

MONTEREY, CALIFORNIA

COST ESTIMATION AND ANALYSIS CAPSTONE PROJECT

Optimal Portfolio Decision Making Under Cost Uncertainty & Learning Curve Application

by

PAULA BRUM SYLVIA MEDELLIN JARED PETCHEL

Advisor:

CAPT Douglas E. Otte USN(Ret.)

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

Optimal Portfolio Decision Making Under Cost Uncertainty & Learning Curve Application

Team Members

Paula Brum Bachelor's – Industrial Engineering Universidade Federal Fluminense, Niterói - RJ

Sylvia Medellin Bachelor's – Accounting Our Lady of the Lake University, San Antonio, TX

Jared Petchel Bachelor's – Secondary Mathematics Education Master's - Mathematics University of Pittsburgh, Pittsburgh, PA

Advisor:

CAPT Douglas E. Otte USN(Ret.) Naval Post-Graduate School

Submitted in partial fulfillment of the requirements for the degree of

MASTER'S OF COST ESTIMATION AND ANALYSIS

from the

NAVAL POSTGRADUATE SCHOOL 25 March 2022

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

LIST OF TABLES	iv
LIST OF FIGURES	iv
LIST OF ACRONYMS AND ABBREVIATIONS	vi
I – EXECUTIVE SUMMARY	vii
PROBLEM STATEMENT	vii
PROPOSED SOLUTION	vii
FINDINGS & CONCLUSIONS	vii
RECOMMENDATION	vii
II – STUDY INTRODUCTION	1
A – INTRODUCTION	1
B – BACKGROUND	2
1 – PURPOSE	2
2 – SCOPE	2
C – ASSUMPTIONS AND CONSTRAINTS	2
1 – ASSUMPTIONS	2
2 – CONSTRAINTS	3
III – ANALYTICAL APPROACH	4
A – METHODOLOGY	4
B – MEASURES OF EFFECTIVENESS	5
IV – ANALYSIS	7
A – THEORETICAL NON-LINEAR PROGRAMMING MODEL DESCRIPTION	7
B – ANALYTICAL TOOL	7
C – MODULE ONE: REGRESSIONS	8
1 – FRIGATES REGRESSIONS AND COST EQUATIONS	8
2 – PATROLS REGRESSIONS AND COST EQUATIONS	13
3 – SUBMARINES REGRESSIONS AND COST EQUATIONS	17
D – MODULE TWO: MONTE CARLO SIMULATION	20
1 – FRIGATES COST DISTRIBUTION	22
2 – PATROLS COST DISTRIBUTION	23
3 – SUBMARINES COST DISTRIBUTION	24
E – MODULE THREE: NON-LINEAR PROGRAMMING MODEL	25
1 - THEORETICAL NON-LINEAR PROGRAMMING MODEL	25

2 – ACCOUNTING FOR LEARNING CURVES WITH A MULTI-VARIABLE MODEL
3 – TRANSLATING THE THEORETICAL NLP MODEL INTO R $^{\odot}$ 27
4 – SPONSOR-SUGGESTED ALTERATION
V – CONCLUSION
Appendix A: Regressions Programming Script
1 Frigates Regression32
2 Patrols Regression34
3 Submarines Regression
Appendix B: Monte Carlo Simulation Programming Script
1 Frigates Monte Carlo Simulation
2 Patrols Monte Carlo Simulation
3 Submarines Monte Carlo Simulation42
Appendix C: Non-Linear Programming Script
1 Minimum Budget44
2 Fixed Budget46
Appendix D: Reference Tables for Data Array52
1 – Frigates Data
2 – Patrols Data53
3 – Submarines Data54
References

LIST OF TABLES

Table 1: Frigates Data	9
Table 2: Frigates Regressions Comparison	11
Table 3: Patrols Data	13
Table 4: Patrol Regressions Comparison	15
Table 5: Submarines Data	17
Table 6: Submarines Regression Comparison	18
Table 7: Values and learning Curves used in NLP Model	27

LIST OF FIGURES

Figure 1: Modules and Integration	. 5
Figure 2: Frigates Correlation Matrix	.9

Figure 3: Frigates Regression Results	10
Figure 4: Frigates Model 7 Regression – Residual Normality	11
Figure 5 Frigates Model 7 - Heteroskedasticity	11
Figure 6: Frigates Final Regression	12
Figure 7: Frigates Regression Chart	12
Figure 8: Patrols Correlation Matrix	13
Figure 9: Patrols Regressions Results	14
Figure 10: Patrols Model 3 Regression – Residual Normality	15
Figure 11: Patrols Model 3 Regression - Heteroskedasticity	15
Figure 12: Patrols Final Regression	16
Figure 13: Patrols VIF Test Results	16
Figure 14: Submarines Correlation Matrix	17
Figure 15: Submarines Regressions Results	18
Figure 16: Model 7 Regression – Residual Normality	19
Figure 17: Submarines Model 7 - Heteroskedasticity	19
Figure 18: Submarines Regression Chart	20
Figure 19: SME Assessment for Frigates Displacement	22
Figure 20: Frigates Cost Cumulative Distribution Function	22
Figure 21: Frigates Cost Distribution Function – Main Parameters and Comparison	22
Figure 22: SME Assessment for Patrols Displacement and Length	23
Figure 23: Patrols Cost Cumulative Distribution Function	23
Figure 24: Patrols Cost Distribution Function – Main Parameters and Comparison	23
Figure 25: SME Assessment for Submarine Displacement	24
Figure 26: Submarines Cost Cumulative Distribution Function	24
Figure 27: Submarines Cost Distribution Function – Main Parameters and Comparison	24
Figure 28: Total Cost of Each Ship and Their Respective Shadow Price	29
Figure 29: Shadow Prices Relative to the Remaining Budget	
Figure 30: Percentage of Each Ship Type Purchasable with Remaining Budget	30

LIST OF ACRONYMS AND ABBREVIATIONS

- CER: Cost Estimating Relationship
- CST: Cost
- **<u>CV</u>**: Coefficient of Variation
- DIS: Displacement
- DoD: Department of Defense
- **<u>GRETL</u>**: Software (Gnu Regression, Econometrics and Time-series Library)
- JMP: Software (John's Macintosh Project)
- LEN: Length
- MOE: Measures of Effectiveness
- NLP: Non-Linear Programming Model
- POC: Point of Contact
- RNG: Range
- SER: Schedule Estimating Relationship
- SME: Subject Matter Expert
- U.S.: United States of America
- VIF: Variance Inflation Factor

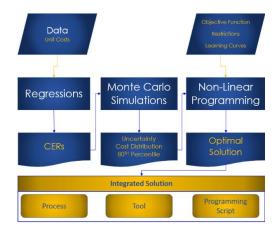
I – EXECUTIVE SUMMARY

PROBLEM STATEMENT

Determine optimal portfolio output using the costs of different systems. Given those systems' costs are not static, due to uncertainty, learning curve effects, etc.; the optimization "answers" should reflect the dynamics of the cost calculations.

PROPOSED SOLUTION

Cost estimators are involved in a significant amount of portfolio analysis and funding constraints. This team combines various cost estimating tools that provide portfolio optimization while accounting for uncertainty and learning curves. The new process, depicted in the process flow below, provides a way to maximize portfolio execution. It integrates Linear Regressions, Monte Carlo Simulations, and Non-Linear Programming through code in $\mathbb{R}^{\mathbb{C}}$ software language to produce an optimized solution. Cost estimators can now perform more in-depth analysis of their portfolio and provide recommendations to decision makers on how to manage scarce resources. This new approach helps determine the best combination of Systems Acquisition elements.



FINDINGS & CONCLUSIONS

The team determined it is possible to combine many aspects of cost estimating to achieve an optimal answer for multiple systems' acquisition. The process combines various cost estimating tools which results in an integrated solution with in-depth analysis. $\mathbb{R}^{\mathbb{O}}$ is an opensource software that performs concurrent statistical analysis of large amounts of data. Cost estimators can use their own data and apply it to the coding package created for this process. Thus, the process is flexible enough to add more complexity like accounting for Schedule Estimating Relationships, Manpower costs, or other cost elements within the project WBS. The building blocks are there for other cost estimators to make this process fit their needs.

RECOMMENDATION

The team recommends Acquisition leadership and cost estimators begin using this tool. Doing so will provide more in-depth and variable analysis within the decision-making process. Using this process results in the best combination of systems' acquisition with in-depth statistical analysis and gives leadership the optimal solution to allocate scarce resources.

II – STUDY INTRODUCTION

A – INTRODUCTION

Cost estimators working for the United States Federal Government are required to complete various courses in pursuit of a certificate to ensure they learn the regulatory requirements of cost estimating and federal acquisition. Because funding is a major constraint on government budgets, cost estimators are involved in a significant amount of portfolio allocation and what-if analyses to optimize acquisitions.

Despite all the required courses, cost estimators are still confined to a limited number of stove-piped commercial software to do statistical analysis. In most instances, cost estimators confine themselves to Microsoft Excel, ACEIT, or winsight when performing data analysis. However, because of their commercial nature it is difficult to manipulate the pre-written code. These software programs also have a limited capacity for data analysis.

There are more robust software programs that can handle data analysis better than these systems. Some must be purchased, while others are free for public use. These software systems are available to use today but are not widely used due to several factors. A couple roadblocks are lack of programming experience and cost of software licenses. The DoD would have to perform a cost benefit analysis to determine if the cost of teaching programming to cost estimators is beneficial to the government. Another benefit analysis is needed to determine if purchasing new software packages would improve cost estimates.

This team's assignment is to create a solution that determines the optimal portfolio output using the unit costs of different systems (made up of their constituent parts) in a situation where those systems' costs are not static, due to uncertainty and learning curve effects. The optimal solution should reflect the dynamics of the cost calculations. Said another way, how can cost estimators determine the best combination of commodities that will use resources in the most efficient way possible?

The team created a solution to provide a process associated with tools (software) and models capable of meeting the requirement, i.e., the optimized answers reflect the dynamics of the cost calculations. Cost estimators can be limited in options when providing alternatives to acquisition leadership. The team wants to give estimators a way to find alternatives that provide more insight into data analysis and produce an optimized answer. This paper details the challenge of producing a cost model that accounts for uncertainty, applies learning curves, and explores Cost Estimating Relationships (CERs). The team used publicly available data to produce cost equations; accounted for uncertainty by running the data through Monte Carlo Simulations; and developed a non-linear programming (NLP) model to produce an interim response to the problem. During the process, new tools were explored and used.

B – BACKGROUND

1 – PURPOSE

The purpose of this project is to give cost estimators a process road map that could be used in any portfolio analysis accounting for uncertainty and learning curves. The road map provides additional analysis options when leadership seeks recommendations on how best to use the limited funding resources allocated to a military agency like the U.S. Navy. Cost estimators are limited by software that cannot compute large amounts of data. Often, resource drills come down suddenly with short turnaround times. Currently, estimators run analyses on software like Excel, which has limited data statistical analysis capability and capacity. In Excel, statistical analysis is limited to the 'Add-ins' that come with the Microsoft Office software package. Additional statistical applications can be added like JMP or @Risk. However, these types of software licenses usually come at a significant cost. If an estimator could take several variables and run them through a defined process within a coding package, they would then be able to provide a viable answer with thorough statistical analysis behind it. Leadership then can have confidence they are using resources in the most cost-efficient way possible.

2 – SCOPE

This project is limited to using publicly available data, which has advantages and disadvantages. One advantage is the team can be creative in coming up with its own scope and solution. On the other hand, approaching such an open-ended problem seems like a disadvantage because the possibilities are endless. It becomes overwhelming to consider that any and every data set could be used. The sponsor advised to keep the initial problem small enough to keep data analysis manageable and then increase complexity as the model proved fruitful. The NLP is created with a simplified objective function, notional restrictions, and with minimal variables to test the process. Once that equation proves to produce acceptable results, then the NLP can be modified and made more complex to produce a realistic model.

The team sponsor suggested exploring Schedule Estimating Relationships (SERs) as well. However, it was agreed that the problem presented was complex enough with three factors. Thus, SERs are not included in this model.

A non-linear programming model was created using a hypothetical situation involving naval defense systems like frigates, patrol vessels, and submarines. Cost and technical data about the systems were researched through several websites containing publicly available data. Some data came directly from various countries' naval defense websites. Most data were obtained through sites that keep historical naval information for countries around the world.

C – ASSUMPTIONS AND CONSTRAINTS

1 – ASSUMPTIONS

As mentioned previously in the scope section, the model will only account for CERs and not SERs. This will reduce complicating the cost estimate further and the need for specialized and expensive software. To further simplify the data analytics, the model follows naval industry standards for learning curves. NLP constraints were created by the team to limit the range of answers produced by the model. Lastly, the constraints were developed for demonstration purposes only and actual constraints would be influenced by overall operational portfolio demands.

2 – CONSTRAINTS

The sponsor requests the use of Linear Programming or Goal Programing to achieve an optimized answer. Learning curves are applied to the unit price to account for variances in unit price for systems purchased (Balakrishnan, et al. 2017). Given that applying learning curves to equations converts them to non-linear functions, the cost model created fits within NLP.

Additionally, this project did not come with an accompanying set of data. The team had to, in essence, create its own data array. The only information available for this project is publicly available data. Obtaining data points required extensive scouring of the internet for public information available for naval vessels. Since no data was provided, then no data constraints existed either. The problem provided by the U.S. Navy sponsor seemed open to a wide interpretation. The only way to approach this challenge is to limit the scope of the data and create a hypothetical situation to provide an objective function for the NLP model.

