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ABSTRACT 

This paper presents a study of the phenomenon and the development of a 

computational code for water hammer with column separation and fluid-structure 

interaction (FSI) in one-dimensional. FSI model was considered as an initial and 

boundary value problem, represented by a system of hyperbolic partial differential 

equations that simultaneously describes the propagation of pressure waves in the 

liquid and axial stress waves in the structure. Column separation is treated as a 

boundary condition. Method of characteristics, combined with linear interpolations, 

was used to solve the system of hyperbolic partial differential equations. The 

proposed numerical model was compared to experimental data from the base article 

(BERGANT, ANTON et al., 2005) provided by author, for a system consisting of a 

reservoir with a constant upstream level, a single straight pipe and a downstream 

valve with rigid fixation. 
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1 SYMBOLISM AND ABBREVIATIONS 

1D - One dimension 

2D - Two dimensions 

c - Speed of sound in the fluid, [m/s] 

c0 - Speed of sound in the unconfined fluid, [m/s] 

c1 - Speed of sound in the incompressible fluid in an elastic tube, [m/s] �̃�- Adjusted speed of sound in the fluid, [m/s] 

cf - Actual speed of sound in the fluid, [m/s] 

ct - Wave speed in the tube wall, [m/s] �̃� - Adjusted wave speed in the tube wall, [m/s] 

C- - Negative characteristic equation 

C+ - Positive characteristic equation 

CFL - Courant-Friedrich-Lewy 

Din - Internal diameter of the pipe, [m²] 

DVCM - Discrete Vapor Cavity Model 

dx - Infinitesimal spacing (grid) of the mesh in space, [m] 

dy - Infinitesimal spacing (grid) of the mesh in time, [s] 

E - Young's modulus, [Pa] 

e - Wall thickness of the pipe, [m] 

ODE - Ordinary differential equation 

PDE - Partial differential equation 

f - Darcy-Weisbach friction factor 

H - Piezometric head 

Hb - Barometric head, [m] 

H0 - Piezometric head in steady-state, [m] ��� - Piezometric head at point i and time t, [m] �����	∆�  - Piezometric head at point (i+1) and time (t-∆t), [m] ��	��	∆� - Piezometric head at point (i-1) and time (t-∆t), [m] 

Hmax - Maximum head, [m] 

Hmp - Head at the longitudinal midpoint of the pipeline, [m] 

Hres - Head at the reservoir, [m] 

Hvap - Vapor head at temperature T, [m] 

i - Spatial step 



FSI – Fluid structure interaction 

j - Time step 

Kf - Fluid bulk modulus 

l - Maximum length of the vapor cavity 

m - Adjustable constant 

MOC - Method of characteristics 

CN - Courant number 

P or p - Pressure, [Pa] �� - Average axial pressure, [Pa] 

Pext - External pressure, [Pa] 

Pvap - Absolute vapor pressure at temperature T, [Pa] ������ - Inlet flow rate at point i and time t, [m³/s] ��� - Flow rate at point i and time t, [m³/s] ��������	∆� - Inlet flow rate at point (i+1) and time (t-∆t), [m³/s] ��	��	∆� - Flow rate at point (i-1) and time (t-∆t), [m³/s] ��- Flow rate in steady-state, [m³/s] ��- Discharge flow rate at the valve, [m³/s] 

r - Radial coordinate 

Rin - Internal radius of the pipe, [m²] 

T - Temperature, [ºC] 

t - Time, [s] 

tc - Actual valve closure time, [s] 

HT - Hydraulic transient ��- Longitudinal displacement of the pipe, [m] �� �- Axial velocity of the pipe, [m/s] �� ���� - Average axial velocity of the pipe, [m/s] �� �-  Longitudinal acceleration of the pipe, [m/s²] �� � - Radial velocity of the pipe, [m/s] �� � ����- Average radial velocity of the pipe, [m/s] 

V - Volume, [m³] 

CV - Control volume ���- - Vapor cavity volume, [m³] ��- Fluid velocity, [m/s] 



��- Radial fluid velocity, [m/s] ��,��� - External radial fluid velocity, [m/s] ����,�- Relative velocity between the fluid and the pipe wall, [m/s] ��- Axial fluid velocity, [m/s] ��- Fluid velocity, [m/s] �̅- Average axial velocity, [m/s] 

x - Spatial longitudinal coordinate 

α - Vapor fraction 

ΔH - Instantaneous increase in head predicted by Joukowsky, [m] Δ��- Head decrease at the valve, [m] 

∆P - Pressure variation, [Pa] 

∆v - Velocity variation, [m/s] Δ���- Decrease in the fluid return velocity, [m/s] 

∆x - Spacing (grid) of the mesh in space, [m] 

