-time data of lube systems. Other 

challenge was the historic characterization of failure data since two situations occurred: 

there were few failures during the data acquisition process, and failures were prevented 

by crew action such as unreported maintenance or changes in operational profile without 

any maintenance action taken. The lack of failure data pattern would make predictive 

algorithms based on machine learning techniques ineffective. Besides, not knowing the 

respective maintenance action to be taken would make any maintenance scheduling 

systems incomplete. The work succeeded in verify the correlation between all the 

performance data and showing that it is possible to automatically identify the most 

important parameters that drive others, which can be useful for implementation of 

artificial intelligence algorithms. 

 

Reducing the dependence of experts 

 

Many data-driven approaches focus on reducing or eliminating the dependence on the 

experts and replacing their involvement by prognostics and predictions algorithms. In the 

naval sector, this objective is associated with the need for reduction of human errors, 

which accounts for 75% to 96% of maritime accident causes (Levande, 2017), and the 

actions required for implementing autoships (semiautonomous ships) (Ellefsen et al., 

2019) or autonomous ships.  

 

Before de advent of Industry 4.0 terminology, (Han and Yang, 2006) called as e-

maintenance the system able to use the Internet to connect a maintenance centre to the 

local maintenance. Their proposed framework for the local maintenance (at the 

manufacturer venue) including a real-time condition monitoring system; fault diagnosis 

and degradation prediction modules; and database storage and presentation regarding 

maintenance strategy. Before sending raw data acquired by sensors and micro-electro-
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mechanical sensors (MEMS) to the condition monitoring and diagnosis systems, it was 

applied pre-processing approaches such as high, low and band filtering, integration, 

wavelet transformation, average etc, into their appropriated domains (time, frequency, 

cepstrum, wavelet etc), to reduce the required storage space in the database. Only relevant 

features should be transferred to increase processing efficiency. For an electric motor, 

their example were vibration, current and electromagnetic field signatures, acoustic noise 

and chemical analysis, infrared, temperature and partial discharge measurements. The 

condition monitoring module compared the data trends to the operational limits and alerts 

in case of abnormal condition was already happening. The authors warned about the 

difference of setting operational limits in running condition, which might divert from 

industrial standards and depend on expert opinions. The faulty diagnosis module is 

supported by a laboratory which perform the measurements, tests or analysis on the 

equipment. The initial fault diagnosis data is taken form expert opinions and augmented 

with artificial fault diagnosis data presented in specialized literature. The data structure is 

then automated by feeding an artificial intelligence (AI) technique with the results of the 

principal component analysis (PCA) of the relevant sensor data in the respective domain. 

The AI reduces the dependence of the expert opinion and improves accuracy of fault 

diagnosis by applying techniques such as expert system, artificial neural network (ANN), 

fuzzy logic system, and genetic algorithm (GA). The method applied by the authors was 

training an ANN to learn data patterns from selected features and optimized parameters 

by a GA system. This task was structured as case-based reasoning (CBR) system, which 

intends to provide solutions for a new problem by adapting solutions from old problems. 

The CBR substitute the initial fault diagnosis data and eliminate redundant cases by 

creating and combining existing ones according to similar degree of closeness. The 

authors summarized the process into four main steps: case collection, case normalization, 

case feature extraction and training the ANN system. The last step may still depend on 

expert opinion to solve ambiguities rose from few solutions that match the current 

problem and to attribute/revise the degree of importance of occurrence symptoms, 

component, fault cause, corrective action etc, according to data analysed in the CBR. 

Finally, the structure of maintenance centre and the local maintenance allows to reduce 

manpower and experts in the local maintenance, although the local experts are still needed 

to evaluate the solutions and to set the local maintenance strategy. Furthermore, near-zero 

downtime operation can be achieved by implementing an information flow with right 

communication sequence between maintenance centre and the local maintenance.  
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Lack of continuity or incompleteness of acquired data 

 

Other challenge that arises from digital data acquisition is the lack of continuity or 

incompleteness of data, which can be caused by faulty sensors or communication 

problems. According to (Cheliotis et al., 2019), a time series collected from maritime 

machinery systems may have 4.4% to 26% of missing values. They are basically divided 

into three types. The first is Missing Completely at Random (MCAR), which the 

missingness is independent of the data. The second is Missing at Random (MAR), which 

the missingness depends on another feature. The third is Missing Not at Random 

(MNAR), which the missingness is due to the feature itself. Missing data can also include 

data intentionally removed from the sample such as outliers or transients. The evaluation 

of missing data takes place in the pre-processing step that follows acquisition of raw 

sensor data. According to (Ellefsen et al., 2019) this step includes cleaning and data 

analysis. Cleaning tries to eliminate human and sensor faults and includes methods such 

as amplification, data compression, data validation, denoising and filtering, while data 

analysis extracts the representative regime to be considered in the failures and faults 

detection. The work of (Velasco-Gallego and Lazakis, 2020) approached the problem of 

missing data in a real-time CBM of a main engine of a merchant ship. They compared 20 

widely implemented methods of imputing incomplete values in real-time machine 

learning and time series forecasting algorithms. Before testing the methods, the raw data 

was filtered to eliminate transient and manoeuvring regimes and only steady operational 

states of the machinery was evaluated against the Original Equipment Manufacturers 

(OEM) thresholds. The pre-processing step included data standardization to ensure that 

all features are equalized. The work concluded that the Autoregressive Integrated Moving 

Average (ARIMA) was the best univariate imputation technique for stationary data. In 

the work (Velasco-Gallego and Lazakis, 2021b), the same authors suggested a hybrid 

model of the first-order Markov chain for univariate imputation in tandem with a 

multivariate imputation approach based on a comparative methodology of 16 machine 

learning and time series forecasting models. Then in the work (Velasco-Gallego and 

Lazakis, 2021a) they proposed a Data Assessment Imputation Framework (DAIF) to 

verify the accuracy of any imputation method. In this work they denoised the machinery 

data using Exponentially Weighted Moving Average (EWMA) technique and concluded 

that for MAR data the Kernel Ridge Regression (KRR) leads to better results for large 

gaps, while for MCAR context GA-ARIMA, which is an association of a Genetic 
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Algorithm to determine the coefficients of ARIMA, had better results. MNAR was not 

tested.  

 

Unavailability of fault-data 

 

(Behera and Misra, 2021) approached the problem of fault-data unavailability that rises 

from complex systems with multi-variate sensor data and causes imbalanced training 

dataset to be overcome by the fault-prediction algorithms. The Prognostics and Health 

Management (PHM), represented by the estimation of remaining useful life (RUL), was 

analysed by a conditional generative adversarial network (CGAN) and a deep gated 

recurrent unit (DGRU) neural network approaches. The generative adversarial network 

(GAN) has the ability to create realistic artificial data of fault diagnosis to balance the 

missing data in the acquired sample. The CGAN is an improved architecture of GAN that 

has the advantage of providing better convergence to unstable and vanishing gradient 

problems during model training. It uses conditional labels and allows to learn reasonable 

mappings with limited training data. The DGRU is a variation of the recurrent neural 

networks (RNN) which allows for self-feedback neurons to obtain information from data 

processed in previous time steps and to integrate them into the sequential monitoring data. 

DGRU works better with long-term dependencies between cell states than RNN. It 

performs the RUL prediction using the augmented data generated by CGAN. The authors 

tested this technique in a turbofan engine and achieved accurate real-time predictions with 

smaller latency, lower parameters, and lower required memory than other similar over-

sampling approaches that deals with imbalanced data. 

