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PRESENTATION

PRESENTATION

� e Navy, over time, has been a leader in the area of 
Science, Technology, and Innovation (ST&I), with results 
that go beyond the Navy Force, generating achievements and 
bene� ts for the country. � e pioneering spirit of Admiral 
Álvaro Alberto da Mota e Silva, patron of the Navy’s ST&I 
and a Brazilian scientist, stands out. He dreamed up and 
implemented the National Nuclear Energy Commission 
(CNEN) and the National Council for Scientific and 
Technological Development (CNPq) in the 1950s, and was 
its � rst president.

� e Naval Force has always sought to improve itself. With 
its legacy achieved in the area of ST&I as its guide until today, 
it changed its organizational structure. It changed the name 
of the Secretary of Science, Technology and Innovation of 
the Navy, SecCTM, to the Board of Directors of Nuclear and 
Technological Development of the Navy (DGDNTM). It is 
the responsibility of the Board of Directors to plan, organize, 
direct, and control all of the Navy’s ST&I activities, including 
the relevant Submarine Development Program (PROSUB) 
and the Navy’s Nuclear Program (PNM).

� ese programs, which will allow Brazil to obtain its 
� rst nuclear powered submarine thorough design and con-
struction, have shown that the bene� ts derived from the 
Naval Force’s ST&I investments continue to go beyond 
the exclusive area of the Navy. Its bene� ciaries include the 
areas of electric power generation and health, because, in 
partnership with the Nuclear Industries of Brazil (INB) 
and the Nuclear and Energy Research Institute (IPEN), 
we are working on achieving Brazilian autonomy in the 
production of nuclear fuel for the nuclear power plants in 
Angra dos Reis (RJ) and in the implementation of the the 

Brazilian Multipurpose Reactor (RMB), which will pro-
duce radiopharmaceuticals.

� e demand for new technologies has led the Navy to 
establish new Strategic Partnerships with the academic and 
business sectors, as well as with other governmental institu-
tions, as it guides the concept of innovation known as the 
Triple Helix. Some legal documents of cooperation have 
already been signed and cooperation are being expanded 
with activities drawing on mutual knowledge, such as work-
shops and symposia with several institutions in di� erent 
regions of Brazil.

 In this context, the Naval Research Journal has, since its 
� rst edition in 1988, made a relevant contribution to the dis-
semination of the Navy’s CT & I activities, and is therefore 
an important instrument for interaction with the academic 
and business sectors and with other governmental bodies. 
As I present a new collection of scienti� c articles, I take this 
opportunity to salute all those who, in some way, have col-
laborated to achieve this level of scienti� c and technological 
development. Bravo Zulu!

Pleasant reading!

Fleet Admiral
Director General of Nuclear and Technological 

Development of the Navy

Fleet Admiral
Director General of Nuclear and Technological 
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SENSORS, ELECTRONIC WARFARE AND ACOUSTIC WARFARE

COMPARISON BETWEEN THE THEORETICAL 
ESTIMATION AND THE MEASUREMENTS OF 
THE MAIN FIGURES OF MERIT OF QUANTUM 

WELL INFRARED PHOTODETECTORS
Comparação entre a estimação teórica e as medidas das principais 
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Abstract: �is paper presents a comparison between the 
theoretical estimation and the measures of the main �gures 
of merit of quantum well infrared photodetectors (QWIP). 
Mathematical models of the main �gures of merit such as 
absorption coe�cient, dark current, and responsivity, available 
in the specialized literature, are analyzed, compared, and 
implemented in MatLab®. �e results of numerical simulations 
are compared with experimental data published in other studies 
and show that the models which are properly adapted have great 
potential for use in projects of real devices.
Keywords: Photodetectors. Quantum Wells. Characterization. 
Military Applications.

Resumo: Este artigo traz uma discussão da comparação entre 
estimação teórica e medidas das principais �guras de mérito de 
 fotodetectores infravermelhos a poços quânticos (QWIP). Modelos 
matemáticos do coe�ciente de absorção, da corrente de escuro e da 
responsividade, disponíveis na literatura especializada, são analisa-
dos, comparados e implementados utilizando a ferramenta computa-
cional MatLab®. Os resultados das simulações são comparados com 
dados experimentais publicados em outros estudos e indicam que os 
modelos, convenientemente adaptados, apresentam grande potencia-
lidade para serem utilizados em projetos de dispositivos reais. 
Palavras-chaves: Fotodetectores. Poços Quânticos. Caracterização. 
Aplicações Militares.