III – ANALYTICAL APPROACH

A – METHODOLOGY

The overall project was divided into phases. The first phase is Solution Conception, and it entailed group discussions and Subject Matter Experts (SME) involvement to help design the solution scope definition. Professors Gregory Mislick and Kevin Maher of the Naval Postgraduate School were consulted and assisted with regressions and linear programing insights. Justin Moul, U.S. Navy team sponsor, also assisted by clarifying the issue and project scope.

Phase two was Modules Development. This phase was inspired by how the brain masters a complex movement most efficiently, like dancing, for example. The brain divides the whole dance into smaller parts. It starts with a few moves and when they are under control, it combines them to a part of the dance. It keeps adding extra moves until the person can perform the full dance.

Similarly, the problem is divided up into modules. These modules were developed individually before connecting them into one overarching model. Three separate modules were created. The results of each module feeds into the next one. The first module objective is to create cost regressions and produce CERs for each system. The second module objective is to use Monte Carlo Simulation to account for uncertainty and produce cost distributions so the point estimate at the eightieth percentile is considered as an input for the NLP objective function. The third module objective is to develop an objective function and restrictions for an NLP model to achieve the optimal portfolio output. In this last module, the learning curves' effect were considered within the objective function of the NLP. Figure 1 shows how the process flows and how the modules are connected. At the end of the three modules' execution is an integrated solution that accounts for all the statistical elements produced within the modules.

The objective of this phase was to develop the solution for each module, including gathering data, choosing the appropriate tools, and producing a solution based on the data. The team created a data set based on various vessels from various countries. The data set is used to create a cost equation that is then used to run regressions, Monte Carlo Simulations, and ultimately the NLP model.

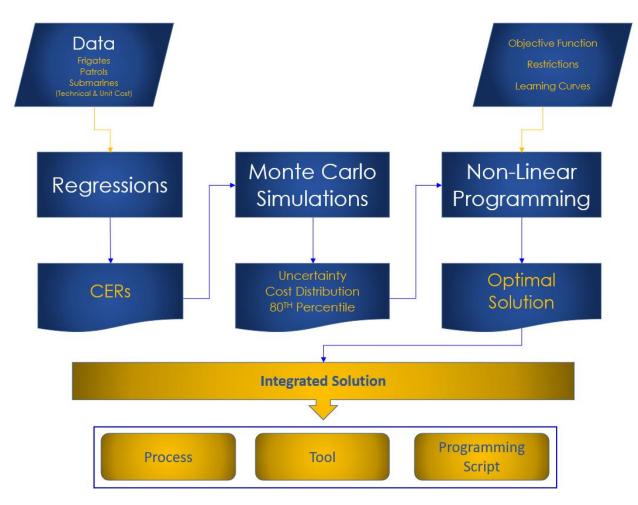


Figure 1: Modules and Integration

Phase three is Modules Integration. The phase involves adjusting the data and integrating the modules into one unique solution. The results from modules one and two were integrated into the third module, the NLP model.

Phase four is Process, Tools and Model Description. This report documents the entire process along with tools used in each module, the non-linear programming model, and the integrated solution. The appendices include the programming scripts. This report is the result of phase four and should be used as the guide for cost estimators to use with their own portfolio data.

This project goes beyond creating a credible and reliable cost estimate. The solution is designed to be used after a cost estimate has been created and after a unit price is determined.

B – MEASURES OF EFFECTIVENESS

The measures of effectiveness (MOEs) are metrics that will prove the attainment of the study objective. Module one involves regressions and CERs. The selection criteria used for candidate CERs is the Regression Hierarchy presented in Professor Mislick's and Nussbaum's book, *Cost Estimation: Methods and Tools*. The hierarchy consists of two phases. The first part of phase one is to apply the commonsense test, which takes into consideration whether the slope of the regression line is realistic and does not refer to individual data points. If the regression passes this initial test, then the data must pass two additional criteria. The regression must produce an F-statistic and t-statistic significance (p-value) below 20%. A regression that does not meet all three criteria fails phase one and the regression must be rejected. If the regression passes through phase one, then it can be considered for phase two. The second phase compares those valid regressions and selects the best option based on the higher R-Square value, lower Standard error, and lower coefficient of variations (Mislick and Nussbaum 2015).

Other tests were applied to module one that check the regressions' required conditions and presence of multicollinearity in cases of multiple regressions. Those tests are called Regression Diagnostics. The tests to check the regressions' required conditions are checking if the error variable is normal and if the error variance is constant (i.e., homoskedasticity test). Finally, a multicollinearity test is applied to check if the independent variables are highly correlated. The cost equations that result from regressions and pass through the rigor of all these tests are used in module two, Monte Carlo Simulations.

IV – ANALYSIS

A – THEORETICAL NON-LINEAR PROGRAMMING MODEL DESCRIPTION

The sponsor wants the cost estimating team to determine the best way to allocate a certain budget between naval systems (frigates, patrol vessels, and submarines). The systems compete against each other for a portion of that budget. The cost model should help determine which combination of systems will maximize the use of that budget amount. The solution must also address the dynamics of the cost calculations such as, uncertainty and learning curves. The team developed constraints related to operational restrictions as listed below:

- The sum of submarines and frigates must be at least 16 units
- There must be at least one unit of each system
- There must be at least four patrols for each submarine
- There must be at least two frigates for each submarine
- There must be at least two patrols for every frigate

B – ANALYTICAL TOOL

The sponsor suggested the group use $\mathbb{R}^{\mathbb{C}}$ to steer away from using Excel, which has limitations when performing statistical analysis on large data sets. $\mathbb{R}^{\mathbb{C}}$, developed at Bell Laboratories, is an integrated suite of software facilities for data manipulation, calculation, and graphical display (W.N. Venables 2021). His suggestion also comes from the fact that the software is free and has existing coding libraries developed that could be used for this project.

 R^{\odot} requires programming knowledge, and, in the beginning, it seemed the learning curve was too steep given the six months available to complete the project. However, through research and internet tutorials it becomes easier to use and understand the sponsor's recommendation for this tool. Among other things, R^{\odot} has:

- an effective data handling and storage facility,
- a suite of operators for calculations on arrays, in particular matrices,
- a large, coherent, integrated collection of intermediate tools for data analysis,
- graphical facilities for data analysis and display either directly at the computer or on hardcopy, and

• a well-developed, simple, and effective programming language (called 'S') which includes conditionals, loops, user-defined recursive functions, and input and output facilities. (W.N. Venables 2021)

Additionally, $\mathbb{R}^{\mathbb{C}}$ is robust enough to handle the three modules. It became possible, by learning how to program in $\mathbb{R}^{\mathbb{C}}$, to develop all modules integrated using a single tool. A major benefit of $\mathbb{R}^{\mathbb{C}}$ is the ability to store large amounts of data. This is crucial to the success of this project. A similar model calculated in Excel will only be able to store roughly 15,000 different portfolio configurations due to its limitations. While this may seem like a large amount, it limits

the number of ships that could be purchased within each different portfolio calculated. This creates the issue that the model may not accurately output the most optimal solution. Using $\mathbb{R}^{\mathbb{C}}$, the team can bypass this limitation and consider 1,000,000 different portfolios. Furthermore, once the constraints are applied, the NLP model output is 17,892 possible solutions. This amount surpasses Excel's limitations. While the use of $\mathbb{R}^{\mathbb{C}}$ requires the team to overcome the learning curve to learn a new programming language; it also gives the team the ability to create a much more robust model.

C – MODULE ONE: REGRESSIONS

Module one's objective is to create cost regressions and produce cost equations for each system type. In this module, DoD prescribed cost estimating methods were used to achieve the results needed to advance to module two. The raw data was run through several regressions to determine which combination of independent variables produces the best cost equation, statistically.

The programming script is available in Appendix A: Regressions Programming Script. Cost estimators can use the $\mathbb{R}\mathbb{O}$ script in case of facing the same challenge and only requires minor adaptations to reflect the specifics of the problem statement. Also, cost estimators can use the script when facing an inordinate amount of data, since Excel has limitations and $\mathbb{R}\mathbb{O}$ is a more robust software.

1 – FRIGATES REGRESSIONS AND COST EQUATIONS

The data for the frigates' regression, consists of cost and technical information like displacement, range, and length. Table 1 shows the data array. The complete list with sources is listed in Appendix D, '1 – Frigates Data'.

Frigates	Cost (\$M)	Displace ment (t)	Range (NM)	Length (m)
Anzac-classfrigate	707.18	3,600	6,000	118.00
Naresuan-class frigate	123.89	2,985	4,000	120.50
Type 053H2 Jianghu-III class	138.39	1,960	4,000	103.20
Type 054A Jiangkai-II class	246.00	4,053	8,025	134.10
Absalon class	277.71	6,600	9,000	137.00
lver Huitfeldt class	393.16	6,645	9,300	138.70
Aquitaine class	923.38	6,000	6,000	142.00
La Fayette class	508.54	3,800	4,000	125.00
Brandenburg class	613.66	4,490	4,000	138.85
F125 Baden-Württemberg class	1,212.09	7,200	4,000	149.52
Sachsen class	1,329.45	5,800	4,000	143.00
Valour class	443.08	3,700	8,000	121.00
Godavari class	172.39	3,850	4,500	126.40
Project 17A class	1,029.80	6,670	1,000	149.00
Shivalik class	694.64	6,200	5,000	142.50
Carlo Bergamini class	686.52	6,700	6,000	144.60
Maestrale class	220.34	3,040	6,000	122.70
De Zeven Provinciën class	827.37	6,050	4,000	144.24
Karel Doorman class	324.85	3,320	4,500	122.00
Fridtjof Nansen class	930.14	5,290	4,500	134.00
Zulfiquar class	983.73	3,144	4,000	123.20
Admiral Gorshkov class	271.05	5,400	4,800	135.00
Admiral Grigorovich class	626.66	4,000	4,850	124.80
Gepard class	386.85	1,930	4,000	102.14
Talwar class	674.27	4,035	4,850	124.80
Daegu class	289.99	3,592	4,500	122.00
Incheon class	274.31	3,251	4,500	114.00
Álvaro de Bazán class F101/4	709.43	5,800	4,500	146.70
Álvaro de Bazán class F105	1,300.62	6,391	4,500	146.70
Type 22 class Batch 3	188.88	5,300	7,500	148.10
Type 23 class	439.39	4,900	7,500	133.00
Freedom class SSC	395.76	3,500	3,500	115.00
Legend class cutter	670.00	4,600	12,000	127.00
Oliver Hazard Perry class	164.50	4,200	4,500	138.00
Horizon class	1,940.31	7,050	6,100	152.87

Table 1: Frigates Data

The first step was to analyze correlation between variables. Figure 2 shows the correlation matrix.

Ľ	CST	DIS	RNG	LEN
CST	1.0000000	0.5945806	-0.16838687	0.56074101
DIS	0.5945806	1.0000000	0.14562317	0.91933569
RNG	-0.1683869	0.1456232	1.00000000	0.06115856
LEN	0.5607410	0.9193357	0.06115856	1.00000000

Figure	2:	Frigates	Correl	lation	Matrix
--------	----	----------	--------	--------	--------

The coefficient of correlation between displacement and length is higher than 0.7. This number indicates that the variables have a high correlation, and a multicollinearity check will be

needed by using a variance inflation factor (VIF) in case of Multiple Regressions using those two variables.

The next step is to run the regressions and apply the tests. Seven model regressions were generated and tested as listed below:

- Model 1: Multiple regression between Cost (CST), Displacement (DIS), Range (RNG) and Length (LEN);
- Model 2: Multiple regression between Cost (CST), Displacement (DIS) and Range (RNG);
- Model 3: Multiple regression between Cost (CST), Displacement (DIS) and Length (LEN);
- Model 4: Multiple regression between Cost (CST), Range (RNG) and Length (LEN);
- Model 5: Linear regression between Cost (CST) and Length (LEN);
- Model 6: Linear regression between Cost (CST) and Range (RNG);
- Model 7: Linear regression between Cost (CST) and Displacement (DIS).

Below are the outputs for regressions generated in $\mathbb{R}^{\mathbb{C}}$. In the case of the frigates, models five and seven pass the regression tests. The slope of the regression line matches what the independent variables are showing; the F-Stat was less than 0.20; and the p-value was also less than 0.20. These two models were kept for further consideration in phase two.

				Dependent variable:			
				CST			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
DIS	0.184*	0.176***	0.142				0.165***
	(0.099)	(0.038)	(0.100)				(0.039)
RNG	-0.053*	-0.052*		-0.041		-0.034	
	(0.028)	(0.027)		(0.028)		(0.034)	
LEN	-1.010		2.856	17.947***	17.557***		
	(11.079)		(11.299)	(4.451)	(4.513)		
Constant	149.507	53.231	-442.260	-1,542.377**	-1,708.965***	783.732***	-176.046
	(1,079.250)	(220.193)	(1,071.107)	(599.399)	(597.248)	(196.550)	(192.079)
Observations	35	35	35	35	35	35	35
R ²	0.420	0.420	0.355	0.356	0.314	0.028	0.354
Adjusted R ²	0.364	0.384	0.314	0.315	0.294	-0.001	0.334
Residual Std. Error	328.580 (df = 31)	323.449 (df = 32)	341.125 (df = 32)	340.900 (df = 32)	346.270 (df = 33)	412.233 (df = 33)	336.252 (df = 33)
F Statistic	7.486^{***} (df = 3; 31)	11.584^{***} (df = 2; 32)	8.799*** (df = 2; 32)	8.832^{***} (df = 2; 32)	15.135 ^{***} (df = 1; 33) 0.963 (df = 1; 33)	18.046^{***} (df = 1; 33
Note:						*n<0.1	;**p<0.05; ***p<0.0

Figure 3: Frigates Regression Results

Tests performed until now were part of phase one of the Hierarchy of Regression. In phase two, a comparison was developed between regressions that passed phase one. Table 2 compares models five and seven. It is clear to see that model seven is better than model five, because model seven has a higher R-Square, lower Standard error, and lower CV than model five. Based on the analysis, the best regression to use is the cost and displacement equation:

Cost (\$M) = -176,045 + 0.165287 * displacement (t).