 

Simulating physical world using real-time-data 

 

Alternatively to the examples of data-driven methods above, a hybrid solution was 

proposed by (Tavakoli, Mousavi and Komashie, 2008), which was a generic framework 

that uses real-time-data-driven techniques to feed a simulated model of a physical world 

problem. The architecture is composed of a Data Integration and Processing and a 

Simulation Modeling Engine. The first provides flexible acquisition of any type of input 

data by using a multi-layer structure called Flexible Data Input Architecture (FDILA), 

which is responsible for real-time data acquisition, data fusion, and pre-processing, 

including filtering and curve fitting. The second uses Discrete Event Simulation (DES) 

method to simulate the physical environment in a model that reacts to real-time events 
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with aid of a Real-time Model Matching Mechanism (R3M). This correspondence 

between physical and cyber-physical model is also named as Digital Twin (Agalianos et 

al., 2020; Sakr et al., 2021). The authors defend that DES in real-time control present 

some advantages over traditional simulation, such as not heavily depending on historical 

data, which the mining process and analysis is always time consuming; not suffering from 

data obsolescence, which may affect the reliability of predictions; and cheaper, since the 

time to build and run the simulation models are lower. The framework also allows to stop 

the stream of real-time data into the model and feed it with modified input data to simulate 

“what if” scenarios. Other works of (Jeon and Kim, 2016; and Mousavi and Siervo, 2017) 

demonstrated that DES can better capture real-world complexities regarding system 

performance, system monitoring, prediction and scheduling, which can also be associated 

with artificial intelligence techniques (Danishvar et al., 2021).  

 

2.3 Decision support systems 
 

Implementing CBM to old assets 

 

For the sake of implementing digital maintenance, the rail transportation sector has some 

similar difficulties of the naval sector. According to (Hodor, 2018), many assets are 20 to 

30 years old and lack the required sensors and capabilities to run CBM. Retrofits and 

upgrades in this sense are sometimes almost impossible. There are shore fixed systems, 

but communication challenges to transfer online data also impact rolling assets, especially 

underground or in the countryside, where telecommunication companies have poor 

network. Therefore, the author warned the importance of clarifying what to monitor, 

including certifying what are normal and abnormal conditions, to truly contribute to on-

going maintenance strategy. He also criticised initiatives based only on historic data of 

past failures. This data is useful for predictions and to train machine learning techniques 

only if combined with observed CBM data. He defends the use of supervised (that follows 

labelled rules) or unsupervised (that identifies structure relationships) machine learning 

techniques over artificial intelligence or deep learning since the ability of the former to 

learn without being explicitly programmed. The author added other caveats to implement 

CBM, such as: lack of suitability of some systems to provide enough available data to 

make predictions; indiscriminate collection of data before properly defining the problem 

to be solved, wasting time and money; confusing factors such as under fitting and 
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Simpson’s paradox that mislead the predictions; judgements based only on predictions 

and not together with company’s insights regarding to the following actions after a failure 

prediction. The author considers the digital maintenance as the visible part of the iceberg, 

while the largest immerged one concerns about the enterprise asset management system 

(EAMS) that consolidate and integrate all information into a single system able to help 

operators to prioritize and plan maintenance. Regarding the management of volume and 

variety of data, the author also prefers data lake ecosystems over warehouse types of big 

data, because data lakes are open source, do not need structured data, and are mostly 

applied to predictions and prescriptions of internal and external sources of data.  

 

Techniques for modelling maintenance management systems 

 

Considering that hybrids approaches  using data-driven and model-base methods 

potentially produce superior results than a single one (Kristensen, 2021; Hansen, Hall and 

Kurtz, 1995), the works regarding model-based support systems are often based on 

simulation frameworks that are able to gather all company’s requirements (Alrabghi, 

Abdullah and Tiwari, 2016). One technique largely used is DES, since it has the capacity 

of modelling the physical system and reproducing the chain of events ruled by 

maintenances attributes and company’s constraints. DES models can be built into a single 

software, and it has been applied to maintenance decision support models of many 

industrial sectors, such as: 

 

Manufacturing: (Sakr et al., 2021; Psarommatis et al., 2022; Wakiru et al., 2020; 

Golbasi and Turan, 2020; Abbasli and Mammadli, 2020; Mousavi and Siervo, 2017; 

Alrabghi, Abdullah and Tiwari, 2016; Alrabghi, Abdullah and Tiwari, 2015; Lu and 

Olofsson, 2014; Oyarbide-Zubillaga, Goti and Sanchez, 2008; Han and Yang, 2006) 

General maintenance: (Benker, Rommel and Zaeh, 2022; Akl et al., 2022; Budiono, 

Siswanto and Kurniati, 2021; Urbani, Brunelli and Collan, 2020; Alrabghi, A. *. and 

Tiwari, 2016; Alabdulkarim, Ball and Tiwari, Dec 2011) 

Civil aviation: (Meissner, Rahn and Wicke, 2021; Pohya et al., 2021; Albakkoush, 

Pagone and Salonitis, 2021; Wang, Cui and Shi, 2017; Van den Bergh et al., 2013; Dupuy, 

Wesely and Jenkins, Apr 2011; Bazargan and McGrath, 2003) 

Military aviation: (Colbacchini et al., Apr 2016; Bell and Teague, Apr 2014; Iwata and 

Mavris, 2013; Kang et al., 2010; Mattila, Virtanen and Raivio, 2008; Salman et al., 2007; 

Warrington, Jones and Davis, 2002) 
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Civil engineering: (Nili, Taghaddos and Zahraie, 2021; Devulapalli, Martinez and de la 

Garza, 2002) 

Naval ships: (Lafond et al., 2021; Schütze and Hughes, 2012) 

Information technology and Telecommunication: (Lyubchenko et al., 2020; Jiang et 

al., 2016) 

Offshore wind farms: (Ait-Alla et al., 2020; Byon et al., 2011) 

Logistics: (Agalianos et al., 2020) 

Rail transporting: (Agostino et al., 2020) 

Automotive: (Zhang et al., 2017) 

Autonomous vehicles: (Dietrich, Krug and Zimmermann, Oct 2017) 

 

Dealing with geospatial constrains 

 

Maintenance in ships is a complex and chaotic activity (Lafond et al., 2021). Apart from 

the challenge of scheduling resources and material, ship managers should consider some 

attributes of maintenance activities such as priority, precedence relationship, resources 

required, time required, working area required, proximity impacts, path impacts 

(Bertrand, 2020). In this sense, (Lafond et al., 2021) considered geospatial constrains due 

to work area capacity, which refers to jobs or workers that can be co-allocated, proximity 

constraints, related to works in one area that affects adjacent areas due to logistic or safety 

reasons, and path constraints, related to work that makes a passage unavailable. To deal 

with the geospatial constraints the authors proposed a three-dimensional model presented 

as boxes which represent the compartments of the ship, and a colour map that shows the 

constraint status, see figure 2. Although the method adopted by the authors was model-

based AI, heuristic methods and DES to schedule project tasks, they did not make it clear 

how DES was applied. 

 

 
Figure 2. Geospatial constraint 3D model with a proximity conflict of tasks in red (Lafond et al., 2021). 
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Defining required workload 

 

28. The work of (Schütze and Hughes, 2012) applied DES to explore the cost savings that 

could be achieved by smoothing workload necessary to perform maintenance of warships 

Their model focus on dealing with timescales in delivering contracts with the Australian 

Department of Defence. They demonstrated the impact of opportunistic maintenances and 

urgent defects in the workload necessity, considering the scenarios of extra work allowed 

and delaying the maintenance period with overtime. (Lee, John D., 1997) proposed a 

Crew Size Evaluation Model (CSEM) based on DES to validate predictions for shipboard 

crew requirements. He collected data from shipboard observations, structured interviews, 

analysis of planned maintenance logs and logbook data.  