1. INTRODUCTION

Photodetection is now a technological reality that has 
increased the possibilities in several fields of knowledge. 
One of them is Defense, since the characterization of 

objects or scenes by photodetectors with high sensi-
tivity and selectivity in a wide infrared spectral range 
enables systems – such as missile guidance ones – to 
obtain more accuracy in the selection and hitting of 
a target.
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Infrared radiation comes from the molecular agitation 
caused by the high temperatures of bodies and objects. 
More precisely, all bodies above the absolute zero emit radi-
ation. Figure 1 (NASA, 2007) shows the location of infrared 
radiation inside the electromagnetic spectrum.

�e infrared region of the electromagnetic spectrum, 
depending on the reference used, can be subdivided into 
four bands: near infrared (NIR), between 0.7 and 3.0 μm; 
mid-wavelength infrared (MIR), between 3.0 and 6.0 μm; 
long-wavelength infrared (LWIR), between 6.0 and 15.0 μm; 

and very long-wavelength infrared (VLWIR), whose wave-
length was higher than 15.0 μm (ALVES, 2005). �ese sub-
divisions can be visualized in Table 1.

�e atmosphere, where radiation is propagated, is com-
posed of gas and suspended particles distributed through 
di¨erent temperatures and pressure, de�ned by altitude and 
geographic position. �e gas and the particles can be placed 
in six di¨erent layers distributed according to the altitude 
variation. �e lowest one – usually the scenario used in mil-
itary applications – is the troposphere, which extends from 

10 Milion K

Does it
penetrate the
atmosphere?

YES YESNO NO

Wavelength
(meters) Radio Microwave Infrared Visible Light Ultraviolet X-Rays Gama Rays

The size of... Buildings Humans Bees Thickness
of a needle

Protozoans Molecules Atoms Atomic nucleus

Frequency (Hz)

104

103 10-2 10-5 .5 X 10-6 10-8 10-10 10-12

108 1012 1015 1016 1018 1020

Temperature of
bodies that emit

in this wavelength
(Kelvin) 1 K 100 K 10,000 K

Figure 1. The electromagnetic spectrum and the location of infrared radiation (NASA, 2007).

Table 1. Subdivisions of infrared radiation band (ALVES, 2005).

Name Abbreviation Limits (μm)

Near infrared NIR 0.75 to 3

Mid-wavelength infrared MIR 3 to 6

Long-wavelength infrared LWIR 6 to 15

Very long-wavelength infrared VLWIR 15 a 1000
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sea level to approximately 11 km (SANTOS, 2004), depend-
ing on the season and the latitude. In this layer, tempera-
ture falls whereas altitude rises, in a 6.5 K/km ratio; how-
ever, this ratio may change, and that can cause scattering 
e¨ects (SANTOS, 2004). Infrared radiation attenuation 
mostly occurs in this layer, and its main components are 
water, carbon dioxide, clouds, and smoke. �e other layers 
are stratosphere, mesosphere, ionosphere, thermosphere, 
and exosphere. When infrared is transmitted through the 
atmosphere, the gases make a selective absorption, and scat-
tering is provoked by the suspended particles. Sometimes, 
there is some modulation caused by quick changes in tem-
perature and/or pressure. 

Water steam is a major attenuation factor for optical 
radiation, and it is prevalent in altitudes lower than 10 km. 
Attenuation above this level is despicable. Carbon dioxide 
is present until 5 km, approximately, and it only attenuates 
infrared radiation. Considering the attenuation e¨ects of 

the atmosphere, infrared detectors are designed to respond 
to frequency bands in which infrared radiation transmit-
tance is maximum. Figure 2 shows that atmospheric trans-
mittance limits the possibility of detection in three well-de-
�ned regions: 0.7–2.5 μm, 3.0–5.0 μm, and 8.0–15.0 μm, 
therefore corresponding to bands NIR, MIR, and LWIR, 
respectively (BOSCHETTI, 2015).