Regression	R Square	Std Error	CV
Cost vs Displacement	0.353525	336.2515	56%
Cost vs Length	0.314429	346.2698	57%

Table 2: Frigates Regressions Comparison

Since model seven is selected, regression tests between cost and displacement are performed to check the regressions required conditions. The tests are applied to check if the error variable is normal and to check if the error variance is constant (homoskedasticity test).

Figure 4 is \mathbb{R} 's \mathbb{C} output for the residual normality test. The Shapiro-Wilk normality test was used in this instance. The null hypothesis is that the errors follow a normal distribution. The null hypothesis is rejected if p < 0.05. Since p-value is greater than 0.05, there is no evidence that the data is drawn from anything other than a normal distribution.

```
> #residual normality test
> #Shapiro-Wilk normality test
Shapiro-Wilk normality test
data: residuos
W = 0.97119, p-value = 0.4767
> #p-value < 0.05 there is statistical evidence that leads to the rejection of H0
> #H0: residuals follow normal distribution.
```

Figure 4: Frigates Model 7 Regression – Residual Normality

Figure 5 shows \mathbb{R} 's \mathbb{C} output to check if the error variance is constant (homoscedasticity test). Breusch-Pagan's test was used to verify heteroskedasticity.

```
#heteroscedasticity test
> #studentized Breusch-Pagan test
> bptest(model7)
        studentized Breusch-Pagan test
data: model7
BP = 4.9348, df = 1, p-value = 0.02632
> #p-value < 0,05 there is statistical evidence that leads to the rejection of H0.
> # Ho: residuals have homoscedasticity
```

Figure 5 Frigates Model 7 - Heteroskedasticity

The null hypothesis is that the variances are equal across the groups. Therefore, if the pvalue is under 0.05, the answer is to reject the null hypothesis and conclude the data is not meeting the assumption of homogeneity of variances. In this case, variances were not equal across the groups. Since the regression did not pass this test, heteroskedasticity-consistent standard errors were used to allow the fitting of a model that does contain heteroskedastic residuals. Figure 6 presents the new model.

Figure 6: Frigates Final Regression

Although there were changes in some statistical elements, the regression equation remained the same: Cost (\$M) = -176.0461 + 0.1653 * Displacement (t). This equation moves on to the next module to account for uncertainty via a Monte Carlo Simulation. Figure 7 shows the regression chart.

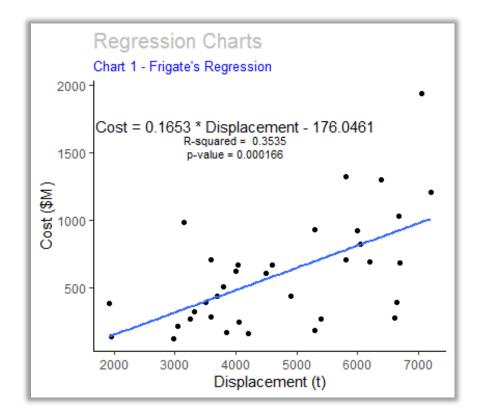


Figure 7: Frigates Regression Chart

2 – PATROLS REGRESSIONS AND COST EQUATIONS

The data for the patrols' regression, consists of cost and technical information like displacement, range, and length. Table 3 shows the data array. The complete list with sources is listed in Appendix D, 2 – Patrols Data. The same regression analysis process was performed on the patrols data to determine the best CER.

Patrols	Cost (\$M)	Displace ment (t)	Range (NM)	Length (m)
Port of Spain class OPV	83.40	2200	5500	90.50
Armidale class	30.80	300	3000	56.80
ASMAR PZM class OPV	70.80	1850	8600	80.60
Buque de Accion Maritima class OPV	190.70	2860	8700	93.90
Cape class	32.90	300	4000	57.80
Carnicobar class patrol boat - Fleet I	8.20	293	2000	48.90
Carnicobar class patrol boat - Fleet II	8.20	315	2000	48.90
Classe Yoon Youngha	44.90	570	1998	63.00
Clyde class OPV	74.30	2000	5500	81.50
Comandanti-class	112.70	1520	3500	88.60
Cyclone class patrol boat	31.70	336	2500	55.00
Flyvefisken class	31.60	450	3860	54.00
Harry DeWolf class OPV*	341.70	5800	6800	97.00
Hero class	20.90	257	2000	42.80
Holland class OPV	213.80	3750	5000	108.40
Holland-class offshore patrol vessel	170.80	3750	5000	108.40
Knud Rasmussen class OPV	105.00	2050	3000	71.80
Meteoro-class offshore patrol vessel	114.90	2860	3500	93.90
Orca class	11.00	210	660	33.00
Pacific class	11.30	162	2500	31.50
Pattani class OPV	68.80	1460	3500	95.50
Protector class OPV	75.90	1900	6000	85.00
Rotoiti class IPV	23.10	340	3000	55.00
Rubin class patrol boat	40.20	630	3500	62.50
Samuel Beckett class	108.60	2256	6000	90.00
Sankalp-class	137.40	2020	6500	105.00
Sentinel class	70.20	359	2500	46.80
Sirio class OPV	93.40	1549	330	88.60
Stan Patrol 4207	10.20	239	2450	42.80
Svalbard class OPV	88.60	6375	-	103.70
Turva class OPV	151.70	4000	-	95.90
Viana Do Castelo class OPV	70.80	1600	-	83.10
Yoon Youngha-class patrol vessel	50.20	570	1998	63.00

Table 3: Patrols Data

The first step is to analyze correlation between variables. Figure 8 shows the correlation matrix.

	CST	DIS	RNG	LEN
CST	1.0000000	0.9528587	0.6003125	0.7745443
DIS	0.9528587	1.0000000	0.6446105	0.8339642
RNG	0.6003125	0.6446105	1.0000000	0.6372784
LEN	0.7745443	0.8339642	0.6372784	1.0000000

Figure 8: Patrols Correlation Matrix

The coefficient of correlation between displacement and length is higher than 0.7. This indicates that the variables have a high correlation, and a multicollinearity check is needed by using variance inflation factor (VIF) in case of Multiple Regressions using those two variables.

The next step is to run the regressions and apply the tests. Seven model regressions were generated and tested as listed below:

- Model 1: Multiple regression between Cost (CST), Displacement (DIS), Range (RNG) and Length (LEN);
- Model 2: Multiple regression between Cost (CST), Displacement (DIS) and Range (RNG);
- Model 3: Multiple regression between Cost (CST), Displacement (DIS) and Length (LEN);
- Model 4: Multiple regression between Cost (CST), Range (RNG) and Length (LEN);
- Model 5: Linear regression between Cost (CST) and Range (RNG);
- Model 6: Linear regression between Cost (CST) and Length (LEN);
- Model 7: Linear regression between Cost (CST) and Displacement (DIS).

Erro! Fonte de referência não encontrada. Figure 9 lists the outputs for the regressions generated in $\mathbb{R}^{\mathbb{C}}$. In the case of patrols, models three, five, six and seven pass the regression tests. The slope of the regression line matches what the independent variables are showing; the F-Stat is less than 0.20; and the p-value is also less than 0.20. These four models are kept for further consideration in phase two.

				Dependent variable:			
-				CST			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
DIS	0.055***	0.052***	0.026***				0.036***
	(0.006)	(0.004)	(0.008)				(0.005)
RNG	-0.0005	-0.001		0.006	0.021***		
	(0.003)	(0.003)		(0.005)	(0.005)		
LEN	-0.197		0.888	2.108***		2.343***	
	(0.352)		(0.540)	(0.492)		(0.361)	
Constant	16.623	7.461	-26.322	-95.108***	-1.465	-90.258***	21.547*
	(18.711)	(8.968)	(30.938)	(28.461)	(23.182)	(27.769)	(10.689)
Observations	30	30	33	30	30	33	33
R ²	0.909	0.908	0.689	0.619	0.360	0.576	0.661
Adjusted R ²	0.899	0.901	0.669	0.591	0.338	0.562	0.650
Residual Std. Error	23.533 (df = 26)	23.232 (df = 27)	41.222 (df = 30)	47.342 (df = 27)	60.242 (df = 28)	47.377 (df = 31)	42.337 (df = 31)
F Statistic 8	36.954^{***} (df = 3; 26)	133.672 ^{***} (df = 2; 27)	33.276 ^{***} (df = 2; 30)	21.942 ^{***} (df = 2; 27)	15.776*** (df = 1; 28)	42.095^{***} (df = 1; 31)	60.534^{***} (df = 1;
Note:						* n <0 1	l; **p<0.05; ***p<0

Figure 9: Patrols Regressions Results

Tests performed until now were part of phase one of the Hierarchy of Regression. Table 4 compares models three, five, six and seven. Model three is the best choice. It has a higher R-Square, lower standard error, and lower CV. Based on the analysis, the best regression to use is the cost, displacement, and length equation:

Regression	R Square	Std Error	CV
Cost vs Displacement and Length	0.668574	41.22203	50%
Cost vs Range	0.360375	60.24218	76%
Cost vs Length	0.575893	47.37703	58%
Cost vs Displacement	0.661330	42.33687	52%

Cost (\$M) = -26.3216 + 0.0256791 * displacement (t) + 0.887922 * length (m).

Table 4: Patrol Regressions Comparison

Since model three passed the Hierarchy of Regression, additional tests were applied to check if the error variable is normal and to check if the error variance is constant (homoskedasticity test). Figure 10 shows R's \bigcirc output for the residual normality test. The null hypothesis is that the errors follow a normal distribution. The null hypothesis is rejected if p < 0.05. Since the p-value is less than 0.05, there is evidence that the data was not drawn from a normal distribution. However, when the sample size is sufficiently large (>30), the normality assumption is not needed as the Central Limit Theorem ensures that the distribution of residuals will approximate normality.

```
> #residual normality test
> #Shapiro-Wilk normality test
Shapiro-Wilk normality test
data: residuos
W = 0.7814, p-value = 1.454e-05
> #p-value < 0.05 there is statistical evidence that leads to the rejection of H0
> #H0: residuals follow normal distribution.
> #However, by the central limit theorem, if n >= 30, one can relax with the assumption
of normality of the residuals.
```

Figure 10: Patrols Model 3 Regression – Residual Normality

Figure 11 shows \mathbb{R} 's \mathbb{O} output to check if the error variance is constant (homoskedasticity test). Breusch-Pagan's test was used in this case.

Figure 11: Patrols Model 3 Regression - Heteroskedasticity

The null hypothesis is that the variances are equal across the groups. Therefore, if the pvalue is under 0.05, the answer is to reject the null hypothesis and conclude that the data is not meeting the assumption of homogeneity of variances. In this instance, variances are not equal across the groups.

Since the regression did not pass this test, heteroskedasticity-consistent standard errors were used to fit into a model that does contain heteroskedastic residuals. The new model is detailed in Figure 12.

Figure 12: Patrols Final Regression

The regression equation remained the same: Cost (\$M) = -26.3216 + 0.0257 *Displacement (t) + 0.8879 * Length (m). This equation moves on to run through Monte Carlo Simulations, which will account for uncertainty within the equation. This regression did not result in a scatterplot due to multiple variables (i.e., Multiple Regression).

The correlation between displacement and length is higher than 0.7. Therefore, a multicollinearity check is needed by using a variance inflation factor (VIF). Figure 13 shows the output for the multicollinearity test, since VIF is less than 10, there are no problems of multicollinearity (Hair 2014).

```
vif(model3)
base$DIS base$LEN
2.958595 2.958595
> #VIF > 10.0 may indicate problems of multicollinearity
```

Figure 13: Patrols VIF Test Results

3 – SUBMARINES REGRESSIONS AND COST EQUATIONS

The data for the submarines' regression, consists of cost and technical information like displacement, range, and length. Table 5 shows the data array. The complete list with sources is listed in Appendix D, 3 – Submarines Data. This data was also run through the regression steps like the previous data. After this data is analyzed, the next step is to run Monte Carlo Simulations.

Submarines	Cost (\$M)	Length (m)	Beam (m)	Displacem ent (t)
Collins class SSK	1,299.14	77.42	7.80	3,100
Type 035 Ming class SSK	113.87	76.00	7.60	1,584
Type 041 Yuan class SSK	683.29	77.60	8.40	2,700
Agosta 908 classSSK	845.59	76.20	6.80	1,570
Scorpène CA-2000 class SSK	590.24	61.70	6.20	0
Dolphin 2 classSSK	753.48	68.60	6.80	2,050
Shishumar class (Type 209/1500)	872.18	64.40	6.50	1,660
Heroine class (Type 209/1400)	362.58	62.00	7.60	1,545
Type 210 'Ula' class SSK	147.50	59.00	5.40	1,040
Type 212A classSSK	655.82	56.00	6.80	1,524
Type 214 class SSK	399.21	65.00	6.30	1,690
Type 216 class SSK	1,770.41	90.00	8.10	4,000
Sõryū class	602.11	84.00	9.10	2,900
Walrus class	467.63	67.73	8.40	2,465
Kilo class	347.27	73.80	9.90	2,350
Jang Bogo class	413.45	61.00	6.30	1,180
S-80 class	1,180.63	81.05	11.68	3,200
Blekinge class	524.22	63.00	6.40	1,800

Table 5: Submarines Data

The first step is to analyze correlation between variables. Figure 14 shows the correlation matrix.