 

Future maintenance management systems 

 

An intelligent maintenance system (IMS), composed by two commercial applications, 

Watchdog AgentTM and Device-to-Business (D2BTM) platform, was proposed by (Huang 

et al., 2005). The first is designed to acquire sensor data and make diagnostic and 

predictions of equipment faults. This intelligent agent is installed together with the 

programmable logic controller (PLC) in other to send processed data to the following 

agent instead of flooding the network with raw data, which might struggle with bandwidth 

limits. It alerts if there is an immediate maintenance needed, a maintenance due to cycle 

time, and long-term maintenance forecasting. The D2BTM receives data from Watchdog 

AgentTM and synchronizes the maintenance needs to the associated e-business that will 

provide spare parts and/or technical assistance. This system enables frameworks of mass 

customised maintenance (MCM) where maintenance companies can offer customized 

services to their customers, who can work with near-zero inventory. (Lee, J., Ghaffari and 

Elmeligy, 2011) foresee that systems like Watchdog AgentTM will integrate an in-situ 

prognostics module of products and machines that will feed PHM systems able to manage 

their overall health state. They pointed PHM as the systems responsible for monitoring 

and predicting the progression of a fault and autonomously, or with some human aid, 

triggering maintenance schedule and asset management decisions or actions. The aim of 

this system is to optimize maintenance schedule, eliminate the unnecessary and costly 

preventive maintenance, and reduce costs by optimizing resources allocation and 

reducing lead-time for spare parts. The authors believe that PHM is a stepstone for 

achieving resilient, self-maintenance and Engineering Immune Systems (EIS). Resilient 
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system is an evolution of PHM for complex environments that would be unpredictable to 

PHM, which robust design would deal with dynamic changes. Self-maintenance refers to 

a new design and system methodology that are able to monitor and diagnose itself and 

still maintain its functions if a failure or degradation happen, then making immediate 

repairs by using stocked spare parts. EIS is also a fault-tolerant system, which is inspired 

by the biological immune system, that predicts the system performance based on the 

predictions of faut tolerances or accommodations, and trigger maintenance schedule if a 

catastrophic failure would happen. 

 

 
Figure 3. Maintenance systems evolution (Lee, J., Ghaffari and Elmeligy, 2011). 
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3 Methodology 
 

The works presented in the literature review provide alternatives for solving the 

challenges of the implementation of data-driven maintenance systems. The following 

framework combines successful approaches into a generic pathway.  

 

STEP 0 – Definition of maintenance strategies, including the level of onboard automation, 

dependency of expert evaluations, available bandwidth, real-time monitoring or periodic 

data transferring. Works such as (Han and Yang, 2006) and (J. Zhao et al., 2013) 

demonstrated low bandwidth requirements and low dependency of expert evaluations 

when the onboard system communicates with a shore fleet technical management centre 

using mobile network to transfer periodic status of the ship. Even lower requirements 

would be needed if all the following steps were physically installed onboard and only 

information about maintenance schedule were sent to shore base.  

 

STEP 1 – Data acquisition and pre-processing – the acquisition of raw data can come 

from sensors, PLC or Integrated Automation System platforms. If the ship does not have 

an IAS or any kind of Supervisory Control and Data Acquisition (SCADA), which allows 

for easier extraction of data, the PLCs and sensors can be integrated via wireless network, 

as suggested by Michala and Lazakis, (2016), providing relative low installation costs. 

The pre-processing comprise the steps of cleaning and data analysis, as proposed by 

(Ellefsen et al., 2019), using methods such as amplification, data compression, data 

validation, denoising and filtering, to extract the representative regime to be considered 

in the failures and faults detection. The data pre-processed onboard will be the input of 

the next step. 

 

STEP 2 – System prognostics and failure prediction – the pre-process output might have 

problems of imbalanced and missing data. The first was aborded by (Behera and Misra, 

2021) who suggested a combination of CGAN and DGRU approaches, while the second 

was investigated by Velasco-Gallego and Lazakis, (2020, 2021a, 2021b), who concluded 

that ARIMA was the best univariate imputation technique for stationary data, KRR 

worked better for large gaps of type MAR, and GA-ARIMA had best results with MCAR 

context. Prognostics can come from OEM manuals, expert opinions or by verifying the 
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correlations between sensors, as demonstrated by (Jimenez, Bouhmala and Gausdal, 

2020) using the software R®.  

 

STEP 3 – Maintenance definition – Having evaluated the conditions of the systems and 

predicted their failures, the maintenance tasks can be defined from OEM manuals, expert 

opinions, or using AI in case-based models to verify suggestions for interventions, as 

proposed by (Behera and Misra, 2021) and (Han and Yang, 2006). In this case, expert 

opinions may still be needed to solve ambiguities rose when few solutions match the 

current problem.  

 

STEP 4 – Support decision systems – As pointed by (Hodor, 2018), an enterprise asset 

management system (EAMS) compiles digital maintenances into a single system able to 

help operators to prioritize and plan maintenance. Commercial solutions as proposed by 

(Huang et al., 2005) divides the problem into an application for working from the data 

acquisition to the maintenance definition, and other for attending as business platform, 

which synchronizes the maintenance needs to other company’s dimensions. In this sense, 

(Cullum et al., 2018)  proposed a Risk-Based Maintenance (RBM) to schedule 

maintenance dynamically using risk assessment as a trigger. The works of (Tavakoli, 

Mousavi and Komashie, 2008) and (Lafond et al., 2021) proposed DES models able to 

represent digital twin of physical systems which respect the constraints that will define 

the maintenance activities. This step requires a proposition of an enterprise maintenance 

management system that suits the company’s necessity and culture. 

 

 
Figure 4. Framework for implementation of digital maintenance systems. 
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3.1 Management plan for modern maintenance 

systems 
 

Considering CBM as one of the tools that should compose a bigger maintenance structure 

to support the overall company strategy, the management model should focus on the step 

4 of the proposed framework. The model receives the maintenance definitions from 

previous applications that can include prediction algorithms, AI techniques for 

prognostics, and myriad of data acquisitions and processing data approaches. The 

proposed model is based on DES and has the potential to woks as digital twin of physical 

systems of the ship. 

 

The DES model was based on a maintenance database for a tender vessel of the Brazilian 

company. The database included planned preventive maintenances, which were described 

in terms of periodic tasks recommended by OEM manuals, and unscheduled corrective 

maintenances that could possibly arise during the ship’s life. For the sake of the 

simulation, the corrective maintenances were scheduled as random events around the 

mean time between failures (MTBF) of equipment parts. Both types of maintenances 

were inputted into the model as entities at the beginning of the simulation. Their attributes 

were assigned by reading a “.csv” file with the information according to presented in table 

1.  

 

The initial schedule of maintenances was stored in an attribute called estimated time to 

failure (ETTF), and as long as the simulation time approaches ETTF, the respective 

maintenances were sent to the process plan where it will evaluate the feasibility of their 

execution and the impacts they cause into the ship operation. The DES framework is 

presented in figure 5. 