In this context, quantum well infrared photodetectors 
(QWIP) have become a good choice for modern photode-
tection systems. In the case of military applications, there 
is a demand for detectors with special features to be used in 
the battle�eld, in missions that might involve target recog-
nition, environment imaging, or �elds of interest – besides 
missile guidance. QWIP cameras are very attractive for this 
application because of its high selectivity and multispectral 
detection characteristics, enabling the detection and iden-
ti�cation through high-resolution images (GUNAPALA 
et al., 2007; GUNAPALA, 2007; DYER; TIDROW, 1998).

NIR MIR LWIR
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Figure 2. Atmospheric transmission spectrum, in the near, mid- and long-wavelength infrared bands. The spectrum 
corresponds to a layer of 1830 m of air at sea level, with 40% of relative humidity at 25ºC. The bottom of the figure 
shows the lines of absorption of some components in the atmosphere, responsible for the transmission curve 
(BOSCHETTI, 2015).
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Since they generate wide infrared spectral range images – 
6–20 μm – (GUNAPALA, 2007), with high discriminatory 
power – 640 × 512 lines – (GUNAPALA, 2007) in more 
than one band simultaneously and at a signi�cantly low cost 
(GUNAPALA, 2007) – these systems are a good option 
for use in infrared-guided weapons (DYER; TIDROW 
1998). With the signi�cant and increasing lethal power of 
these war systems, such technology becomes a factor that 
generates asymmetry for the Armed Forces employing it. 
Figure 3 presents some products in the market that already 
use this technology. 

�e knowledge about the characteristics of construction 
of the QWIP and its performance evaluation factors techni-
cally subsidizes future acquisitions of devices, and increases 
the chances of carrying out the project, its development and 
manufacture in Brazil. Besides, the study of �gures of merit 
and the development of mathematical tools that simulate 
it speed up the process of development, with reduced costs. 
�is fact contributes with the technological independence 
in defense systems. 

�e results presented in this paper are part of a line of 
analysis research and development of quantum well photo-
detectors with capacity of simultaneous detection in three 
infrared bands: NIR, MWIR, and LWIR. �is study has 
been performed with “Laboratório de Guerra Eletrônica” 

(LabGE), “Instituto de Tecnologia de Aeronáutica” (ITA), the 
Sensor Research Laboratory (SRL), at the Naval Postgraduate 
School (NPS), in USA, and the National Research Council 
(NRC), in Canada. �e results, published by Alves (2005), 
Hanson (2006), Alves et al. (2006), Issmael Jr. et al. (2007), 
Issmael Jr. (2007), and Alves et al. (2008), show the great 
potential of these devices for military applications. �e pro-
duction of quantum well photodetectors requires:
•	 Modeling the structures of semiconductor materials; 
•	 Simulating and adjusting the �gures of merit within the 

project requirements; 
•	 Increasing the crystalline structure, characterizing it and 

repeating the process, after adjusting it to the models and 
the techniques of simulation; 

•	 Fabricating detectors/cameras; and
•	 Analyzing the performance.

�is cycle can be repeated several times, until the tech-
niques of the project and the models are re�ned enough to 
be repetitive, according to some characteristics. In this con-
text, being limited to quantum wells sensitive to LWIR, this 
paper shows the analysis of some models available in the lit-
erature for the main �gures of merit, absorption coe�cient, 
dark current, and responsivity. It shows the results obtained 
by the simulations performed with MatLab® – version 

A B

Figure 3. (A) Infrared image generated by a camera with quantum well infrared photodetectors (INOVAÇÃO 
TECNOLÓGICA, 2006); and (B) matrix of quantum well infrared photodetectors used for ballistic missile defense 
sensors (MISSILE DEFENSE AGENCE, 2007).
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R2006b – from these models, and compares the results aim-
ing at improving the models and their use. �e importance of 
using MatLab® – besides its excellent performance, approved 
in studies of Engineering simulation – is owed to the fact that 
previous studies in this project were also conducted with it, 
so, there is no justi�cation for the adaptation of other tools. 
�is simpli�ed the evolution of simulation routines in pre-
vious studies to obtain the results presented in this article.