	CST	LEN	BEAM	DIS.SUR
CST	1.0000000	0.6100425	0.3155114	0.7716423
LEN	0.6100425	1.0000000	0.6455690	0.8425820
BEAM	0.3155114	0.6455690	1.0000000	0.6922294
DIS.SUR	0.7716423	0.8425820	0.6922294	1.0000000

Figure 14: Submarines Correlation Matrix

The coefficient of correlation between displacement and length is higher than 0.7. This indicates the variables have a high correlation, and a multicollinearity check is needed by using a variance inflation factor (VIF) in case of Multiple Regressions.

Next step is to run the regressions and apply the tests. Seven model regressions were generated and tested as listed below:

- Model 1: Multiple regression between Cost (CST), Displacement (DIS.SUR), Beam (BEAM) and Length (LEN);
- Model 2: Multiple regression between Cost (CST), Beam (BEAM) and Length (LEN);

- Model 3: Multiple regression between Cost (CST), Displacement (DIS.SUR) and Length (LEN);
- Model 4: Multiple regression between Cost (CST), Displacement (DIS.SUR) and Beam (BEAM);
- Model 5: Linear regression between Cost (CST) and Length (LEN);
- Model 6: Linear regression between Cost (CST) and Beam (BEAM);
- Model 7: Linear regression between Cost (CST) and Displacement (DIS.SUR).

Figure 15 lists the outputs for regressions generated in $\mathbb{R}^{\mathbb{O}}$. In the case of the submarines, models five, six, and seven pass the regression tests. The slope of the regression line matches what the independent variables show; the F-Stat is less than 0.20; and the p-value is also less than 0.20. These three models were kept for further consideration in phase two.

				Dependent variable:			
				CST			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
LEN	-2.198	30.483**	-6.150		26.225***		
	(12.955)	(11.802)	(13.933)		(8.640)		
BEAM	-114.215*	-39.902		-115.847*		85.630	
	(60.023)	(73.315)		(57.155)		(63.882)	
DIS.SUR	0.579***		0.467**	0.559***			0.406***
	(0.162)		(0.165)	(0.109)			(0.086)
Constant	463.670	-1,171.499*	108.724	362.913	-1,174.025*	20.893	-195.240
	(684.717)	(626.182)	(717.842)	(328.572)	(612.238)	(492.354)	(196.948)
Observations	17	18	17	17	18	18	17
R ²	0.688	0.378	0.601	0.687	0.365	0.101	0.595
Adjusted R ²	0.616	0.295	0.544	0.643	0.326	0.045	0.568
Residual Std. Error	265.367 (df = 13)	349.223 (df = 15)	289.141 (df = 14)	255.997 (df = 14)	341.456 (df = 16)	406.428 (df = 16)	281.273 (df = 15)
F Statistic	9.552 ^{***} (df = 3; 13)	4.552^{**} (df = 2; 15)	10.543^{***} (df = 2; 14)	15.380^{***} (df = 2; 14)	9.214^{***} (df = 1; 16)	1.797 (df = 1; 16)	22.077^{***} (df = 1; 15
Note:						*p<0.1	;**p<0.05; ***p<0.0

Figure 15: Submarines Regressions Results

Tests performed until now were part of phase one of the Hierarchy of Regression. In phase two, a comparison is developed between regressions that passed phase one. Table 6 compares models five, six, and seven. Clearly, model seven is the best one as it has the higher R-Square, lower standard error, and lower CV. The regression selected is cost versus displacement, which yields the equation: Cost (\$M) = -195.239 + 0.4059 * Displacement (t).

Regression	R Square	Std Error	CV
Cost vs Length	0.365428	341.4559	51%
Cost vs Beam	0.100963	406.4276	61%
Cost vs Displacement	0.595432	281.2729	42%

Table 6: Submarines Regression Comparison

Since model seven was chosen, regression tests between cost and displacement are performed to check the regressions required conditions. The tests are applied to check if the error variable is normal and to check if the error variance is constant (homoskedasticity test).

Figure 16 is R's \bigcirc output for the residual normality test. It used the Shapiro-Wilk normality test. The null hypothesis is that the errors follow a normal distribution. The null hypothesis is rejected if p < 0.05. Since p-value is greater than 0.05, there is no evidence that the data is drawn from anything other than a normal distribution.

```
> #residual normality test
> #Shapiro-Wilk normality test
Shapiro-Wilk normality test
data: residuos
W = 0.94036, p-value = 0.3225
> #p-value < 0.05 there is statistical evidence that leads to the rejection of H0
> #H0: residuals follow normal distribution.
```

Figure 16: Model 7 Regression – Residual Normality

Figure 17 shows R's \mathbb{C} output to check if the error variance is constant (homoscedasticity test). Breusch-Pagan's test is used in this case.

```
> #heteroscedasticity test
> #studentized Breusch-Pagan test
> bptest(model7)
            studentized Breusch-Pagan test
data: model7
BP = 0.9284, df = 1, p-value = 0.3353
> #p-value < 0,05 there is statistical evidence that leads to the rejection of H0.
> # Ho: residuals have homoscedasticity
```


The null hypothesis is that the variances are equal across the groups. Therefore, if the pvalue is under 0.05, the answer is to reject the null hypothesis and conclude the data is not meeting the assumption of homogeneity of variances. In this case, variances are equal across the groups. Since the regression passed in all tests, the final regression equation is:

Cost (\$M) = -195.239 + 0.4059 * Displacement (t). Figure 18 shows the regression chart.

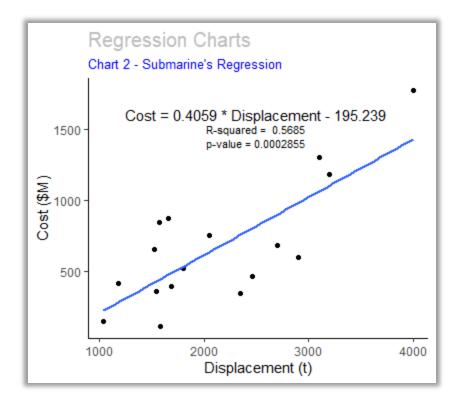


Figure 18: Submarines Regression Chart

D – MODULE TWO: MONTE CARLO SIMULATION

The result of a CER must be handled as a probability distribution and not as a deterministic number due to the uncertainty. The objective for Module two is to obtain a probability distribution function for the cost of each system, accounting for cost equations and input variable uncertainties. Each of the cost equations obtained in the regression module will be the input for the simulation module.

The $\mathbb{R}^{\mathbb{C}}$ created programming script emulates how the software @RISK handles Monte Carlo Simulations and is available in Appendix B: Monte Carlo Simulation Programming Script. The simulations in each software program yield significantly similar results. This can be seen in Figure 21, Figure 24, and Figure 27, which show the comparisons side-by-side. Since it is a simulation, it is impossible to get the exact same result. Considering that @RISK license is expensive, being able to provide a script for Monte Carlo Simulation in an open-source software package with similar results is a major accomplishment.

In the cases of the frigates and submarines, the independent variable is displacement. In the case of patrols, there are two independent variables – displacement and length. The simulations for the independent variables are set to 10,000 iterations as is normal practice for DoD cost estimating. SMEs from the Brazilian Navy suggest choosing a triangular distribution for

the independent variable by assigning a minimum, most likely, and maximum value for each independent variable. Figure 19, Figure 22, and Figure 25 show the results of the triangular values based on the SME assessment. The patrol simulation accounts for the correlation between displacement and length.

The cost distribution is considered lognormal. Lognormal distributions have a defined lower bound that is never less than zero and have an upper bound of infinity, thus providing at least some probability of a large cost overrun. In the absence of better information, choose lognormal distribution as the shape of the uncertainty distribution (Thomas and Fitch 2014).

The amount of budget set for each system depends on the amount of risk the decisionmaker is willing to take. The eightieth percentile is used as a demonstrative example and will be considered in module 3, the NLP model. The distribution charts that result from the simulation charts are produced by $\mathbb{R}^{\mathbb{C}}$ for each vessel type as depicted in Figure 20, Figure 23, and Figure 26 in the following pages.

1 – FRIGATES COST DISTRIBUTION

Displacement	t
Minimum	1,960.0000
Most Likely	2,150.0000
Maximun	2,350.0000
Mean (Calculated)	2,152.2410

Figure 19: SME Assessment for Frigates Displacement

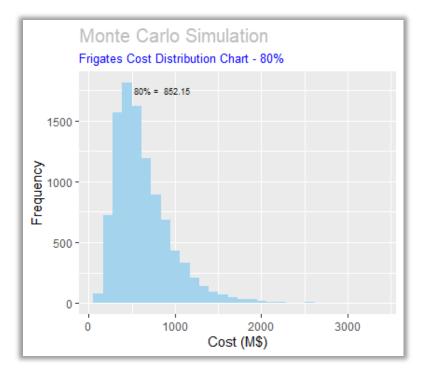


Figure 20: Frigates Cost Cumulative Distribution Function

Statistics	M (\$) - R	M (\$) - @ RISK
Mean	634.4595	636.1300
Standard Deviation	336.3000	336.7600
80%	852.1504	854.2200

Figure 21: Frigates Cost Distribution Function – Main Parameters and Comparison

2 – PATROLS COST DISTRIBUTION

	Displacement (t)	Lenght (m)
Minimum	1,250.0000	68.0000
Most Likely	1,500.0000	70.0000
Maximun	1,780.0000	74.0000
Mean (Calculated)	1,508.4830	70.6463

Figure 22: SME Assessment for Patrols Displacement and Length

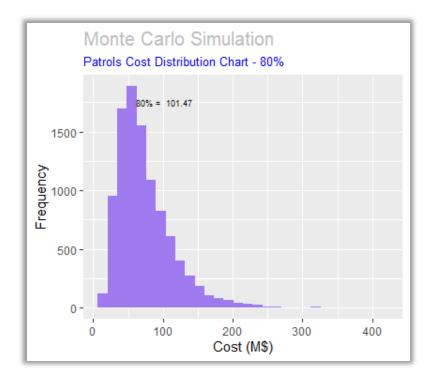


Figure 23: Patrols Cost Cumulative Distribution Function

Statistics	M (\$) - R	M (\$) - @ RISK
Mean	75.1623	75.2100
Standard Deviation		41.4700
80%	101.4689	101.7300

Figure 24: Patrols Cost Distribution Function – Main Parameters and Comparison

3 – SUBMARINES COST DISTRIBUTION

Displacement t	
Minimum 1	,960.0000
Most Likely 2	2,150.0000
Maximun 2	2,350.0000
Mean (Calculated) 2	2,152.2410

Figure 25: SME Assessment for Submarine Displacement

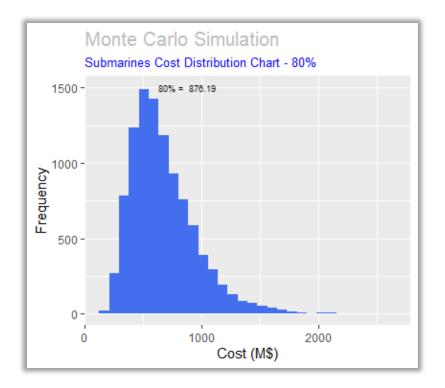


Figure 26: Submarines Cost Cumulative Distribution Function

Statistics	M (\$) - R	M (\$) - @ RISK
	678.3546	
Standard Deviation		
80%	876.1922	877.7700

Figure 27: Submarines Cost Distribution Function – Main Parameters and Comparison

E – MODULE THREE: NON-LINEAR PROGRAMMING MODEL

1 - THEORETICAL NON-LINEAR PROGRAMMING MODEL

The model created is based on a theoretical non-linear programming model description. The non-linear programming structure is presented in the Managerial Decision Modeling textbook by Balakrishnan, Render, Stair, and Munson. The textbook discusses when it is appropriate to use the NLP model and how to apply decision variables, objective functions, and constraints (Balakrishnan, et al. 2017). NLP is selected to comply with sponsor's request to use linear or goal programming. After running regressions and simulations, NLP completes the model by determining the best combination of the three decision variables within this study. Below is the mathematical notation for the NLP model:

Decision Variables:

Q_F = Number of frigates

Q_P = Number of patrol ships

Q_s = Number of submarines

Objective Function: Min Portfolio cost =
$$\frac{\sum_{i=0}^{Q_F} C_{Fi}}{Q_F} \cdot Q_F + \frac{\sum_{j=0}^{Q_P} C_{Pj}}{Q_P} \cdot Q_P + \frac{\sum_{k=0}^{Q_S} C_{Sk}}{Q_S} \cdot Q_S$$

Each first unit cost will be determined by the Cumulative Distribution Function from the Monte Carlo Simulation. A learning curve will be applied to determine the cost of each subsequent unit.

Where:

C_F = Frigate cost (Cumulative Distribution Function)

C_P = Cost of the patrol ship (Cumulative Distribution Function)

C_s = Submarine cost (Cumulative Distribution Function)

Constraints (Subject to):

 $Q_F + Q_P + Q_S \ge 16$

 $Q_P \ge 4Q_S$

 $Q_F \ge 2Q_S$

 $Q_P \ge 2Q_F$

 $Q_F, Q_P, Q_S \ge 1$

2 – ACCOUNTING FOR LEARNING CURVES WITH A MULTI-VARIABLE MODEL

Learning Curve Theory suggests that as a task is repeated, the performer gets better at it. In manufacturing, it has been found that production improves at a constant rate (Mislick and Nussbaum 2015). Cost equations produced in a reliable cost estimate must account for uncertainty and learning curves. Doing so refines the data analysis to produce a credible cost estimate.