 

It is worth to notice that one of the aims of CBM is to eliminate the randomness of the 

corrective events, and to properly schedule them as preventive maintenance to avoid 

breakdowns, according to the condition of the equipment. Another aim of CBM would 

be to reschedule preventive maintenances which need to be anticipated to avoid 

breakdowns, or which be interesting to be postponed, thus providing more useful 

operating hours to the corresponding equipment, and potential savings along the ship’s 

lifecycle. Therefore, to translate both aims into the model, the decisions from CBM 
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analysis and predictions would result in a new .csv file that would update the initial 

schedule. 

 

When corrective maintenances are removed from the storage, they directly affect an 

equipment by setting it to failure status. However, a breakdown of the ship only occurs if 

some specific combinations of maintenance attributes and ship operation conditions are 

observed. For instance, if it happens a maintenance of Failure Mode and Effects Analysis 

(FMEA) type 1, which needs to stop the system to be undertaken (Op_Inop equals zero), 

it means that a critical equipment had a breakdown and it interrupts the operation of the 

ship until the maintenance is done. A variation of this example would be a failure of an 

equipment with FMEA 2 which has already lost its redundancy due to other failure in the 

system, thus behaving as FMEA 1. Another scenario arises when, for instance, the ship 

is at sea and it is triggered a corrective maintenance of a critical system, which requires 

the ship to be at the port or it is only performed by shipyard personnel, it means that the 

ship needs to stop the operation at the sea and goes to port to attend the maintenance. In 

this case, the ship returns using its own propulsion or, depending on the severity of the 

breakdown, the ship may require to be towed. For simplicity of the model, the way the 

ship would return to port was simulated as a random delay of a week-time mean. The 

combinations of attributes and situations that trigger a ship breakdown are shown in figure 

6.  

 

Another dimension is given by the period of maintenance. According to the resolution 

MSC.204(81), (IMO, 2006), of the International Maritime Organization (IMO), which 

amended the International Convention for the Safety of Life at Sea (SOLAS) (IMO, 

1974), it must have a minimum of two inspections of the outside of the ship’s bottom 

during a five-year period. These inspections are normally undertaken in a dry-dock, 

according to IMO resolution A.1053(27), 2011, unless the ship applies for an in-water 

survey in lieu of bottom inspection in dry-dock to permit one dry-dock examination in 

any five-year period, (MSC.1/Cir. 1348, (IMO, 2010)), or the ship is enrolled in an 

Extended Dry-docking Scheme, according to the International Association of 

Classification Societies (IACS) recommendation No. 133, (IACS, 2013), which foresees 

conditions for a permission to carry out two consecutive in-water surveys during the 

renewal period of five years in an interval that not exceed 36 months, which allows the 

dry-docking inspection to happening in a period of 7.5 years. Therefore, the two normal 

inspections in a dry-dock are usually named as intermediate and major surveys, or 
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intermediate and major maintenance periods, respectively. Nonetheless some 

manufacturers and shipowners stablish specific maintenances for these periods.  

 

Preventive maintenances do not cause unintentional breakdowns, therefore, when the 

ETTF of a preventive maintenance comes up, and the ship is not able to shut down the 

related equipment or it is not at the right operation condition or maintenance period, the 

maintenance is held until all requirements are matched. 

 

Apart from the required competent personnel that must be available, in quantity (attributes 

NrSkill1 and NrSkill2) and skill (Skill1 and Skill2), there are particular constrains that 

arise from spatial relationships as pointed by (Lafond et al., 2021). The model herein 

proposed considers the working area capacity of ship compartments and a list of before-

though affected compartments which were set as the attributes (COMP1, COMP2, and 

COMP3). 

 

While FMEA type 1 can impact the operation at sea, the FMEA types 1 and 2 can impact 

the time that the ship spends in port due to an assumed policy of not allowing the ship to 

go to sea with a critical system, or its redundancy, having a maintenance due. Therefore, 

if a planned period in port was not enough to complete all maintenances of FMEA type 1 

and 2, the ship will be delayed.   

 

The model can also schedule opportunistic maintenances based on useful criteria such as 

the anticipation of specific maintenances of interest. As a default, the model schedule 

opportunistic maintenances, basically of FMEA type 3, when it happens a delay in port 

due to not-finished FMEA 1 and 2 maintenances.  
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Table 1. Maintenance attributes 

 

Symbol Description 

Corr_Prev 
0 – Corrective maintenance – Unscheduled action. 
1 – Preventive maintenance – Periodic prescribed inspection/servicing 

based on elapsed time or hours of operation. 

FMEA 

1 – Failure will render the function inoperable and the function is 
involved in safety of the crew and the shipboard personnel or the 
function is involved in the ship main operation. 

2 – Failure: 
     - Will not render the function inoperable (redundancy) and the 

function is: 
              - involved in the safety of the crew and shipboard personnel, 

or 
              - involved in the ship main operation, 
     - Will render the function inoperable (no redundancy) and the 

function is not: 
              - involved in safety of the crew and shipboard personnel, or 
              - involved in the ship main operation. 
3 – Failure will not render the function inoperable and the function is 

not: 
     - involved in safety of the crew and shipboard personnel, or 
     - involved in the ship main operation. 

Main_Priority 

Priority given to maintenances due to company policy, which is related 
to FMEA and corrective / predictive characteristics, as the following: 

Corrective 
FMEA       Priority 

1                  1 
2                  2 
3                  5 

Predictive 
FMEA      Priority 

1                 3 
2                 4 
3                 6 

 

Op_Inop 

0 – System inoperable during performance of the maintenance task. 
The system is not available to perform all normal operations. 

1 – System operable during performance of the maintenance task. The 
system is available to perform all normal operations. 

Req_Ship_Condition 

The required ship condition to realize the maintenance task, as 
follows: 
0 – Any ship condition. 
1 – At sea. 
2 – Port. 
3 – Drydock. 

Req_Ship_Period 

The maintenance is performed during the following scheduled 
maintenance period: 
0 – Any period below. 
1 – At sea. 
2 – Port. 
3 – Intermediate Maintenance Period (IMP). 
4 – Long Overhaul (LOH). 

Done_By 

The maintenance is performed by staff from: 
C – Crew. 
V – Crew supervised by shipyard. 
S – Shipyard. 
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Table 1. (continued). 

 

  

Maintenance_cycle Periodicity of the predictive maintenance task in hours 

Op_h_Age 
Periodicity base of the preventive maintenance tasks 
0 – Operating hours. 
1 – Age/elapsed time in hours. 

MTBF 
Mean Time Between Failures 
The average time between two failures for an item in hours, adopted 
to calculate when corrective maintenances possibly occur. 

TTR 
Time To Repair 
The average time expended (in hours), regardless of the number of 
personnel working simultaneously, required to perform a task. 

Skill1 

Type of staff resource composed by Done_By + Skill level + Skill 
speciality required for the maintenance task. 
Skill level stands for: 
B - Basic 
A - Advanced 
Skill specialities are: 
ET - Technician Electronic 
EL - Technician Electric 
MO - Technician Mechanics 
The combination of the above symbols gives the following list: 

2 - CAEL 3 - CBEL 4 - CAET 5 - CBET 6 – CAMO 7 - CBMO 
8 - VAEL 9 - VBEL 10 - VAET 11 - VBET 12 - VAMO 13 - VBMO 
14 - SAEL 15 - SBEL 16 - SAET 17 - SBET 18 - SAMO 19 - SBMO 

 

NrSkill1 Number of skill 1 resource needed to execute the maintenance task. 
HH1 Sum of human hours employed by all participating skill 1.  
Skill2 A second skill required simultaneously in the same task. 