2. METHODOLOGY

The denomination quantum well comes from poten-
tial well, which can be obtained when a semiconductor 
material is “grown” between two other semiconductors 

– “sandwiched” –, with a larger energy gap, thus causing 
the formation of quantum energy levels, confining car-
riers in two dimensions. In this sense, infrared radiation 
can be absorbed, leading to excited carriers, so they go 
from a ground state to a higher state. When transition 
occurs between quantum levels inside the same band, it 
is called intersubband, and when it takes place between 
quantum levels, between the valence and conduction 
bands, is called interband. Figure 4 shows a diagram of 
bands in a quantum well-like structure. As observed in 
this figure, in intersubband transitions the energy tran-
sition is lower, enabling detection in the LWIR band – 
focus of this paper. 

By selecting the material and controlling its composi-
tion and dimensions, the absorption spectrum, as well as 

Lw (Well width)

hu2

hu3

hu3hu1

N – Number of
structure repetitions

Quantum well

S
ub

st
ra

ct

Conduction band

Barrier
Composition

E2

E1

Band absorption –
vacuum level
(Continuum)

Barrier
Energy

Well
Energy

GaAs

AlxGa1-xAs

Interband
Absorption

H1

H2

Well
doping (cm-3)

Absorption between
Subbands
(Intersubbands)

Valence band

Lb (Barrier width)

Figure 4. Band diagram, transitions between energy levels and the main building variables of a symmetric quantum 
well (ISSMAEL JUNIOR, 2007).
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the other �gures of merit, can be estimated. �erefore, we 
selected models available in the literature that could ade-
quately describe the quantum phenomena of structures such 
as the one demonstrated in Figure 4, allowing the calculation 
of quantum energy levels, as well as the other parameters 
required to characterize the detectors. Structures reported 
in the literature were simulated in order to allow the vali-
dation of the models that were used to predict the features 
measured in a laboratory. 

Table 2 presents the data from the samples used in sim-
ulations, all with wells composed of GaAs. 

Figure 5 shows the multilayer photodetector and its polar-
ization, which was built (ALVES, 2005) and is the base of 
the analysis of sample A.

Figure 6 (ALVES, 2005) presents the diagram of energy 
bands in sample A.

Figure 7 (ALVES, 2005) shows the image of the photo-
detector in sample A.

Table 2. Samples used in the simulations.

Sample Reference
Barrier width 

(Lb)
(ångström)

Well width 
(Lp)

(ångström)

Barrier 
composition

Number of 
repetitions

Well 
doping
(cm-3)

A (ALVES, 2005) Page. 62 300 52 Al0.26Ga0.74As 20 0.5.1018

B

(LEVINE, 1993)
Page. R22 and R29

and
(GUNAPALA e BANDARA, 1999)

Pages. 23 and 34

500 40 Al0.26Ga0.74As 50 1.1018

C
(LEVINE, 1993)

Pages. R22 and R29
500 50 Al0.26Ga0.74As 25 0.42.1018

D
(LEVINE, 1993)

Page R18
305 40 Al0.29Ga0.71As 50 1.4.1018

Irradiation

Irradiation

Substract Substract

Figure 5. (A) Tridimensional Diagram of the multilayer detection device and (B) vertical cut of the device, 
emphasizing the independent building configuration of each layer associated with a infrared spectrum detection 
band (ALVES, 2005).

A B
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Figure 8 has the diagram of bands in the samples listed 
in Table 2.

First, we calculate the potential pro�le of the struc-
tures, considering that the dimensions in the growth axis 
z are several orders of magnitude lower than in plan x–y, 
restricting the unidimensional con�nement of the carri-
ers – electrons in the conduction band and holes in the 
valence band. �e potential is basically determined by the 
band o¨set in the interface, by the external electric �eld 
applied on the structure and by the distribution of charges. 
�e �rst is obtained from parameters reported in the lit-
erature and empirical adjustments obtained in the labo-
ratory. �e second is known and controlled by the device 
user. �e third requires knowledge of the con�ned energy 
levels, as well as their respective wave functions; in this 
case, the Schrodinger–Poisson equations must be solved 
in a self-consistent manner (ALVES, 2005). In order to 
solve di¨erential equations and obtain eigenvalues and 

eigenfunctions, Alves (2005) used the Shooting method 
(HARRISON, 2005) due to its versatility to calculate 
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Figure 7. Image of the photodetector in sample A 
(ALVES, 2005).
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complex structures. Next, equations that shape �gures of 
merit are solved and detailed in the next section. 