This model uses learning curves, or the assumption that the construction of each subsequent ship will take less time than those that have already been built. Thereby producing a cost savings with each ship procured. The unit theory of learning was used for this model for simplicity's sake. Whether Unit Theory or Cumulative Average Theory is used, the analyst must use only one to maintain consistent unit costs. In Unit Theory, it is assumed that every time the number of units produced is doubled, then a consistent efficiency is gained. For example, when using a learning curve of 90% it is assumed the second unit will take 90% as long to produce as the first one. Similarly, the fourth unit will take 90% as long to produce as the second one. The pattern is assumed to continue ad infinitum.

Typically, a Linear Programming model has fixed average unit costs, where each unit has the same cost as the one before it. When using learning curves, the cost of each unit is known, but the average unit cost changes depending on the amount of each unit purchased. A simplified version of a cost equation is the average unit cost multiplied by the number of units purchased.

For this capstone project, the objective function changed from a single unit cost to an average unit cost (i.e., total cost of units divided by units purchased) multiplied by the number of units purchased. The units purchased part of the formula cancels out, which yields total cost for that unit. The analyst can then create a table with total costs based on the number of units purchased. Using this method simplifies the calculations and becomes increasingly important as the model allows for larger purchase quantities and more unit types (variables).

Dealing with a changing average unit cost requires a different approach to the cost equation, though. The typical equation to calculate the cost of an individual unit, denoted as x, using learning curves is $Cost = Ax^b$, where A is the theoretical first unit's cost, also known as T1, and b is the learning coefficient. The learning coefficient is calculated by the equation b = In(Iearning curve)/In(2). The theoretical first unit cost is an output of the Monte Carlo Simulations discussed previously. This model uses naval military standard learning curves, which normally range from 80% to 85% for shipbuilding (Ghanmi 2017). For this model, three different learning curves are used for each type of vessel included in the theoretical NLP. The slopes of the learning curves and the cost of unit one for each system are set as shown in Table 7. The learning curves are for demonstration purposes only. The patrols learning curve is outside the industry range as an assumption is made that patrols are produced in significantly higher amounts than frigates or submarines. Thereby, the learning curve has leveled out to 88%.

T1 (\$M) Learning Curve*	 Patrols 101.47 88%	Submarines 876.19 85%
* Industry Standard		

 Table 7: Values and learning Curves used in NLP Model
 Image: Curves used in NLP Model

3 – TRANSLATING THE THEORETICAL NLP MODEL INTO R©

As previously discussed in the Analytical Tool section, $\mathbb{R}^{\mathbb{O}}$ is an integrated suite of software facilities used for statistical analysis. The following is a description of how $\mathbb{R}^{\mathbb{O}}$ processes the information input by the NLP model to produce an optimal solution. This step is done after $\mathbb{R}^{\mathbb{O}}$ has processed the regressions and Monte Carlo Simulations.

The model begins by creating a variable for each of the three decision variables and allows these variables to take an integer value anywhere from 1 to 100. This accounts for all possible portfolio configurations for the model to consider. Each combination, one million in total, is put into a vector. In $\mathbb{R}^{\mathbb{C}}$, a vector is a variable that contains multiple pieces of information. In this case, vectors contain the quantity of each ship type that could be bought in the proposed portfolio configuration.

Then, the model used nested 'if' loops to combine the systems quantities into vectors and check if each vector created contained a mix of ships that satisfy each of the constraints that have been set. A table was created to store the vectors that were suitable, but not necessarily the optimal solution. Three vectors were created containing the unit costs for each system. To do this, the model uses the first unit costs calculated in the Monte Carlo Simulation and applies their respective learning curves. The model used nested 'if' loops to create cumulative cost vectors. The cumulative cost vectors were used to add a column in the table with the possible cost solutions. From this point the model found the solution with the minimum cost for the overall portfolio. The programming script for this process is available in Appendix C, '1 Minimum Budget'.

The optimal portfolio solution calculated in this scenario results in 15 frigates, 30 patrols and 1 submarine. The separate costs for frigates, patrols and submarines are \$7252.26M, \$1,948.19M, \$876.19M, respectively. Total portfolio cost is \$10,076.64M.

4 – SPONSOR-SUGGESTED ALTERATION

While the initial model itself is a useful tool, the team sponsor submitted additional input to make it more useful in real world situations. The first suggestion was to upgrade the model to make the calculations based on a fixed budget where the target is to maximize acquisitions while simultaneously minimizing the remaining budget. A simple calculation of the fixed budget minus the portfolio cost was added to the NLP objective function. A fixed budget of \$32,030M was developed to test the new model, and therefore, is for demonstration purposes only. This change requires a slightly different programming script, which is available in Appendix C, '2 Fixed Budget'. The changes in the objective function are shown below:

Objective Function: Minimize remaining budget = 32,030 - $\frac{\sum_{i=0}^{Q_F} C_{Fi}}{Q_F} \cdot Q_F + \frac{\sum_{j=0}^{Q_F} C_{Pj}}{Q_P} \cdot Q_P + \frac{\sum_{k=0}^{Q_S} C_{Sk}}{Q_S} \cdot Q_S$

The second suggestion was to figure out the shadow price of each type of ship. The shadow price is simply the dollar amount needed to purchase one additional ship. Since the model accounts for three different ship types, the programming calculated three respective shadow prices.

Calculating the shadow prices is a simple process. The model subtracts the total cost of each type of ship from the total cost of buying an additional ship. Shadow prices are easily calculated, but they provide leadership key information. When compared to how much budget remains after purchasing the portfolio, leadership can see how much additional funding is required to procure one more ship.

The optimal portfolio solution calculated in this scenario results in 44 frigates, 95 patrols and 21 submarines. The total costs for frigates, patrols and submarines are \$15,670.98M, \$5,053.03M, and \$ 11,295.90M, respectively. Total sum of the portfolio cost is \$32,019.19M, leaving about \$10.8M or less than 4% of the portfolio unspent. Shadow prices for each system are \$250.21M for frigates, \$43.73M for patrols, and \$424.47M for submarines.

The model makes use of this easily accessible information and its usefulness by producing three charts for decision makers. Figure 28 shows the total cost of each ship type and their respective shadow price. The chart shows decision makers a breakout of costs by system, which gives them a perspective on the ratio of price to shadow price. Since the shadow price for patrols is significantly low compared to the values of the other systems, it is not visible in the chart. Figure 29 shows the shadow price relative to the remaining budget. In this chart, it is easier to compare the remaining budget to the additional funding required for one additional system unit. It would be relatively easier to obtain additional funding for one more patrol than a submarine due to the price difference. Finally, Figure 30 shows the percentage of an additional ship that the remaining budget can purchase. In essence, with the remaining budget left, the program office could buy 23% of a patrol boat. Again, the patrols stand out due to their low price in

comparison to a frigate or submarine. This is just one of the many functionalities $R^{\rm C}$ can produce to analyze cost estimates.

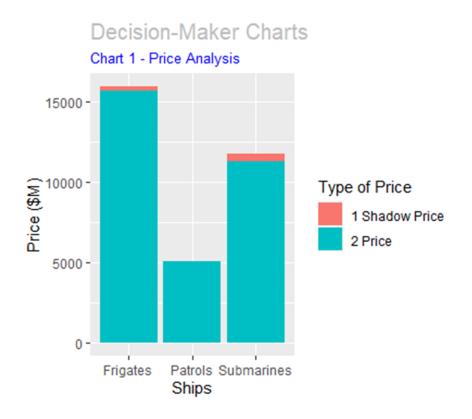


Figure 28: Total Cost of Each Ship and Their Respective Shadow Price

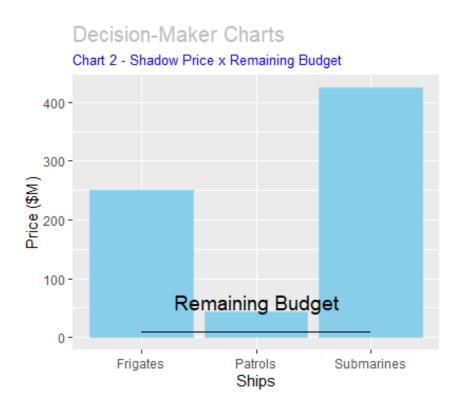


Figure 29: Shadow Prices Relative to the Remaining Budget

Chart 3 - Remaining Budget / Shadow Price

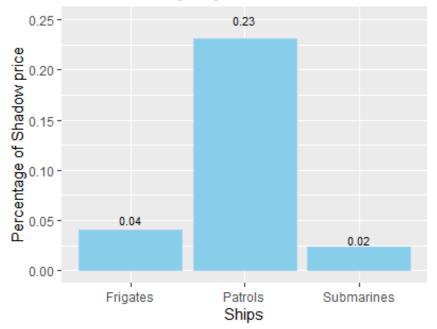


Figure 30: Percentage of Each Ship Type Purchasable with Remaining Budget

V – CONCLUSION

The team learned during this project that it is possible to use different tools and create a new way to analyze data and portfolios. Concepts like linear regression, learning curves, Monte Carlo Simulation, and linear programming are separate tools in cost estimating. The team managed to use them in an integrated way, providing the sponsor with a solution to a problem that at first glance seemed too big for a Capstone Project. Granted, the current process and model is simple, but it still proves there is a different way to look at cost estimating analysis. The model is a good starting point for cost estimators to use for their own portfolios. In this project, notional data was used to test the model in its initial stage. However, real data can be used to follow the same process. The coding scripts are included in Appendix A, B, and C to help users navigate \mathbb{R}^{\odot} . The team foresees additional variables and constraints added to make the model more realistic. Currently, the model only accounts for production costs. SERs, manpower costs, or other restrictions can be added. The model was set up this way to test if a simplified version would work and the team has proven it does. Now that the model has been proven, it is possible to upgrade and refine it. This team's study successfully answered the sponsor's problem.

The analytical tool, R[©], proved to be extremely robust for use in data analysis and processing. It stands out not only for its ability to handle large amounts of data, but also for its flexibility in handling different types of needs such as linear regressions and NLP. There were countless hours spent studying and learning the programming language, but as the work progressed, it becomes easier to deal with more complex issues such as testing regressions, Monte Carlo Simulation or creating an NLP model. Developing the graphics is an additional challenge. Accustomed to ready-made graphics packages, such as Excel, it seemed impossible for the team to create graphics that stood out. However, the tool offers an infinite range of graphical resources that can be explored by cost estimators to facilitate the exposure of data to decision makers. Cost estimators can use this model today with the data from their own portfolio. They can give decision makers a more in-depth analysis on how best to spend scarce resources. The final model is ready for someone else to take it a step further to obtain a real-world optimal solution.

Appendix A: Regressions Programming Script

1 Frigates Regression

#Calling required packages library("dplyr") #package to clean the bases library("ggplot2") #package for plotting graphics library("Imtest") #package to perform multiple regression tests library("sandwich") #package to calculate robust standard errors library("readxl") library("stargazer")

#csv file location for import
setwd("C:\\Users\\pulch\\Desktop\\Bases Reg\\Reg Frig")
getwd()

#obtaining basic statistical data from the imported file base <- read.csv2(file = "Data Reg Frig.csv", header = TRUE, dec = ",", sep = ";") summary(base)

#correlation analysis
cor(na.omit(base))

#running regression for 1st model model1<-Im(base\$CST ~ base\$DIS + base\$RNG + base\$LEN, data= base) summary(model1) confint(model1)

#running regression for 2nd model model2<-Im(base\$CST ~ base\$DIS + base\$RNG, data= base) summary(model2) confint(model2)

#running regression for 3rd model model3<-lm(base\$CST ~ base\$DIS + base\$LEN, data= base) summary(model3) confint(model3)

#running regression for 4th model model4<-Im(base\$CST ~ base\$LEN + base\$RNG, data= base) summary(model4) confint(model4)

#running regression for 5th model model5<-Im(base\$CST ~ base\$LEN, data= base) summary(model5) confint(model5)

```
#running regression for 6th model
model6<-Im(base$CST ~ base$RNG, data= base)
summary(model6)
confint(model6)
#running regression for 7th model
model7<-Im(base$CST ~ base$DIS, data= base)
summary(model7)
confint(model7)
#generating summary report
stargazer(model1, model2, model3, model4, model5, model6, model7, out = "Resultado Reg Frig.html")
#choose model
#model 7
#regression graphic
#Creating data
df = data.frame(Displacement = base$DIS,Cost = base$CST)
grp <- ggplot(data = df,
         mapping = aes(x = Displacement, y = Cost)) +
 geom_point()+
 geom_smooth(method="lm", se=0) +
labs(title="Regression Charts",
    subtitle="Chart 1 - Frigate's Regression") +
ylab ("Cost ($M)") +
xlab ("Displacement (t)") +
 theme_classic() +
 annotate("text",x=4000,y=1500,label = "p-value = 0.000166", size = 3) +
annotate("text",x=4000,y=1600,label = "R-squared = 0.3535", size = 3) +
annotate("text",x=4000,y=1700,label = "Cost = 0.1653 * Displacement - 176.0461")
grp
grp <- grp +
theme(plot.title = element_text(size = 15, color = "gray"),
     plot.subtitle = element_text(size = 10, color = "blue"))
grp
#residual normality test
#Shapiro-Wilk normality test
residuos <- model7$residuals
shapiro.test(residuos)
#p-value < 0.05 there is statistical evidence that leads to the rejection of H0
#H0: residuals follow normal distribution.
#However, by the central limit theorem, if n \ge 30, one can relax with the assumption of normality of the residuals.
```

#heteroscedasticity test
#studentized Breusch-Pagan test
bptest(model7)
#p-value < 0,05 there is statistical evidence that leads to the rejection of H0.
Ho: residuals have homoscedasticity</pre>

#If correction of robust standard errors is necessary coeftest(model7, vcov = vcovHC(model7, type="HC0"))

2 Patrols Regression

#Calling required packages library("dplyr") #package to clean the bases library("ggplot2") #package for plotting graphics library("Imtest") #package to perform multiple regression tests library("sandwich") #package to calculate robust standard errors library("readxl") library("stargazer")

#csv file location for import
setwd("C:\\Users\\pulch\\Desktop\\Bases Reg\\Reg Patr")
getwd()

#obtaining basic statistical data from the imported file base <- read.csv2(file = "Data Reg Patr.csv", header = TRUE, dec = ",", sep = ";") summary(base)

#correlation analysis
cor(na.omit(base))

#running regression for 1st model model1<-Im(base\$CST ~ base\$DIS + base\$RNG + base\$LEN, data= base) summary(model1) confint(model1)

#running regression for 2nd model model2<-Im(base\$CST ~ base\$DIS + base\$RNG, data= base) summary(model2) confint(model2)

#running regression for 3rd model model3<-Im(base\$CST ~ base\$DIS + base\$LEN, data= base) summary(model3) confint(model3)

#running regression for 4th model
model4<-Im(base\$CST ~ base\$LEN + base\$RNG, data= base)</pre>

summary(model4) confint(model4)

#running regression for 5th model model5<-Im(base\$CST ~ base\$RNG, data= base) summary(model5) confint(model5)

#running regression for 6th model model6<-Im(base\$CST ~ base\$LEN, data= base) summary(model6) confint(model6)

#running regression for 7th model model7<-Im(base\$CST ~ base\$DIS, data= base) summary(model7) confint(model7)

#generating summary report stargazer(model1, model2, model3, model4, model5, model6, model7, out = "Patr Reg Result.html")

#choose model #model 3

#residual normality test
#Shapiro-Wilk normality test
residuos<- model3\$residuals
shapiro.test(residuos)
#p-value < 0.05 there is statistical evidence that leads to the rejection of H0
#H0: residuals follow normal distribution.
#However, by the central limit theorem, if n >= 30, one can relax with the assumption of normality of the residuals.