NrSkill2 Number of skill 2 resource needed to execute the maintenance task. 
HH2 Sum of human hours employed by all participating skill 2.  

COMP1 A compartment of the ship affected by the maintenance task. 
COMP2 A second compartment of the ship affected by the maintenance task. 
COMP3 A third compartment of the ship affected by the maintenance task. 
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Figure 5. DES framework. 
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Figure 6. Combinations of attributes and situations that trigger a ship breakdown. 

 

The aim of the model is to schedule the maintenances, by respecting the spatial 

constraints, and to provide a level of workload resulting from the schedule. Therefore, the 

number of personnel resources were set as infinite, while it will be actually restricted by 

the compartment working area capacity. Then, the calculated schedule is only possible if 

the workers from the ship’s crew and the shipyard’s personnel can use simultaneously the 

compartments respecting their limitations. The figure 7 shows the deck plans of the ship, 

with some compartments in red to represent examples of constrained capacity to host 

more maintenances. Thus, the model is useful for the company evaluating the required 

crew number and making better maintenance contracts with shipyards by setting the most 

economical number of regular workers, since the model calculates the required extra 

human-hours costs resulting from the selection of regular workers.  
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Figure 7. Ship deck plans with constrained compartments shown in red. 

 

The number of regular workers trades-off not only with the cost of human-hours, but also 

with the worker’s utilisation, which tends to drop with the increasing in the number of 

regular workers, and the resulting ship’s cumulative availability, which tends to grow 

with the increasing in regular workers. 

 

When extra workers are required, the cost of human-hours is elevated by an extra factor, 

adopted as 1.5 times the normal human-hour cost. Moreover, there is a significant cost 

related to the administrative burden of hiring and terminating extra workers, which were 

assumed as equivalent to 40 human-hours. These adopted values can be adjusted to the 

company’s reality or can be investigated in a sensitivity analysis. However, they were set 

as constant for the simplicity of the model. Other key performance indicators (KPI) are 

the average number of extra hirings and the average period with extra workers, which 

convey an average quantitative meaning for the effort of hiring extra workers every time 

that it is required, and they are complemented by the KPI Number of extra hirings. The 

table 2 summarises the KPIs monitored by the model. 

The model investigates the scenarios of eight hours of working shift, two shifts of eight 

hours, and a scenario of variable shifts, which starts with one eight-hour shift and changes 

to two eight-hour shifts if the workload surpasses the number of regular workers. 
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Table 2. List of KPIs calculated by the model  

 
 

  

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 𝑈𝑈𝑜𝑜 ℎ𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈 𝑟𝑟𝐶𝐶𝑈𝑈𝑈𝑈𝐶𝐶𝑟𝑟𝑟𝑟𝐶𝐶𝑈𝑈 𝑏𝑏𝐶𝐶𝑈𝑈𝑏𝑏𝑈𝑈

𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝑈𝑈𝑈𝑈𝑤𝑤 𝑈𝑈𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑏𝑏𝑈𝑈𝐶𝐶 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶
 

𝑁𝑁𝐶𝐶𝐶𝐶𝑏𝑏𝐶𝐶𝑟𝑟 𝑈𝑈𝑜𝑜 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 ℎ𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑤𝑤𝑈𝑈𝑈𝑈 =  � 𝐸𝐸𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈ℎ𝑈𝑈𝑈𝑈 𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶𝑈𝑈𝑟𝑟𝐶𝐶𝑟𝑟 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 ℎ𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑤𝑤𝑈𝑈𝑈𝑈

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶

0

 

𝐸𝐸𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈 = 𝑁𝑁𝐶𝐶𝐶𝐶𝑏𝑏𝐶𝐶𝑟𝑟 𝑈𝑈𝑜𝑜 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈 𝑈𝑈ℎ𝑈𝑈𝑈𝑈 𝐶𝐶𝑒𝑒𝑟𝑟𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝑟𝑟 𝑈𝑈ℎ𝐶𝐶 𝑟𝑟𝐶𝐶𝑤𝑤𝐶𝐶𝑈𝑈𝑈𝑈𝑟𝑟 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈 𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈  

𝐴𝐴𝐶𝐶𝐶𝐶𝑟𝑟𝑈𝑈𝑤𝑤𝐶𝐶 𝑈𝑈𝐶𝐶𝐶𝐶𝑏𝑏𝐶𝐶𝑟𝑟 𝑈𝑈𝑜𝑜 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 ℎ𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑤𝑤𝑈𝑈𝑈𝑈 =  
∑𝐸𝐸𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈

𝑁𝑁𝐶𝐶𝐶𝐶𝑏𝑏𝐶𝐶𝑟𝑟 𝑈𝑈𝑜𝑜 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 ℎ𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑤𝑤𝑈𝑈
 

𝑃𝑃𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟 𝑤𝑤𝑈𝑈𝑈𝑈ℎ 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈
= 𝑇𝑇𝑈𝑈𝐶𝐶𝐶𝐶 𝑏𝑏𝐶𝐶𝑈𝑈𝑤𝑤𝐶𝐶𝑈𝑈 ℎ𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑤𝑤 𝐶𝐶𝑒𝑒𝑈𝑈𝑈𝑈 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈 𝑈𝑈𝑈𝑈𝑟𝑟 𝑤𝑤ℎ𝐶𝐶𝑈𝑈 𝑈𝑈ℎ𝐶𝐶𝑏𝑏 𝑈𝑈𝑟𝑟𝐶𝐶 𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝑟𝑟 𝑈𝑈𝑈𝑈𝑏𝑏𝐶𝐶𝑈𝑈𝑟𝑟𝐶𝐶𝑈𝑈  

𝐴𝐴𝐶𝐶𝐶𝐶𝑟𝑟𝑈𝑈𝑤𝑤𝐶𝐶 𝑝𝑝𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟 𝑤𝑤𝑈𝑈𝑈𝑈ℎ 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈 =  
∑𝑃𝑃𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟 𝑤𝑤𝑈𝑈𝑈𝑈ℎ 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈
𝑁𝑁𝐶𝐶𝐶𝐶𝑏𝑏𝐶𝐶𝑟𝑟 𝑈𝑈𝑜𝑜 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 ℎ𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑤𝑤𝑈𝑈𝑈𝑈

 

𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑜𝑜 𝑟𝑟𝐶𝐶𝑤𝑤𝐶𝐶𝑈𝑈𝑈𝑈𝑟𝑟 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈

= �𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈ℎ𝑈𝑈  × 160
ℎ𝑈𝑈𝐶𝐶𝑟𝑟𝑈𝑈
𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈ℎ

× 𝑅𝑅𝐶𝐶𝑤𝑤𝐶𝐶𝑈𝑈𝑈𝑈𝑟𝑟 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈 𝑝𝑝𝐶𝐶𝑟𝑟 𝑈𝑈ℎ𝑈𝑈𝑜𝑜𝑈𝑈𝑈𝑈 × 𝑁𝑁𝐶𝐶𝐶𝐶𝑏𝑏𝐶𝐶𝑟𝑟 𝑈𝑈𝑜𝑜 𝑈𝑈ℎ𝑈𝑈𝑜𝑜𝑈𝑈𝑈𝑈 

𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑜𝑜 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 ℎ𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈 ℎ𝑈𝑈𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈 = 𝐸𝐸𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 𝑜𝑜𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟 ×  (𝐻𝐻𝐻𝐻1 + 𝐻𝐻𝐻𝐻2)𝐸𝐸𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈  𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈 𝑈𝑈  