∆y - Spacing (grid) of the mesh in time, [s] !�- Dynamic viscosity of the fluid, [Pa.s] " - Poisson's ratio, [Pa] # - Inclination of the pipe relative to the reference level, [rad] $� – Fluid specific mass, [kg/m³] $� - Pipe material specific mass, [kg/m³] % - Numerical weighting factor &� - Fluid specific weight, [N/m³] τ�- Dimensionless valve closure time constant τ�� or τ��- Shear stress, [N/m²] σ)* - axial stress at midpoint of pipe, [N/m²] σ�- Radial stress, [N/m²] σ�- Axial stress, [N/m²] σ���� - Average axial stress, [N/m²] σ+ - Circumferential stress, [N/m²] σ+���� - Average circumferential stress, [N/m²] 
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2 INTRODUCTION 

Mainly, fluid transportation research and engineering projects primarily 

focus on steady-state flow. However, sudden changes in flow conditions caused by 

rapid valve operations, pump startups, or shutdowns give rise to hydraulic 

transients. These transients induce significant dynamic forces within pipeline 

systems due to sudden pressure fluctuations, impacting the propagation of pressure 

waves. Such forces lead to fluid-structure interaction (FSI), where the pipeline 

system and the fluid cannot be treated separately during theoretical analysis, 

necessitating the consideration of interaction mechanisms. Thus, accurately 

modeling this physical phenomenon becomes crucial for proper pipeline sizing, 

selection of valve closing times, and prevention of damage. This article introduces 

the implementation of a Python® numerical model for a liquid-filled pipeline, with 

and without column separation, while incorporating the combined effects of fluid-

structure interaction within a reservoir-pipeline-valve system. The model employs 

one-dimensional (1D) governing equations derived from integrating the general 

three-dimensional (3D) equations for both the fluid and structure. The fluid-structure 

interaction mechanism encompasses Poisson and friction couplings. The Darcy-

Weisbach friction model is employed for the fluid, and the boundary conditions 

incorporate the Discrete Vapor Cavity Model (DVCM) to account for column 

separation effects. The essential equations specific to the pipeline under 

consideration are formulated as a set of four hyperbolic partial differential equations 

(PDEs) and solved using the method of characteristics (MOC).  
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3 THEORY AND NUMERICAL MODEL 

A one-dimensional mathematical model describing transient behavior in 

a fully liquid-filled pipeline will be presented. This model is based on classical 

hydraulic transient theory and beam theory, considering Fluid Structure Interaction 

(FSI) and column separation effects. 

The symbols used in the equations are defined in the "Symbols and 

Abbreviations" section. 

To facilitate comprehension, the modeling will be discussed separately 

for the fluid, pipe, and fluid-structure aspects, considering the following conditions. 

Pipe: 

• Straight, slender, thin-walled, and circular cross-section; 

• Homogeneous, isotropic material and linearly; 

• Immersed in a non-viscous fluid; 

• No restrictions on its axial movement; 

• Subject to small deformations; 

• Instantaneous closure valve with restrictions on its axial movement; 

and 

• Radial motion resistance due to inertia, shear deformation, and 

bending stiffness are neglected. 

Fluid: 

- Newtonian and homogeneous; 

- Isotropic and linearly elastic; and 

- Free or dissolved gas in the liquid is considered small. 

The fluid-pipe system is subject to isothermal conditions, quasi-stationary 

fluid-structure friction, and modeled in one dimension with an axial coordinate along 

the centerline of the pipe. This approximation is valid for long wavelengths or low 

frequencies (TIJSSELING, 1993). 

Fluid and pipe velocities are considered much smaller than the wave 

velocity (c_f≫v and c_t≫u ̇_x), therefore convective terms are neglected. 

The cavitation model employed in this study is based on the vaporization 

phenomenon. It assumes that whenever there are bubbles present, the pressure 

within the fluid equals the vapor pressure of the fluid. 
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3.1 Hydraulic Transients (HT) 

When the conditions of a steady flow are altered over time, we have a 

transient flow, which is referred to as Hydraulic Transients (TH). TH is an unstable 

flow in a pipeline system filled with liquid fluid, generated by sudden changes in the 

fluid flow conditions. These changes are usually related to rapid valve closure and 

opening, pump start-up and shutdown, pipe rupture (TIJSSELING, 1993). During 

these events, hydraulic systems experience specific loads or forces due to 

variations in fluid momentum. 

The current theory of TH is based on the research of Joukowsky (1898) 

and Allievi (1903), which were studies conducted on a pipeline where water flows 

from a reservoir and is suddenly interrupted, causing a hydraulic transient (U.S. 

NUCLEAR REGULATORY RESEARCH, 1997). The resulting pressure wave from 

this transient travels back to the source reservoir at the speed of sound. This 

increase in pressure is given by equation (1). 

 ∆� = $���∆� (1) 

 

Equation (1) relates the pressure change ∆P to the velocity change ∆v 

through the constant value $���. 

Joukowsky used the speed of sound, which takes into account the 

compressibility of the fluid and the elasticity of the tube walls. Until the 1960s, the 

graphical method was used for the mathematical treatment of hydraulic transients. 