#heteroscedasticity test
#studentized Breusch-Pagan test
bptest(model3)
#p-value < 0,05 there is statistical evidence that leads to the rejection of H0.
Ho: residuals have homoscedasticity</pre>

#If correction of robust standard errors is necessary coeftest(model3, vcov = vcovHC(model3, type="HC0"))

#Multicollinearity Test (Only in cases of Multiple Regressions)
library(car)
vif(model3)
#VIF > 10.0 may indicate problems of multicollinearity

3 Submarines Regression

#Calling required packages library("dplyr") #pacote para limpar as bases library("ggplot2") #pacote para plotar gráficos library("Imtest") #pacote para fazer testes de regressão multipla library("sandwich") #pacote para calcular erros padrões robustos library("readxl") library("stargazer")

#csv file location for import
setwd("C:\\Users\\pulch\\Desktop\\Bases Reg\\Reg Sub")
getwd()

#Obtaining basic statistical data from the imported file base <- read.csv2(file = "Data Reg Sub.csv", header = TRUE, dec = ",", sep = ";") summary(base)

#Correlation analysis cor(base)

#Running regression for 1st model model1<-Im(base\$CST ~ base\$LEN + base\$BEAM + base\$DIS.SUR, data= base) summary(model1) confint(model1)

#running regression for 2nd model model2<-lm(base\$CST ~ base\$LEN + base\$BEAM, data= base) summary(model2) confint(model2)

#running regression for 3rd model model3<-Im(base\$CST ~ base\$LEN + base\$DIS.SUR, data= base) summary(model3) confint(model3)

#running regression for 4th model model4<-Im(base\$CST ~ base\$DIS.SUR + base\$BEAM, data= base) summary(model4) confint(model4)

#running regression for 5th model model5<-Im(base\$CST ~ base\$LEN, data= base) summary(model5) confint(model5)

#running regression for 6th model

```
model6<-Im(base$CST ~ base$BEAM, data= base)
summary(model6)
confint(model6)
#running regression for 7th model
model7 <- Im(base$CST ~ base$DIS.SUR, data= base)
summary(model7)
confint(model7)
#generating summary report
stargazer(model1, model2, model3, model4, model5, model6, model7, out = "Sub Reg Result.html")
#choose model
#model 7
#regression graphic
#Creating data
df = data.frame(Displacement = base$DIS,Cost = base$CST)
grp <- ggplot(data = df,
        mapping = aes(x = Displacement, y = Cost)) +
 geom_point()+
 geom_smooth(method="lm", se=0) +
 labs(title="Regression Charts",
    subtitle="Chart 2 - Submarine's Regression") +
ylab ("Cost ($M)") +
xlab ("Displacement (t)") +
theme_classic() +
 annotate("text",x=2500,y=1400,label = "p-value = 0.0002855", size = 3) +
annotate("text",x=2500,y=1500,label = "R-squared = 0.5685", size = 3) +
annotate("text",x=2500,y=1600,label = "Cost = 0.4059 * Displacement - 195.239")
grp
grp <- grp +
theme(plot.title = element_text(size = 15, color = "gray"),
     plot.subtitle = element_text(size = 10, color = "blue"))
grp
#residual normality test
#Shapiro-Wilk normality test
residuos <- model7$residuals
shapiro.test(residuos)
#p-value < 0.05 there is statistical evidence that leads to the rejection of H0
#H0: residuals follow normal distribution.
#However, by the central limit theorem, if n \ge 30, one can relax with the assumption of normality of the residuals.
```

#heteroscedasticity test

#studentized Breusch-Pagan test
bptest(model7)
#p-value < 0,05 there is statistical evidence that leads to the rejection of H0.
Ho: residuals have homoscedasticity</pre>

#If correction of robust standard errors is necessary
coeftest(model7, vcov = vcovHC(model7, type="HC0"))

Appendix B: Monte Carlo Simulation Programming Script

1 Frigates Monte Carlo Simulation

#Installing and calling required packages install.packages("extraDistr") library("extraDistr")

#Creating vector ind_var to receive the triangular distribution of the independent variable set.seed(999) ind_var <- rtriang(10000, 4720, 5120, 4900)

#Calculating the mean
ind_var_mean <- mean(ind_var)
ind_var_mean</pre>

#Creating the lognormal distribution of the dependent variable #Calculating the mean and standard deviation of the presumed normal distribution x_mean <- 0.165 * ind_var_mean -176.046 x_mean

x_sd <- 336.3 x_sd

```
#Calculating the mean and standard deviation of the lognormal distribution y_mean <- 0.5 * log(x_mean ^ 4/(x_mean ^ 2 + x_sd ^ 2)) y_mean
```

```
y_sd <- sqrt(log((x_mean ^ 2 + x_sd ^ 2)/(x_mean ^ 2)))
y_sd
```

```
#Creating the dep_var vector to receive the lognormal distribution
set.seed(999)
dep_var <- rlnorm(10000, meanlog = y_mean, sdlog = y_sd)
```

```
#Calculating quartiles of the lognormal distribution of the dependent variable
q80 <- qlnorm(0.8, meanlog = y_mean, sdlog = y_sd)
q80
```

```
#Creating Cost Distribution Chart
library(ggplot2)
grp <- qplot(dep_var, geom="histogram", fill=I("lightskyblue2")) +
labs(title="Monte Carlo Simulation",
    subtitle="Frigates Cost Distribution Chart - 80%"
) +
xlab ("Cost (M$)") +
ylab ("Frequency") +
annotate("Text", x=q80, y=1750,
```

2 Patrols Monte Carlo Simulation

#Installing and calling required packages install.packages("extraDistr") install.packages("MASS")

library("extraDistr") library("MASS")

#Creating vector ind_var to receive the triangular distribution of the independent variable set.seed(999) ind_var <- rtriang(10000, 1250, 1780, 1500)

#Calculating the mean
ind_var_mean <- mean(ind_var)
ind_var_mean</pre>

ind_var_sd <- sd(ind_var) ind_var_sd

#Creating vector ind_var1 to receive the triangular distribution of the independent variable set.seed(999) ind_var1 <- rtriang(10000, 68, 74, 70)

#Calculating the mean
ind_var_mean1 <- mean(ind_var1)
ind_var_mean1</pre>

ind_var_sd1 <- sd(ind_var1)
ind_var_sd1</pre>

#Informing Correlation cor_01 <- 0.8136

#Building the covariance matrix and generating the correlated normal random variable cov_matrix <- matrix(c(ind_var_sd^2, cor_01*ind_var_sd*ind_var_sd1, cor_01*ind_var_sd*ind_var_sd1, ind_var_sd1^2), nrow=2) set.seed(1) mat_cor <- mvrnorm(20000, c(ind_var_mean, ind_var_mean1), cov_matrix)</pre>

```
ind_var_nmean <- mean(mat_cor[,1])
ind_var_nmean
ind_var_nmean1 <- mean(mat_cor[,2])
ind_var_nmean1
cor(mat_cor[,1], mat_cor[,2])
#Creating the lognormal distribution of the dependent variable
#Calculating the mean and standard deviation of the presumed normal distribution
x_mean <- 0.0256791 * ind_var_nmean + 0.887922 * ind_var_nmean1 -26.3216
x_mean
x_sd <- 41.22203
x_sd
#Calculating the mean and standard deviation of the lognormal distribution
y_{mean} <-0.5 * log(x_{mean} ^ 4/(x_{mean} ^ 2 + x_{sd} ^ 2))
y_mean
y_sd <- sqrt(log((x_mean ^ 2 + x_sd ^ 2)/(x_mean ^ 2)))
y_sd
#Creating the dep_var vector to receive the lognormal distribution
set.seed(999)
dep_var <- rlnorm(10000, meanlog = y_mean, sdlog = y_sd)
#Calculating guartiles of the lognormal distribution of the dependent variable
q80 <- qlnorm(0.8, meanlog = y_mean, sdlog = y_sd)
q80
#Creating Cost Distribution Chart
library(ggplot2)
grp <- qplot(dep_var, geom="histogram", fill=I("mediumpurple2")) +
 labs(title="Monte Carlo Simulation",
    subtitle="Patrols Cost Distribution Chart - 80%"
 ) +
 xlab ("Cost (M$)") +
 ylab ("Frequency") +
 annotate("Text", x=q80, y=1750,
      label = paste("80% = ",round(q80, digits=2)),
      col="black",
      size=2.5)
grp <- grp +
 theme(plot.title = element_text(size = 15, color = "gray"),
     plot.subtitle = element_text(size = 10, color = "blue"))
```

```
41
```

3 Submarines Monte Carlo Simulation

#Installing required packages install.packages("extraDistr") library("extraDistr")

#Creating vector ind_var to receive the triangular distribution of the independent variable set.seed(999) ind_var <- rtriang(10000, 1960, 2350, 2150)

#Calculating the mean
ind_var_mean <- mean(ind_var)
ind_var_mean</pre>

#Creating the lognormal distribution of the dependent variable #Calculating the mean and standard deviation of the presumed normal distribution x_mean <- 0.4059 * ind_var_mean -195.240 x_mean

x_sd <- 281.3 x_sd

#Calculating the mean and standard deviation of the lognormal distribution y_mean <- 0.5 * log(x_mean $^ 4/(x_mean ^ 2 + x_sd ^ 2))$ y_mean

y_sd <- sqrt(log((x_mean ^ 2 + x_sd ^ 2)/(x_mean ^ 2))) y_sd

#Creating the dep_var vector to receive the lognormal distribution set.seed(999) dep_var <- rlnorm(10000, meanlog = y_mean, sdlog = y_sd)

#Calculating quartiles of the lognormal distribution of the dependent variable q80 <- qlnorm(0.8, meanlog = y_mean, sdlog = y_sd) q80

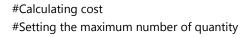
```
#Creating Cost Distribution Chart
library(ggplot2)
grp <- qplot(dep_var, geom="histogram", fill=I("royalblue2")) +
labs(title="Monte Carlo Simulation",
    subtitle="Submarines Cost Distribution Chart - 80%"
) +
xlab ("Cost (M$)") +
```

grp

Appendix C: Non-Linear Programming Script

1 Minimum Budget

#Setting costs of first units cst_i_QF <- 852.1504 cst_i_QP <- 101.4689 cst_i_QS <- 876.1922 #Setting learning curve parameters LC_QF <- 0.80 LC_QP <- 0.88 LC_QS <- 0.85 $b_QF <- \log(LC_QF)/\log(2)$ $b_QP <- \log(LC_QP)/\log(2)$ b_QS <- log(LC_QS)/log(2) #creating a matrix to receive all possible quantities regarding restrictions QF <- c(1:100) QP <- c(1:100)QS <- c(1:100) nlinhas <- 0 mat_suc <- matrix(,,3)</pre> list_quant <- c() for (i in 1:100) { for (j in 1:100) { for (k in 1:100) { if ((QF[i] + QS[k]) >= 16) { if ((QP[j] - 4 * QS[k]) >= 0){ if ((QF[i] - 2 * QS[k]) >= 0) { if ((-2 * QF[i] + QP[j]) >= 0) { nlinhas = nlinhas + 1list_quant <- c(QF[i],QP[j],QS[k]) mat_suc<-rbind(mat_suc,list_quant)</pre> } } } } } } }



```
num_max <- 100
#creating a vector for unit cost
cst_QF <- c()
cst_QP <- c()
cst_QS <- c()
for (i in 1:num_max) {
 cst_QF[i] <- cst_i_QF * (i ^ b_QF)
 cst_QP[i] <- cst_i_QP * (i ^ b_QP)
 cst_QS[i] <- cst_i_QS * (i ^ b_QS)
}
print(cst_QF)
print(cst_QP)
print(cst_QS)
#creating a vector for cumulative cost
cst_QF_cum <- c()
cst_QP_cum <- c()
cst_QS_cum <- c()
for (i in 1:num_max) {
 if(i > 1) {
  cst_QF_cum [i] = cst_QF_cum [i - 1] + cst_QF [i]
 } else {
  cst_QF_cum [i] = cst_QF [i]
  }
 }
print(cst_QF_cum)
for (j in 1:num_max) {
 if(j > 1) \{
  cst_QP_cum [j] = cst_QP_cum [j - 1] + cst_QP [j]
} else {
  cst_QP_cum [j] = cst_QP [j]
 }
}
print(cst_QP_cum)
for (k in 1:num_max) {
 if(k > 1) {
  cst_QS_cum [k] = cst_QS_cum [k - 1] + cst_QS [k]
 } else {
  cst_QS_cum [k] = cst_QS [k]
 }
}
```

print(cst_QS_cum)