𝐻𝐻𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈 𝐻𝐻𝑈𝑈𝐶𝐶𝑟𝑟 𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑜𝑜 𝑟𝑟𝐶𝐶𝑤𝑤𝐶𝐶𝑈𝑈𝑈𝑈𝑟𝑟 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈 + 𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑜𝑜 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 ℎ𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈 ℎ𝑈𝑈𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈  

𝐻𝐻𝐻𝐻 & 𝐴𝐴𝑟𝑟𝐶𝐶.𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 𝐻𝐻𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈 𝐻𝐻𝑈𝑈𝐶𝐶𝑟𝑟 𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 + 𝐴𝐴𝑟𝑟𝐶𝐶.𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈 × 𝑁𝑁𝐶𝐶𝐶𝐶𝑏𝑏𝐶𝐶𝑟𝑟 𝑈𝑈𝑜𝑜 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 ℎ𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑤𝑤𝑈𝑈𝑈𝑈  

𝐷𝐷𝑈𝑈𝑤𝑤𝑈𝑈𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 𝑈𝑈𝑈𝑈 𝑝𝑝𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟

= �𝐵𝐵𝑟𝑟𝐶𝐶𝑈𝑈𝑤𝑤𝑟𝑟𝑈𝑈𝑤𝑤𝑈𝑈 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 + 𝑇𝑇𝑈𝑈𝐶𝐶𝐶𝐶 𝑟𝑟𝐶𝐶𝑈𝑈𝑈𝑈𝑏𝑏𝐶𝐶𝑟𝑟 𝑈𝑈𝑈𝑈 𝑝𝑝𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟 𝑟𝑟𝐶𝐶𝐶𝐶 𝑈𝑈𝑈𝑈 𝑟𝑟𝑟𝑟𝑈𝑈𝑈𝑈𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈 𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑟𝑟𝐶𝐶𝑈𝑈  

𝑃𝑃𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟 𝐴𝐴𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑏𝑏 =  
𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 𝑈𝑈𝑈𝑈 𝑝𝑝𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟 − 𝐷𝐷𝑈𝑈𝑤𝑤𝑈𝑈𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 𝑈𝑈𝑈𝑈 𝑝𝑝𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟

𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 𝑈𝑈𝑈𝑈 𝑝𝑝𝐶𝐶𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟
 

𝑆𝑆ℎ𝑈𝑈𝑝𝑝 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 𝐴𝐴𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑏𝑏 =  
∑𝑈𝑈𝑝𝑝𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 𝑈𝑈𝑈𝑈 𝑈𝑈𝐶𝐶𝑈𝑈 + ∑𝑈𝑈𝑝𝑝𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 𝑈𝑈𝑈𝑈 𝑝𝑝𝑈𝑈𝑟𝑟𝑈𝑈

𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 𝑈𝑈𝑜𝑜 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
 

Where: 

𝑈𝑈 = 𝑅𝑅𝐶𝐶𝑤𝑤𝐶𝐶𝑈𝑈𝑈𝑈𝑟𝑟 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈 𝑝𝑝𝐶𝐶𝑟𝑟 𝑈𝑈ℎ𝑈𝑈𝑜𝑜𝑈𝑈 ([1, 5, 10, 15, 20, 25, 30, 35]) 

𝐸𝐸𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 𝑜𝑜𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟 = 1.5 (𝑟𝑟𝑈𝑈𝑈𝑈𝑈𝑈 𝑜𝑜𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑟𝑟 𝑜𝑜𝑈𝑈𝑟𝑟 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 ℎ𝑈𝑈𝐶𝐶𝑟𝑟𝑈𝑈 ℎ𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑤𝑤𝑈𝑈) 

𝐴𝐴𝑟𝑟𝐶𝐶.𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈 = 40 ℎ𝑈𝑈𝐶𝐶𝑟𝑟𝑈𝑈 (𝑟𝑟𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈 ℎ𝑈𝑈𝐶𝐶𝑟𝑟𝑈𝑈 𝑜𝑜𝑈𝑈𝑟𝑟 ℎ𝑈𝑈𝑟𝑟𝑈𝑈𝑈𝑈𝑤𝑤 𝑈𝑈𝑈𝑈𝑟𝑟 𝑈𝑈𝐶𝐶𝑟𝑟𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑤𝑤 𝐶𝐶𝑒𝑒𝑈𝑈𝑟𝑟𝑈𝑈 𝑤𝑤𝑈𝑈𝑟𝑟𝑤𝑤𝐶𝐶𝑟𝑟𝑈𝑈) 
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4 DES model results 
 

Considering the case where only the planned preventive maintenance occurs it is possible 

to verify the workload profile of Figure 8, plotted for the first 8 years of ship’s life. Most 

of the time there is low demand for workers with peaks between 10 to 20. Since preventive 

maintenance is periodic, there are few high peaks at the beginning of the life, while more 

peaks relative to maintenance with longer periodicity are added with time. The ship 

periods 3 and 4 (intermediate and major maintenance periods) concentrate more workers, 

and for longer periods. The availability of the ship is presented in figure 9. It was 

considered that the ship starts its life with 100% of availability. The critical maintenances 

and the circumstances that lead to downtimes reduce the availability of each period, which 

are reflected in the cumulative availability. The periods in dry-dock cause the bigger 

reductions.  

 

The first scenario shows part of the intended life cycle of the ship, which is disturbed by 

random corrective maintenances, as presented in figure 10. These maintenances increase 

the number and the height of workload peaks, and consistently affects the availability of 

the ship, as shown in figure 11. Although the efforts of the company to select equipment 

with MTBF that coincide with the maintenance periods, the randomness of the failures 

may change the plan, and cause interruptions to ship operation, which the respective 

responsive actions may be taking the ship to port or to dry-dock. The figure 12 shows the 

interruptions that might happen due to stochastic failures.  In this scenario, it was 

observed two intermediate periods which started around 30,000h and 32,000h, 

respectively. The first was caused by a corrective maintenance that required the ship to 

go to dry-dock before planned, and, because there were maintenances about to be due, 

the period accumulated many maintenances until the ship was free to go to sea. The 

second intermediate period happened in its ordinary time, according to the statutory 

requirements, which had low demand for workers in the end of the period because many 

maintenances were done before planned. This is a very undesirable scenario that puts the 

ship unavailable much longer than planned. Many companies seek for alternative 

solutions to avoid two close periods in dry-dock, such as underwater inspections and 

works, temporary repairs or operating with restrictions. These alternative solutions were 

not included in the model, but it was considered that CBM could indicate possible failures 

that cause interruptions, thus the interruptions were removed from the next scenarios. 
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Figure 8. Workload profile of planned preventive maintenance (first 8 years). 

 
Figure 9. Ship availability of planned preventive maintenance (first 10 years). 

 
Figure 10. Workload profile of planned preventive and unplanned corrective maintenances (first 8 years). 

 
Figure 11. Ship availability of planned preventive and unplanned corrective maintenances (first 10 years). 
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Figure 12.Interruptions of ship operations (first 10 years). 

 

The high peaks in workload graphs are the results of the concentration of simultaneous 

due maintenances. Some of these peaks happened at the beginning of the period, which 

means that the maintenances were due before the period started and they were “waiting” 

for the ship changing to the required condition. If the regular workers were limited to a 

certain capacity, some peaks could be distributed across the period without delaying its 

end. However, when a peak is created after the beginning of the period, any limitation in 

the number of workers would result in delaying the end of maintenance period. The 

figures 13 and 14 show the workload profile and the availability of the ship for an example 

of 20 regular workers with no extra hirings. While the workload graph has many more 

peaks than the other scenarios, which conveys higher utilisation, the availability graph 

presents much less peaks of high availability, which means that the ship spent more time 

with critical maintenances due and she might operate with bigger backlog of non-critical 

maintenances. The cumulative effect of delays also reflected the number of times that the 

ship went to sea between 40,000h and 50,000h, which were two times less than the 

planned scenario. 