Experimental data to be compared with the simulations of 
A were obtained from measurements described in the study 
by Alves (2005), whereas the other samples were extracted 
directly from the graphs available in previously mentioned 
references – using the graph tool GraphData 1.0® – and the 
analyses – using the software Origin®.

3. RESULTS

3.1. ABSORPTION SPECTRUM 
�e absorption spectrum represents the main character-

istic of the crystalline structure sample, allowing its eval-
uation before the detector itself is manufactured. It indi-
cates the band of operation of the detector and the type of 
quantum transition resulting from the interaction between 
photon and electron. �e theoretical estimation of this spec-
trum can be obtained by Equations 1 and 2 (ALVES, 2005):

( )
( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( )

∞

−

∂α ω = ∅
∂ε ω − − ω +

∂α ω = ∅
π ∂ε ω −

=
π

=

+

= −

⌡⌠



















22 3
2

2 2

2
*

2*2 3
, 2

2*

*

2

1/2
*

/ 2

2

. . .
. ,

1 
1

4 2, exp
3

i

f

b

CbCb
o re

e bF
CbCc

o r f oe

drift w FD
D

E

FD
E E

k T

b
o

q d
z z Xcos

zn cm E E

mq d L X z z Xcos
zn c E Vm

e v A m
I F f E T E F dE

L

f E
e

L mT E F V
qV

Γψ Ψ
Γ

Ψ Ψ

( ) ( )

( ) ( )

( )

( )
( )

( ) ( )

( ) ( )

τ

=

τ

=

⎞
⎟
⎠

⎞
⎟
⎠
⎫
⎭

⎫
⎭

⎫
⎭

⎫
⎭

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

− − − −

= − −

=

μ=
μ+

=

≈ α
ω

≈ α
ω

∑

∑









3/2 3/2

1
* 2 3/2

1

1

4 2,  exp
3

, 1

1

 

2

2
 

drift

drift

o

b
o

drift 2

p

o

nLN
v Fo

p w
n

nLN
v F

P w
n

E V E qv

L mT E F V E
qV

T E F

Fv
F

vsat

I F
R F

q
I F L e

q
R F L e

ϕ

ϕ

⎞
⎟
⎠

⎞
⎟
⎠

 (1)

In which aCbCb is the absorption coe�cient, considering tran-
sitions between the con�ned levels in the conduction band 
(bound-to-bound); d is the doping density; Ei and Ef represent 
the initial and �nal energy levels, respectively; q is the electron 
charge; c is the speed of light in the vacuum; eo is the vacuum 
electric permittivity; G is the broadening parameter; w 
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 is the 
incident photon energy; me* is the e¨ective electron mass; and 
f is the angle between the incident «ow and the growth axis.( )
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In which aCbCc is the absorption coe�cient, considering tran-
sitions between one con�ned level and continuum levels in 
the conduction band; LF is the ratio between p and the wave 
vector kLF; and Vo is the barrier energy. 

�e characteristics of the sample are listed in Table 2. 
�e parameters required to solve (1) and (2) are extracted 
from Vurgaftman and Meyer (2001). �erefore, the absorp-
tion spectrums of samples A and B were estimated for the 
temperature of 300 K. Amplitude absolute values presented 
di¨erences in magnitude orders. �is fact is owed to the 
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large number of uncertainties in the parameters of semi-
conductor materials composing the structure of the sam-
ples (VURGAFTMAN; MEYER, 2001). So, at the time of 
simulations, the priority was to determine the wavelength 
at the peak, without considering the broadening coe�cient 
because of the aforementioned inaccuracy. When the absorp-
tion coe�cient is normalized (Figure 9), good estimation is 
obtained, with errors lower than 6.03% for the wavelength 
at the peak. �is shows that the calculation of con�ned lev-
els using the shooting method is very reasonable. 