#creating a cumulative cost column in the matrix that received all possible quantities regarding restrictions (success matrix)

```
mat_suc1 <- mat_suc
new_mat <- cbind(mat_suc1,1)
new_mat <- cbind(mat_suc1,cst_QF_cum[new_mat[,1]] + cst_QP_cum[new_mat[,2]] + cst_QS_cum[new_mat[,3]])</pre>
```

```
#Finding minimum cost of success matrix
min_cst <- min(new_mat[,4], na.rm=T)
min_cst
which(new_mat == min_cst, arr.ind=TRUE)
```

```
#Finding QF, QP and QS responsible for the minimum cost
new_mat[1050,1]
new_mat[1050,2]
new_mat[1050,3]
```

```
#Shadow Prices
shp_QF <- cst_QF_cum[new_mat[1050,1]+1] - cst_QF_cum[new_mat[1050,1]]
shp_QF
```

```
shp_QP <- cst_QP_cum[new_mat[1050,2]+1] - cst_QP_cum[new_mat[1050,2]]
shp_QP</pre>
```

```
shp_QS <- cst_QS_cum[new_mat[1050,3]+1] - cst_QS_cum[new_mat[1050,3]]
shp_QS</pre>
```

2 Fixed Budget

```
#Setting costs of first units
cst_i_QF <- 852.1504
cst_i_QP <- 101.4689
cst_i_QS <- 876.1922
```

#Setting the available budget avail_bud <- 32030

#Setting learning curve parameters LC_QF <- 0.80 LC_QP <- 0.88 LC_QS <- 0.85

b_QF <- log(LC_QF)/log(2)
b_QP <- log(LC_QP)/log(2)
b_QS <- log(LC_QS)/log(2)</pre>

```
#creating a matrix to receive all possible quantities regarding restrictions
QF <- c(1:100)
QP <- c(1:100)
QS <- c(1:100)
nlinhas <- 0
mat_suc <- matrix(,,3)</pre>
list_quant <- c()
for (i in 1:100) {
 for (j in 1:100) {
  for (k in 1:100) {
   if ((QF[i] + QS[k]) >= 16) {
     if ((QP[j] - 4 * QS[k]) >= 0){
      if ((QF[i] - 2 * QS[k]) >= 0) {
       if ((-2 * QF[i] + QP[j]) >= 0) {
         nlinhas = nlinhas + 1
         list_quant <- c(QF[i],QP[j],QS[k])
         mat_suc<-rbind(mat_suc,list_quant)</pre>
       }
      }
    }
   }
  }
 }
}
#Calculating cost
#Setting the maximum number of quantity
num_max <- 100
#creating a vector for unit cost
cst_QF <- c()
cst_QP <- c()
cst_QS <- c()
for (i in 1:num_max) {
 cst_QF[i] <- cst_i_QF * (i ^ b_QF)
 cst_QP[i] <- cst_i_QP * (i ^ b_QP)
 cst_QS[i] <- cst_i_QS * (i ^ b_QS)
}
print(cst_QF)
print(cst_QP)
print(cst_QS)
```

```
#creating a vector for cumulative cost
cst_QF_cum <- c()
cst_QP_cum <- c()
cst_QS_cum <- c()
for (i in 1:num_max) {
 if(i > 1) {
  cst_QF_cum [i] = cst_QF_cum [i - 1] + cst_QF [i]
 } else {
  cst_QF_cum [i] = cst_QF [i]
  }
 }
print(cst_QF_cum)
for (j in 1:num_max) {
 if(j > 1) {
  cst_QP_cum [j] = cst_QP_cum [j - 1] + cst_QP [j]
 } else {
  cst_QP_cum [j] = cst_QP [j]
 }
}
print(cst_QP_cum)
for (k in 1:num_max) {
 if(k > 1) {
  cst_QS_cum [k] = cst_QS_cum [k - 1] + cst_QS [k]
 } else {
  cst_QS_cum [k] = cst_QS [k]
 }
}
print(cst_QS_cum)
#creating a cumulative cost column in the matrix that received all possible quantities regarding restrictions (success
matrix)
mat_suc1 <- mat_suc
new_mat <- cbind(mat_suc1,1)</pre>
new_mat <- cbind(mat_suc1,cst_QF_cum[new_mat[,1]] + cst_QP_cum[new_mat[,2]] + cst_QS_cum[new_mat[,3]])
#creating a remaining budget column in the matrix that received all possible quantities regarding restrictions (success
matrix)
mat_suc2 <- new_mat
new_mat1 <- cbind(mat_suc2,1)</pre>
new_mat1 <- cbind(mat_suc2,avail_bud - cst_QF_cum[new_mat1[,1]] - cst_QP_cum[new_mat1[,2]] -
```

```
cst_QS_cum[new_mat1[,3]])
```

```
#Finding minimum cost of success matrix
min_cst <- min(new_mat1[,5][which(new_mat1[,5]>0)], na.rm=T)
```

min_cst

```
#Finding line of the minimum cost of success matrix
min_line <- which(new_mat1 == min_cst, arr.ind=TRUE)</pre>
lin <- min_line[1,1]
lin
#Finding QF, QP and QS responsible for the minimum cost
new_mat1[lin,1]
new_mat1[lin,2]
new_mat1[lin,3]
#Shadow Prices
shp_QF <- cst_QF_cum[new_mat1[lin,1]+1] - cst_QF_cum[new_mat1[lin,1]]</pre>
shp_QF
shp_QP <- cst_QP_cum[new_mat1[lin,2]+1] - cst_QP_cum[new_mat1[lin,2]]</pre>
shp_QP
shp_QS <- cst_QS_cum[new_mat[lin,3]+1] - cst_QS_cum[new_mat[lin,3]]
shp_QS
#CHARTS about shadow prices to the decision-makers
library(ggplot2)
#CHART 0 - Total Price, Shadow Price and Remaining Budget
# create a dataset
df <- data.frame(
 ships=c("Frigates","Patrols","Submarines"),
 value=c(cst_QF_cum[new_mat1[lin,1]], cst_QP_cum[new_mat1[lin,2]], cst_QS_cum[new_mat1[lin,3]])
)
#Creating chart 0
grp <- ggplot(data = df, aes(x=ships, y=value)) +
   geom_bar(stat="identity", fill="skyblue",
             colour="lightskyblue2") +
   labs(title="Decision-Maker Charts",
    subtitle="Chart 0 - Prices of Optimal Solution"
 ) +
 xlab ("Ships") +
 ylab ("Price ($M)") +
 annotate("Text", x="Frigates", y=16500,
      label = round(cst_QF_cum[new_mat1[lin,1]], digits=2),
      col="black",
      size=3) +
 annotate("Text", x="Patrols", y=5700,
      label = round(cst_QP_cum[new_mat1[lin,2]], digits=2),
```

```
col="black",
      size=3) +
 annotate("Text", x="Submarines", y=12000,
      label = round(cst_QS_cum[new_mat1[lin,3]], digits=2),
       col="black",
       size=3)
grp <- grp +
 theme(plot.title = element_text(size = 15, color = "gray"),
     plot.subtitle = element_text(size = 10, color = "blue"))
grp
#CHART 1 - Total Price, Shadow Price and Remaining Budget
# create a dataset
data <- data.frame(
 ships=c("Frigates", "Frigates", "Patrols", "Patrols", "Submarines", "Submarines"),
 price=c("1 Shadow Price","2 Price","1 Shadow Price","2 Price","1 Shadow Price","2 Price"),
value=c(shp_QF,cst_QF_cum[new_mat1[lin,1]],shp_QP,cst_QP_cum[new_mat1[lin,2]],shp_QS,cst_QS_cum[new_mat1[lin,
3]])
)
#Creating chart 1
grp <- ggplot(data, aes(fill=price, y=value, x=ships)) +
 geom_bar(position="stack", stat="identity") +
 labs(title="Decision-Maker Charts",
    subtitle="Chart 1 - Price Analysis",
    fill = "Type of Price"
   ) +
 xlab ("Ships") +
 ylab ("Price ($M)")
grp <- grp +
 theme(plot.title = element_text(size = 15, color = "gray"),
   plot.subtitle = element_text(size = 10, color = "blue"))
grp
#CHART 2 - Shadow Price and Remaining Budget
#Creating Data
ships=c("Frigates","Patrols","Submarines")
cost=c(shp_QF,shp_QP,shp_QS)
remaining=c(min_cst,min_cst,min_cst)
#Creating chart 2
grp <- ggplot()
grp <- grp + geom_bar(aes(x=ships, y=cost),stat="identity", fill="skyblue",
           colour="lightskyblue2")
grp <- grp + geom_line(aes(x=ships, y=remaining, group = 1),stat="identity") +</pre>
```

```
labs(title="Decision-Maker Charts",
    subtitle="Chart 2 - Shadow Price x Remaining Budget"
    ) +
 xlab ("Ships") +
 ylab ("Price ($M)") +
 annotate("Text", x="Patrols", y=60,
      label = "Remaining Budget",
      col="black",
      size=5)
grp <- grp +
 theme(plot.title = element_text(size = 15, color = "gray"),
     plot.subtitle = element_text(size = 10, color = "blue"))
grp
#CHART 3 - Remaining Budget as a % of Shadow Price
#Creating data
data <- data.frame(
 ships=c("Frigates","Patrols","Submarines") ,
 percentage=c(min_cst/shp_QF,min_cst/shp_QP,min_cst/shp_QS)
)
#Creating chart 3
grp <- ggplot(data = data,
    mapping = aes(x = ships, y = percentage)) +
 geom_bar(stat = "identity",
   color = "lightskyblue2",
   fill = "skyblue") +
 labs(title="Decision-Maker Charts",
    subtitle="Chart 3 - Remaining Budget / Shadow Price"
 ) +
 xlab ("Ships") +
 ylab ("Percentage of Shadow price") +
 annotate("Text", x="Frigates", y=0.05,
      label = round(min_cst/shp_QF, digits=2),
       col="black",
      size=3) +
 annotate("Text", x="Patrols", y=0.25,
      label = round(min_cst/shp_QP, digits=2),
       col="black",
       size=3) +
 annotate("Text", x="Submarines", y=0.03,
      label = round(min_cst/shp_QS, digits=2),
       col="black",
       size=3)
grp <- grp +
 theme(plot.title = element_text(size = 15, color = "gray"),
        plot.subtitle = element_text(size = 10, color = "blue"))
grp
```