 

 
Figure 13. Workload profile of 1 eight-hour shift and 20 regular workers with no extra hirings. 
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Figure 14. Availability of 1 eight-hour shift and 20 regular workers with no extra hirings. 

 

The DES model was run for five scenarios. The first three had the number of workers 

resources only constrained by the capacity of compartments and it was allowed extra 

hirings. There were variations of one and two shifts of eight hours of work, and a variable 

shift condition, which consisted of changing from one to two shifts if the number of 

required regular workers exceeded the actual considered number. The last two scenarios 

were calculated for one and two shifts of work, with fixed number of regular workers, 

and no extra hirings were allowed. The last two scenarios were run from 15 regular 

workers to satisfy the minimum workers required to perform some of the maintenances.   

 

 
Figure 15. Utilisation (left) and Ship cumulative availability (right) (first 10 years). 

 
Figure 16. Number of extra hirings (left), Average Nr of extra hirings (centre), and Average period of 

extra hirings (right). 
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Figure 17. Human-hour Cost (left) and Human-hour with Administrative Costs (right) (in human hours). 

 

 

  

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

0 5 10 15 20 25 30 35 40

Hu
m

an
-H

ou
r C

os
t

Regular workers per shift

1 fixed shift 2 fixed shifts
Variable shifts 1 fixed shift, no extra workers
2 fixed shifts, no extra workers

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

0 5 10 15 20 25 30 35 40

HH
 &

 A
dm

. C
os

t

Regular workers per shift
1 fixed shift 2 fixed shifts
Variable shifts 1 fixed shift, no extra workers
2 fixed shifts, no extra workers



 

35 
 

5 Discussion 
 

The trade-off between utilisation, availability, and human-hour costs, were pronounced 

by the number of shifts and the number of workers, including if extra workers were 

allowed or not. The higher the number of regular workers, the lower the utilisation, and 

the higher the cost. However, the availability is mostly affected by the number of shifts 

and the extra workers. The fixed shifts provided constant availability, because it was 

considered unlimited number of workers thus the time to repair was the only attribute that 

drove the availability, while the variable shift scenario oscillated with the number of 

workers. As a result of limiting the regular workers, the utilisation considerably increased 

but it was reflected in the ship´s availability, which consistent dropped with the delays 

occurred. 

 

There is not an optimal solution for the number of regular workers since the company 

must decide what KPI is more important. If cost and utilisation were prioritized, the 

scenario of 15 regular workers and no extra hirings would provide the lowest cost and 

highest utilisation, but also the lowest availability of the ship. The scenario of 10 regular 

workers with variable shifts has the second lowest cost, but it requires a considerable 

number of extra hirings, which brings a managerial burden that can easily degrade the 

costs if the administrative costs were higher than considered for this model. A balanced 

scenario seems to be none of the five presented here, but some derived from a scenario of 

around 15 regular workers in a variable shift scheme that considers some extra workers 

in such conditions that suit the company’s administrative capacity.  

 

The proposal of a DES model to schedule maintenance succeeded in dealing with many 

variables that arise from maintenance requirements, ship operational profiles, and spatial 

constraints. It provided prediction of KPIs for different number of workers and allowed 

for better understanding about the required number of ship crew and shipyard personnel 

by evaluating their utilisation and costs, and observing the trade-off with ship availability. 

The DES model aligns with the state-of-the-art for decision support systems intended in 

the step 4 of the proposed framework for data-driven maintenance management systems.   

 

While some prediction and prognostic techniques attempt to reduce the dependence of 

historical data and try to find patterns by evaluating correlation among parameters or 
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mounting case-based solutions, which may depend on some level of historical data, the 

proposed maintenance management plan depends only on the definition of maintenance 

attributes. However, populating the attributes with values may require good sources of 

OEM manuals, some hours of expert work, and probably depends on historical data too. 

On the other hand, when the maintenance attributes are fully filled, the only update 

required by CBM and prediction systems regards to the next scheduled time (MTBF or 

Maintenance_cycle attributes). The steps 1, 2 and 3 of the proposed framework for data-

driven maintenance system include the infrastructure, algorithms and tools required for 

implementing CBM and prediction and prognostic systems to provide the maintenance 

definition and its attributes. 

 

The number of maintenance attributes of the model may also need to include the impacts 

to other systems while undertaking the maintenances, such as shutting off electrical 

systems or closing water pipes, for instance. Some previous and post activities can be also 

included into the actual attributes, such as preparation of compartments, mounting 

scaffolds, installing forced ventilation, making health and safety inspections, installing 

tags and signs for hazardous activities, among other activities that may be specific for the 

ship.  All these additions alter the DES model, which has the capacity to translate into 

new KPI numbers.    

 

The model provides prediction for workload that is useful for sizing crew members and 

shipyard personnel. However, it was considered only the required hours for performing 

the maintenance tasks. The resulting workforce should include an extensive list of 

activities held onboard, as suggested by (Lee, John D., 1997). His work also provided 

guidance for validation of the workforce prediction. However, although he used five 

different validation approaches, the activities were based on shipboard tasks of tankships 

and freighters. Therefore, some adaptation from his data may be required.   
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6 Conclusions 
 

This work gathered the challenges for the implementation of data-driven maintenance 

systems and presented the stat-of-art regarding the solutions found in current literature. 

Based on these solutions, it was proposed a methodology for managing data acquisition 

and a DES model for managing maintenance routine of ships. 

 

The model potentially works as digital twin of the physical ship in term of maintenance 

management and has the capacity to explore “what if” scenarios, responding to variations 

in maintenance requirements, operational profiles, and spatial constraints, therefore 

providing maintenance schedule and prediction of KPIs for different number of workers. 

The model aligns with latest developments in decision support systems and offers better 

understanding about the required number of ship crew and shipyard personnel by 

evaluating their utilisation and costs, and observing the trade-off with ship availability.   

 

  



 

38 
 

7 Limitations of the study, recommendations, and 

future work 
 

The DES model has the potential to work as digital twin of the physical ship, however, in 

this work, it was only considered the spatial constraint of the compartments. Other 

constraints also add complexities, such as the impact to other systems, the preparation 

and post activities, including health and safety aspects of the maintenances, logistics for 

materials and spare parts, for instance. The deck plans built here in two dimensions, could 

also be draw in three dimension to provide closeness to physical ship, which possibly 

would make it easier to visualize the spatial constraints. 

 

Although it was foreseen in the model, the opportunistic maintenances had any special 

criteria for anticipation from forwards periods. The only opportunistic maintenances 

included were those scheduled during a breakdown. The works of Golbasi and Turan, 

(2020) and Budiono, Siswanto and Kurniati, (2021) shown that there is room for 

improvements of DES models when beneficial criteria for opportunistic maintenances are 

considered. The inclusion of logistic chains of materials and spare parts into the model 

could unfold criteria for anticipation of opportunistic maintenance.  

 

Another limitation regards the FMEA attribute, since this work considered the lowest 

level, which refers to parts and equipment. The next level would be the FMEA evaluation 

of systems, which here was simplified as the level of redundancy. The systems or even 

higher levels could be included if the management plan was expanded to the fleet, 

embracing more ships in the model, which is other recommendation for future work. 