3.2. DARK CURRENT
�e dark current is the �gure of merit that represents how 

much current is generated in the photodetector without the 
in«uence of incident radiation (that is, in the dark). �ree mech-
anisms of dark current generation can be identi�ed in quantum 
well devices: sequential resonant tunneling, temperature-assisted 
tunneling and thermionic e¨ect. �e calculation of the dark cur-
rent is a complex procedure that depends on several magnitudes. 
�e �rst magnitude to be calculated is the e¨ective weighted 
mass of the electron in the detector, from the proportion of bar-
riers and wells in the detector. �e procedure is carried out by 
determining the e¨ective masses of the electron in the barrier 
(FU; WILLANDER, 1998) – formed by the ternary compo-
sition AlGaAs from the binary compositions GaAs and AlAs – 
and in the well – formed only by the binary composition GaAs. 
�e second magnitude is the weighted carrier mobility, which 

is also obtained from the mobility in the barrier and in the well. 
�e third magnitude is the velocity weighted saturation in the 
detector. �ese parameters were obtained considering the models 
from the Institute of Microelectronic’s Site (2014). More details 
in Issmael Junior (2007).

One of the ways of presenting the dark current in QWIP 
is given by Equation 3 (LEVINE, 1993):
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In which the term outside the integral is the density of states 
divided by the period of the multiple quantum wells (L), and 
the term f FD(E) represents the Fermi-Dirac distribution, 
given by Equation 4 (ALVES, 2005):
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In which EF represents the level of bidimensional Fermi, kB is 
the Boltzmann constant, and T is temperature. �e tunneling 
coe�cient – T(E,F) – depends on the polarization voltage and, 
for a simple barrier, it can be represented by the Equations 5, 6 
and 7 ( ANDREWS; MILLER, 1991):
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Figure 9. Comparison between estimated and measured values of the normalized absorption coefficient (A) in 
sample A (ALVES, 2005) and (B) in sample B (GUNAPALA; BANDARA, 1999).
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for Vo–qV<E<Vo; e
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for E>Vo. 
V represents the voltage applied per period of well structure. 
In the case of electrons, the drift velocity (vdrift) in function 
of the F �eld is given by Equation 8 (ALVES, 2005):

 (8)

( )
( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( )

∞

−

∂α ω = ∅
∂ε ω − − ω +

∂α ω = ∅
π ∂ε ω −

=
π

=

+

= −

⌡⌠



















22 3
2

2 2

2
*

2*2 3
, 2

2*

*

2

1/2
*

/ 2

2

. . .
. ,

1 
1

4 2, exp
3

i

f

b

CbCb
o re

e bF
CbCc

o r f oe

drift w FD
D

E

FD
E E

k T

b
o

q d
z z Xcos

zn cm E E

mq d L X z z Xcos
zn c E Vm

e v A m
I F f E T E F dE

L

f E
e

L mT E F V
qV

Γψ Ψ
Γ

Ψ Ψ

( ) ( )

( ) ( )

( )

( )
( )

( ) ( )

( ) ( )

τ

=

τ

=

⎞
⎟
⎠

⎞
⎟
⎠
⎫
⎭

⎫
⎭

⎫
⎭

⎫
⎭

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

− − − −

= − −

=

μ=
μ+

=

≈ α
ω

≈ α
ω

∑

∑









3/2 3/2

1
* 2 3/2

1

1

4 2,  exp
3

, 1

1

 

2

2
 

drift

drift

o

b
o

drift 2

p

o

nLN
v Fo

p w
n

nLN
v F

P w
n

E V E qv

L mT E F V E
qV

T E F

Fv
F

vsat

I F
R F

q
I F L e

q
R F L e

ϕ

ϕ

⎞
⎟
⎠

⎞
⎟
⎠

Using the mobility values (m) equal to 0.1 m2/Vs and 
the saturation velocity (vsat) equals to constant 5.104 m/s, 
the dark current was estimated for sample D (Table 1). �e 
theoretical values presented a systematic error of 9% for all 

temperatures. With this correction, we reach the result in 
Figure 10. Temperatures lower than 50 K are poorly rep-
resented by this model and were not included in the �gure. 

�e models give a good representation of the phenom-
ena, being a little bit further for values of polarization volt-
age lower than 1.0 V.

�en, the results in sample A (Table 1) were compared 
for temperatures 100, 90, 80, 77, 70, 60, 50, and 40 K. �e 
correction factor was not applied for this structure, and the 
absolute values are presented in Figure 11.