Appendix D: Reference Tables for Data Array

1 – Frigates Data

Frigates	CST (\$M)	DIS (t)	RNG (NM)	LEN (m)	Source
					https://www.seaforces.org/marint/Australian-Navy/Frigate/Anzac-
Anzac-class frigate	707.18	3,600	6,000	118.00	<u>class.htm</u>
					https://www.naval-technology.com/projects/naresuan-class-guided-
Naresuan-class frigate*	123.89	2,985	4,000	120.50	missile-frigates/
Type 053H2 Jianghu-III class	138.39	1,960	4,000	103.20	https://www.globalsecurity.org/military/world/china/jianghu-specs.htm
Type 054A Jiangkai-II class	246.00	4,053	8,025	124 10	https://weaponsystems.net/system/419-Type-054A+class
Absalon class	240.00	6,600	9,000	1	https://wew.naval-technology.com/projects/absalon/
ADSOLUTI CIOSS	2//./1	0,000	9,000	137.00	https://www.navar-technology.com/projects/absaion/
Iver Huitfeldt class	393.16	6,645	9,300	138.70	
					https://www.seaforces.org/marint/French-Navy/Destroyer-
Aquitaine class	923.38	6,000	6,000	142.00	Frigate/Aquitaine-FREMM-class.htm
					https://www.seaforces.org/marint/French-Navy/Frigate-Corvette/La-
La Fayette class	508.54	3,800	4,000	125.00	Fayette-class.htm
Brandenburg class	613.66	4,490	4,000	138.85	https://www.naval-technology.com/projects/brand/
F125 Baden-Württemberg					
class	1,212.09	7,200	4,000	149.52	https://www.seaforces.org/
Sachsen class	1,329.45	5,800	4,000	143.00	https://www.naval-technology.com/
					https://www.defenceweb.co.za/resources/fact-files/fact-file-valour-class-
Valour class	443.08	3,700	8,000	121.00	small-guided-missile-frigates/?catid=79%3Afact-files&Itemid=159
Godavari class	172.39	3 <i>,</i> 850	4,500	126.40	https://naval-encyclopedia.com/cold-war/indian-navy#
					https://www.naval-technology.com/projects/nilgiri-class-project-17a-
Project 17A class	1,029.80	6,670	1,000	149.00	frigates/
Shivalik class	694.64	6,200	5,000	142.50	https://www.naval-technology.com/projects/shivalik-class-friga/
					https://www.seaforces.org/marint/Italian-Navy/Frigate/Bergamini-FREMM
Carlo Bergamini class	686.52	6,700	6,000	144.60	<u>class.htm</u>
					https://www.seaforces.org/marint/Italian-Navy/Frigate/Maestrale-
Maestrale class	220.34	3,040	6,000	122.70	<u>class.htm</u>
De Zeven Provinciën class	827.37	6,050	4,000	144.24	https://www.naval-technology.com/projects/dezeven/
Karel Doorman class	324.85	3,320	4,500	122.00	https://www.naval-technology.com/projects/karel/
					https://www.seaforces.org/marint/Norwegian-Navy/Frigate/Fridtjof-
Fridtjof Nansen class*	930.14	5,290	4,500	134.00	Nansen-class.htm
7.10	002 72	2444	4 000	422.20	https://quwa.org/2020/06/06/pakistan-navy-ships-zulfiquar-class-f-22p-
Zulfiquar class*	983.73	3,144	4,000		frigate/
Admiral Gorshkov class	271.05	5,400	4,800		https://www.naval-technology.com/projects/admiral-gorshkov/
Admiral Grigorovich class	626.66	4,000	4,850		https://armedforces.eu/navy/frigate/Admiral_Grigorovich-class
Gepard class	386.85	1,930	4,000		https://www.naval-technology.com/projects/gepard-class/
Talwar class	674.27	4,035	4,850	124.80	https://www.naval-technology.com/projects/talwarclassfrigate/
Daagu class	289.99	2 502	4 5 0 0	122.00	https://www.seaforces.org/marint/Republic-Korea-Navy/Frigate/Daegu-
Daegu class	269.99	3,592	4,500	122.00	class-FFG.htm https://www.seaforces.org/marint/Republic-Korea-Navy/Frigate/Incheon-
Inchoon close	274 21	2 251	4,500	114.00	class-FFG.htm
Incheon class	274.31	3,251	4,500	114.00	https://www.seaforces.org/marint/Spanish-Navy/Frigate/Alvaro-de-Bazan-
Álvaro de Bazán class	700 43	F 000	4 5 0 0	140 70	
F101/4 Álvaro de Bazán class	709.43	5,800	4,500	140.70	<u>class.htm</u>
F105	1,300.62	6,391	4,500	146 70	https://www.naval-technology.com/projects/f100/
Type 22 class	1,300.02	0,391	4,300	140.70	https://www.navar-technology.com/projects/1100/ https://www.seaforces.org/marint/Royal-Navy/Frigate/Broadsword-Type-
Batch 3	188.88	5,300	7,500	1/18 10	22-class.htm
Duchij	100.00	5,500	1,500	140.10	https://www.seaforces.org/marint/Royal-Navy/Frigate/Duke-Type-23-
Type 23 class	439.39	4,900	7,500	133.00	class.htm
1 JPC 23 (1033	-55.55	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	133.00	http://www.navyrecognition.com/index.php?option=com_content&view=
Freedom class SSC	395.76	3,500	3,500	115 00	article&id=72#specifications
		3,500	2,300		
					https://www.dcms.uscg.mil/Our-Organization/Assistant-Commandant-for-
	670.00	4,600	12,000	127.00	Acquisitions-CG-9/Programs/Surface-Programs/National-Security-Cutter/
Legend class cutter					
Legend class cutter Oliver Hazard Perry class					
Legend class cutter Oliver Hazard Perry class	164.50	4,200	4,500		https://www.naval-technology.com/projects/oliver-hazard/ https://www.seaforces.org/marint/French-Navy/Destroyer-Frigate/Forbin-

2 – Patrols Data

Patrols	СST (\$M)	DIS (t)	RNG (NM)	LEN (m)	Source
					https://www.naval-technology.com/projects/amazonas-offshore-patrol-
Port of Spain class OPV	83.40	2,200	5,500	90.50	vessels/
Armidale class	30.80	300	3,000	56.80	https://www.navy.gov.au/hmas-armidale-ii
ASMAR PZM class OPV	70.80	1,850	8,600	80.60	https://www.asmar.cl/download/opv.pdf
Buque de Accion Maritima					
class OPV	190.70	2,860	8,700	93.90	https://www.naval-technology.com/projects/maritimeactionship/
Cape class	32.90	300	4,000	57.80	https://www.naval-technology.com/projects/cape-class-patrol-boats/
Carnicobar class patrol boat -					https://www.bharat-rakshak.com/NAVY/Ships/Active/201-Car-Nicobar-
Fleet I	8.20	293	2,000	48.90	<u>Class.html</u>
Carnicobar class patrol boat -					https://www.bharat-rakshak.com/NAVY/Ships/Active/201-Car-Nicobar-
Fleet II	8.20	315	2,000	48.90	<u>Class.html</u>
					https://www.seaforces.org/marint/Republic-Korea-Navy/Patrol-
Classe Yoon Youngha	44.90	570	1,998	63.00	Vessel/Yoon-Youngha-class.htm
					https://www.naval-technology.com/projects/90m-offshore-patrol-vessel-
Clyde class OPV	74.30	2,000	5,500	81.50	opv/
Comandanti-class	112.70	1,520	3,500	88.60	https://www.naval-technology.com/projects/commandante/
Cyclone class patrol boat	31.70	336	2,500	55.00	https://warriorlodge.com/pages/cyclone-class-patrol-ship
Flyvefisken class	31.60	450	3,860	54.00	https://www.naval-technology.com/projects/fly/
-					https://www.naval-technology.com/projects/harry-dewolf-class-
Harry DeWolf class OPV*	341.70	5,800	6,800	97.00	arcticoffshore-patrol-ships-aops/
					https://www.canada.ca/en/news/archive/2014/06/acceptance-ccgs-m-
					charles-m-b-new-hero-class-mid-shore-patrol-vessel-canadian-coast-guard-
Hero class	20.90	257	2,000	42.80	fleet.html
			,		https://www.seaforces.org/marint/Netherlands-Navy/Offshore-Patrol-
Holland class OPV	213.80	3,750	5,000	108.40	Vessel/Holland-class.htm
Holland-class offshore patrol			-,		https://www.seaforces.org/marint/Netherlands-Navy/Offshore-Patrol-
vessel	170.80	3,750	5,000	108.40	Vessel/Holland-class.htm
			5,000		https://www.seaforces.org/marint/Danish-Navy/Offshore-Patrol-
Knud Rasmussen class OPV	105.00	2,050	3,000	71.80	Vessel/Knud-Rasmussen-class.htm
Meteoro-class offshore	105.00	2,030	3,000	, 1.00	https://www.buguesdeguerra.com/en/ships-spanish-navy/patrol-
patrol vessel	114.90	2,860	3,500	93 90	vessels/meteoro-class.html
Orca class	114.50	210	660		https://www.naval-technology.com/projects/orca-class/
	11.00			00.00	Blewett, Daniel K. <i>RQ</i> 36, no. 3 (1997): 467–68.
Pacific class	11.30	162	2,500	31 50	http://www.jstor.org/stable/20863194.
Pattani class OPV	68.80	1,460	3,500		https://shipshub.com/classes/142-2.html
Protector class OPV	75.90	1,900	6,000	85.00	https://www.naval-technology.com/projects/protectorclassoffsho/
	75.50	1,500	0,000	05.00	https://www.navar teennology.com/projects/protector-lassersito/
Rotoiti class IPV	23.10	340	3,000	55.00	class-IPV.htm
	23.10	540	3,000	55.00	https://www.homelandsecurity-technology.com/projects/rubin-class-
Rubin class patrol boat	40.20	630	3,500	62 50	patrol-boats-russia/
Rubin class pation boat	40.20	030	3,300	02.30	https://www.naval-technology.com/projects/samuel-beckett-class-
Samuel Beckett class	108.60	2 256	6 000	00.00	offshore-patrol-vessels-opys/
	108.00	2,256	6,000	90.00	
	127 40	2 0 2 0	6 500	105.00	https://www.janes.com/defence-news/news-detail/indian-coast-guard-
Sankalp-class	137.40	2,020	6,500	105.00	takes-delivery-of-another-sankalp-class-opv
	70.20	250	2 500	46.00	https://www.navalnews.com/naval-news/2020/09/four-more-sentinel-
Sentinel class	70.20	359	2,500	46.80	class-fast-response-cutters-for-the-us-coast-guard/
	02.40	4 5 40	220	00.00	https://www.fincantieri.com/en/products-and-services/naval-
Sirio class OPV	93.40	1,549	330	88.60	vessels/pattugliatori-daltura/sirio-class/
					https://www.naval-technology.com/uncategorised/newsdamen-to-
Share Datural 4207	40.00			40.00	construct-three-more-stan-patrol-4207-patrol-vessels-for-mexican-navy-
Stan Patrol 4207	10.20	239	2,450	42.80	<u>4771424/</u>
					https://www.homelandsecurity-technology.com/projects/kv-svalbard-w-
Svalbard class OPV	88.60	6,375		103.70	<u>303-icebreaker-opv/</u>
					https://www.homelandsecurity-technology.com/projects/turva-offshore-
Turva class OPV	151.70	4,000		95.90	patrol-vessel-finland/
					https://www.naval-technology.com/projects/viana-do-castelo-class-
Viana Do Castelo class OPV	70.80	1,600		83.10	offshore-patrol-vessels/
Yoon Youngha-class patrol					https://www.seaforces.org/marint/Republic-Korea-Navy/Patrol-
vessel	50.20	570	1,998	63.00	Vessel/Yoon-Youngha-class.htm

3 – Submarines Data

Culture da est	CST	LEN	BEAM	DIS SUR	6
Submarines	(\$M)	(m)		(t)	Source
					https://www.seaforces.org/marint/Australian-Navy/Submarine/Collins-
Collins class SSK	1,299.14	77.42	7.80	3,100	<u>class.htm</u>
					https://www.naval-technology.com/news/myanmar-commissions-type-35b-
Type 035 Ming class SSK	113.87	76.00	7.60	1,584	submarine/
					https://news.usni.org/2015/08/31/essay-inside-the-design-of-chinas-yuan-
Type 041 Yuan class SSK	683.29	77.60	8.40	2,700	class-submarine
Agosta 90B class SSK	845.59	76.20	6.80	1,570	https://militaryanalizer.com/agosta-class-submarine/
Scorpène CA-2000 class SSK	590.24	61.70	6.20		https://www.naval-technology.com/projects/scorpene-class/
Dolphin 2 class SSK	753.48	68.60	6.80	2,050	http://www.military-today.com/navy/dolphin_class.htm
Shishumar class					https://www.nti.org/wp-
(Type 209/1500)	872.18	64.40	6.50	1,660	<pre>content/uploads/2021/09/shishumar_type_209_1500.pdf</pre>
Heroine class	262 50	62.00	7.00	4 5 4 5	https://web.archive.org/web/20080917205630/http://www.navy.mil.za/archiv
(Type 209/1400)	362.58		7.60	· · ·	e/0808/080819 Fleet review/heroine submarines.htm
Type 210 'Ula' class SSK	147.50	59.00	5.40	1,040	https://www.naval-technology.com/projects/ula-class-submarines/ https://www.seaforces.org/marint/Italian-Navy/Submarine/Todaro-Type-212-
Type 212A class SSK	655.82	56.00	6.80	1,524	<u>class.htm</u>
Type 214 class SSK	399.21	65.00	6.30	1,690	https://www.seaforces.org/marint/Hellenic-Navy/Submarine/Papanikolis- class.htm
				· ·	http://www.navyrecognition.com/mobile/index.php/oceania/australia/submar
					ines/264-type-216-u-216-conventional-submarine-ssk-aip-tkms-hdw-
					submarine-class-216-howaldtswerke-deutsche-werft-thyssenkrupp-marine-
Type 216 class SSK	1,770.41	90.00	8.10	4,000	systems-royal-australian-navy-datasheet-pictures-i
Sōryū class	602.11	84.00	9.10	2,900	https://www.naval-technology.com/projects/sssoryuclasssubmarin/
					https://www.seaforces.org/marint/Netherlands-Navy/Submarine/Walrus-
Walrus class	467.63	67.73	8.40		<u>class.htm</u>
Kilo class	347.27	73.80	9.90	2,350	https://www.naval-technology.com/projects/kilo/
Jang Bogo class	413.45	61.00	6.30	1,180	https://www.seaforces.org/marint/Republic-Korea-Navy/Submarine/Jang- Bogo-class.htm
					https://www.navyrecognition.com/index.php/naval-news/naval-news-
					archive/2021/july/10488-spanish-isaac-peral-s-80-class-submarine-takes-next-
S-80 class	1,180.63	81.05	11.68	3,200	step.html
					https://www.navalnews.com/naval-news/2021/08/saab-awarded-contract-to-
Blekinge class	524.22	63.00	6.40	1,800	add-capabilities-on-future-swedish-submarines/

References

Balakrishnan, Nagraj, Barry Render, Ralph M. Stair, and Chuck Munson. 2017. *Managerial Decision Modeling*. Boston: Degruyter.

Foundation, R. n.d. *What is R?* Accessed January 18, 2022. https://www.r-project.org/about.html.

- Ghanmi, Abderrahmane Sokri and Ahmed. 2017. "Cost RiskAnalysis and Learning Curve in the Military Shipbuilding Sector." *Defence Research and Development Canada* 6.
- Hair, Joseph F., Anderson, Rolph E., Black, William C. 2014. *Multivarate Data Analysis*. Tulsa: PPC Books.
- Mislick, Gregory K., and Daniel A Nussbaum. 2015. *Cost Estimation: Methods and Tools.* Hoboken, NJ: Wiley & Sons.
- Thomas, Duncan, and John Fitch. 2014. "Joint Agency Cost Schedule Risk and Uncertainty Handbook." Washington D.C.: U.S. Government.

W.N. Venables, D.M. Smith, R Core Team. 2021. An Introduction to R. 08 10.