 

The validation for the workload prediction provided by this work could not be done 

without comparing to real data, as proposed by (Lee, John D., 1997). Using the data that 

he found for tankships and freighters would lead to inaccurate validation. However, his 

methodology could be followed for collecting data from shipboard observations, 

structured interviews, analysis of planned maintenance logs and logbook data. 
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Appendix – Summary of challenges and solutions 

presented in the literature review 
 

Summary of challenges and solutions presented in the literature review 

Challenge Summary of the solutions Reference 
Lack of or little 
evidence of value for 
money and 
management´s lack of 
awareness 

Translation of engineering data of 
physical systems and operations into 
continuous real-time cost function KPIs 
and common financial language. 

(Psarommatis 
et al., 2022) 

Lack of data 
standardisation, 
disjointed data and 
systems and lack of 
staff training on vessel 
and ashore 

Identified key data elements to better 
exploit information about marine surface 
ship domain. 

(Ford, 
McMahon and 
Rowley, 2013) 

Automated and integrated the 
accident/incident record keeping system 
with the PMS. 

(Michala, 
Lazakis and 
Dikis, 2016) 

Suggested a Risk-Based Maintenance 
(RBM) to deal with the limitations of PM 
and RCM. (Cullum et al., 

2018) Scheduled maintenance dynamically using 
risk assessment as a trigger. 
Provided a guidance to implement CBM+, 
which is a concept developed by the USA 
DoD. 

(Koons-Stapf, 
January, 2015) 

Identified elements of 
business/management (polices, doctrines 
and strategies) and technical categories 
(infrastructure of hardware and software, 
architecture for CBM+, and data strategy) 

Hardware cost and 
installation time 

Reduced installation costs based on 
wireless data transmission and 
implemented a novel decision support 
system (DSS) solution to be used onboard 
a ship with minimal initial training. 

(Michala and 
Lazakis, 2016) 

Bandwidth 
availability and cost 

Applied communication technology such 
as 3G (WCDDA/CDMAEVDO/TD-
SCDMA) and GPRS with lower cost, 
higher bandwidth, and satisfied coverage 
for ships on inland waterways. (J. Zhao et al., 

2013) Developed a fleet management centre 
system in a WEB application with 
information replicated both onboard of 
each ship and onshore. 
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 (continued) 

Inability to analyse 
and make use of the 
data in real time 

Proposed an architecture with capacity to 
self-organize the parameters in order of its 
importance, providing system status based 
on KPIs, and adaptive strategies to 
optimise the performance of systems in 
real-time. 

(Fadzil, 2020) 

Choosing data-driven 
maintenance 
approaches 

Grouped hybrids approaches that uses 
data-driven methods to predict future 
conditions to be used in a model-based 
maintenance system. 

(Liao and 
Köttig, 2016) 

Defining input 
parameters 

Grouped the countermeasures for 
breakdowns as reactive and proactive. 

(Roosefert 
Mohan et al., 
2021) 

Developed a predictive maintenance 
solution based on real-time monitoring and 
artificial intelligence using data from 
Integrated Automation System (IAS) of 
the ship, and automatically identifying the 
most important parameters that drive 
others through correlation analysis. 

(Jimenez, 
Bouhmala and 
Gausdal, 2020) 

Developed a predictive maintenance for 
real-time data of lube systems. 

(Roosefert 
Mohan et al., 
2021) 

Reducing the 
dependence of experts 

Reduced or eliminated the dependence on 
the experts and replacing their 
involvement by prognostics and 
predictions algorithms. (Ellefsen et al., 

2019) Introduced and reviewed 4 deep learning 
techniques for implementing PHM to 
autoships. 
Proposed a framework for the local 
maintenance (at the manufacturer venue) 
including a real-time condition monitoring 
system; fault diagnosis and degradation 
prediction modules; and database storage 
and presentation regarding maintenance 
strategy. Only relevant features should be 
transferred to maintenance centre for the 
experts solving ambiguities not managed 
by the proposed AI technique. 

(Han and 
Yang, 2006) 
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 (continued) 

Lack of continuity or 
incompleteness of 
acquired data 

Concluded that the ARIMA was the best 
univariate imputation technique for 
stationary data. 
For MAR data the KRR leads to better 
results for large gaps, while for MCAR 
context GA-ARIMA, which is an 
association of a Genetic Algorithm to 
determine the coefficients of ARIMA, had 
better results. 

(Velasco-
Gallego and 
Lazakis, 
2020), 
(Velasco-
Gallego and 
Lazakis, 
2021a), 
(Velasco-
Gallego and 
Lazakis, 
2021b) 

Unavailability of 
fault-data 

Used CGAN to augment data of fault 
diagnosis to balance the missing data in 
the acquired sample, and combined with 
DGRU to perform RUL predictions. 

(Behera and 
Misra, 2021) 

Simulating physical 
world using real-time-
data 

Proposed an architecture composed by 
Data Integration and Processing and 
Simulation Modeling Engine, which 
provide flexible acquisition of any type of 
input, and simulate the physical 
environment in a model that reacts to real-
time events using DES model. 

(Tavakoli, 
Mousavi and 
Komashie, 
2008) 

Implementing CBM to 
old assets 

Criticised initiatives based only on historic 
data of past failures without combining 
with observed CBM data. Suggested the 
use of supervised or unsupervised machine 
learning together with company’s insights 
regarding to the following actions after a 
failure prediction. 

(Hodor, 2018) 

Proposed enterprise asset management 
system (EAMS) that consolidate and 
integrate all information into a single 
system able to help operators to prioritize 
and plan maintenance. 
Suggested lake ecosystems over 
warehouse types of big data, because data 
lakes are open source, do not need 
structured data, and are mostly applied to 
predictions and prescriptions of internal 
and external sources of data. 
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 (continued) 

Techniques for 
modelling 
maintenance 
management systems 

Used DES for modelling the physical 
system and reproducing the chain of events 
ruled by maintenances attributes and 
company’s constraints to propose a 
maintenance decision support model. 

See list on 
page 15. 

Dealing with 
geospatial constrains 

Proposed model-based AI, heuristic 
methods and DES to schedule project tasks 
observing attributes such as priority, 
precedence relationship, resources required, 
time required, working area required, 
proximity impacts, path impacts. 

(Lafond et al., 
2021) & 
(Bertrand, 
2020) 

Defining required 
workload 

Demonstrated the impact of opportunistic 
maintenances and urgent defects in the 
workload necessity of warships 
maintenance using DES framework. 

(Schütze and 
Hughes, 2012) 

Proposed a methodology for validating 
shipboard workforce prediction 

(Lee, John D., 
1997) 

Future maintenance 
management systems 

Proposed an intelligent maintenance system 
composed by two commercial applications, 
Watchdog AgentTM and Device-to-Business 
(D2BTM). The applications are responsible 
for monitoring and predicting the 
progression of a fault and autonomously, or 
with some human aid, triggering 
maintenance schedule and asset 
management decisions or actions. The aim 
of this system is to optimize maintenance 
schedule, eliminate the unnecessary and 
costly preventive maintenance, and reduce 
costs by optimizing resources allocation and 
reducing lead-time for spare parts. 

(Huang et al., 
2005) 

Suggested that PHM is a stepstone for 
achieving resilient, self-maintenance and 
Engineering Immune Systems (EIS), which 
are fault-tolerant systems. 

(Lee, J., 
Ghaffari and 
Elmeligy, 
2011) 
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