�e theory represents well the behavior of the real device 
for temperatures above 60 K and polarization voltage greater 
than 1.0 V, for the simpli�ed criteria we considered. �e dis-
crepancies observed can be caused by several reasons, such 
as the fact that the con�guration of the detector is part of a 
multilayer device, in which the NIR and MWIR layers can 
interfere in the measurements, and the increasing chances 
of tunneling induced by the external electrical �eld. Further 
studies should be conducted to obtain a single and generic 
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velocity saturation (ISSMAEL JUNIOR, 2007).
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model. Since we did not have the detector of sample A at 
the time of simulations, it was not possible to take mea-
surements with negative and positive polarization, which 
would allow a more accurate comparison and analysis with 
the result obtained. 

3.3. RESPONSIVITY 
Responsivity quanti�es the photocurrent ratio gener-

ated by the photon radiation power incident in the detec-
tor. Mathematically is given by Equation 9 (ALVES, 2005):
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In which, IP(F) is the photocurrent and Fo is the incident 
optical power.
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Figure 11. Comparison between the curves IxV in the dark for sample A in Table 2, for temperatures of 40–100 K 
(ISSMAEL JUNIOR, 2007).

The photocurrent can be expressed by Equation 10 
(ALVES, 2005):
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In which α is the absorption coe�cient, Φo is the inci-
dent optical power, 
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ω is the photon energy, q is the electron 
charge, L is the repetition period well/barrier, LW is the width 
of the well, υ(F) is the drift velocity of electrons in«uenced by 
the electrical �eld F, e τ lifespan of the carrier extracted from 
the well. By combining these two expressions, we obtain the 
following Equation 11:
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Simulations were carried out for the normalized responsivity 
of the photodetector by Alves (2005) – sample A in Table 1 – for 
voltages of 0.5, 1.0, and 1.5 V, temperature of 10 K. �ese curves 
were compared to the measurements taken by Hanson (2006). 
�e error between the simulated and the measured wavelength 
at the peak was 2.53%, for the polarization voltage of 0.5 V – 
Figure 12; 1.68% for the polarization voltage of 1.0 V – Figure 
13; and 1.17% for the polarization voltage of 1.5 V – Figure 14.

�ere is consistency between theoretical values and the mea-
surements, with errors lower than 3%, decreasing while the polar-
ization voltage increases. However, it is necessary to improve the 
model of the absorption coe�cient, so that the simulations of 
responsivity get closer to reality, without using normalization. 

4. DISCUSSION AND  
FINAL OBSERVATIONS

With the objective of investigating the capacity of 
models in the literature to represent the main �gures of 

merit of QWIP, many comparisons were made. �e dif-
�culty to shape the phenomena at temperatures below 
50 K was observed, besides the fact that, due to the high 
number of factors in«uencing the �gures of merit – such 
as precision in growth, precision in bandoffset values, 
e¨ective mass, bandgap, dopant ionization, among others 
– the absolute values of the amplitude have little signi�-
cance in theoretical calculations. On the other hand, the 
methodology used to calculate the con�ned energy levels 
and their respective wave functions proved to be e�cient 
(ALVES, 2005). Attempts to adept the models have been 
made and require other cycles of manufacture in order 
to test its e¨ectiveness. �ese results will be published in 
other studies.

Finally, the considerations made during the develop-
ment of this paper cooperate with the e¨ort of the Air Force 
to improve its technical knowledge in the �eld of infrared 
photodetection, aiming at leading our country toward inde-
pendence and autochthonous development of this strategic 
�eld of knowledge. 
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Figure 12. Normalized results of simulated and measured responsivity in function of the wavelength for polarization 
voltage of 0.5 V (ISSMAEL JUNIOR, 2007).



Ali Kamel Issmael Junior, Fábio Durante Pereira Alves, Ricardo Augusto Tavares Santos

Revista Pesquisa Naval, Brasília - DF, n. 28, 2016, p. 57-70

| 69 |

N
o

rm
al

iz
ed

 r
es

p
o

ns
iv

it
y

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Wavelength (microns)

6 8 10

Vpolarization = 1.5 V
simulated
measured

peak lambda = 8,4489 μm
peak lambda = 8,3510 μm

Error = 1.17%
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