However, with the advent of computers, the Method of Characteristics (MOC) 

became the standard for an approximate numerical solution of these transients 

(TIJSSELING, 1993). 

Equations of HT are applied when the pressure is above the vapor 

pressure. They consist of the continuity equation and the momentum equation. 

Continuity equation (mass conservation) neglecting convective terms: ∂H∂t + �234��
∂�∂x + �678#�4�� = 0 (2) 

 

Momentum equation, neglecting convective terms: ∂H∂x + 134��
∂�∂t + ;�|�|234��2>�� = 0 (3) 
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3.2 Cavitation and Column Separation 

Low pressures during transient events in pipelines often result in 

cavitation. The term cavitation is used to describe the formation and growth of 

cavities in the liquid due to a transient in which the local pressure has been reduced 

to the vapor pressure of the liquid. 

Location and intensity of cavitation are influenced by various system 

parameters, including the type of transient (rapid valve closure, pump failure, turbine 

load rejection), system layout (pipe dimensions, valve profile and positioning), and 

fluid transport process characteristics (fluid flow rate, system head, pipe wall friction, 

and fluid properties) (BERGANT, ANTON; SIMPSON, 1999). 

Depending on the pipe geometry and fluid velocity gradient, these 

cavities can grow and coalesce to the point of filling the pipe's cross-section, leading 

to column separation (CHAUDHRY, 2014). 

In regions of low pressure, rarefaction waves are reflected as positive 

waves (e.g., from a reservoir), compressing the bubbles in the cavitating flow region 

and progressively reducing the size of the cavity produced by column separation. 

Consequently, the cavity collapses, and the separated columns join, resulting in very 

high pressures (CHAUDHRY, 2014). 

Cavitation significantly alters the shape of the pressure wave, and the 

classical equations of TH for liquid flow are no longer valid (BERGANT, ANTON et 

al., 2008) since the single-phase flow becomes two-phase. 

Joukowsky (1898) described mathematically many of the physical 

aspects of the pressure wave and its propagation in liquid systems and was the first 

to observe and understand the phenomenon of column separation. A section of his 

work is literally transcribed in (BERGANT, A. et al., 2004). In (BERGANT, ANTON 

et al., 2006), a synthesis of TH with cavitation is provided, describing the 

development of pressure spikes after the collapse of a vapor cavity. 

(FAN; TIJSSELING, 1992) based their measurements on the structural 

time scale of vibration in a closed pipe excited by external impact. (BERGANT, 

ANTON; SIMPSON, 1999) conducted a parametric numerical analysis in a 

reservoir-pipe-valve system to calculate critical flow conditions that exhibit different 

types of column separation according to the maximum head. They classified 

transient regimes based on the physical state of the fluid and the maximum pressure 

in the pipeline. Meanwhile, (FANELLI, 2000) summarized the experimental work 
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conducted between 1971-1991 by (IAHR, 2000) to develop and validate models 

implemented in computer codes. (BERNARD, 2013) qualitatively classified transient 

regimes as follows (BERGANT, ANTON et al., 2006): 

• No cavitation; 

• Cavitation, but the cavity does not collapse; 

• Cavitation with cavity collapse but without high pressures; and 

• Cavitation with cavity collapse and excessive pressures. 

3.2.1 Discrete Vapor Cavity Model (DVCM) 

The discrete vapor cavity model is the most widely used model for column 

separation and cavitation. Its significant advantage is being an easily implemented 

model that reproduces many characteristics of the physical events of column 

separation in pipelines (BERGANT, A. et al., 2004). 

Figure 1 - Representation of the discrete cavity model. 

 
Source: (TIJSSELING, 1996). 

The DVCM methodology is detailed in (WYLIE, E. B.; STREETER, 1978). 

Vapor cavities can form in any of the computational sections if the 

calculated pressure falls below the vapor pressure of the liquid. This method does 

not differentiate between localized vapor cavities and distributed vapor cavitation 

(SIMPSON, A.; WYLIE, E., 1989). 

The method is, therefore, a simplistic approximation of the real physical 

situation since a constant wave velocity of c is assumed for both the two-phase (HT) 

and column separation regions. Thus, the DVCM converts the actual partial 

differential equations with a non-constant wave velocity (for regions with vapor 

cavities) into different partial differential equations (with assumed constant wave 

velocity) and then attempts to correct the error(s) in the discrete vapor cavity limit(s) 

(SIMPSON; BERGANT, 1994b). 
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For this modeling, vapor cavities are confined to computational sections 

(meshes), and a constant wave velocity of pressure is assumed for the fluid between 

mesh points, as shown in Figure 1. When a vapor cavity forms, this computational 

section is treated as a fixed internal boundary condition. The pressure in this section 

is set to the vapor pressure of the liquid until the cavity collapses. 

Both the inlets and outlets of the computational sections are calculated 

using compatibility equations for each of the positive and negative characteristic 

equations (C+ and C-) within the method of characteristics (MOC). 

Figure 2 - Method of characteristics - stepped mesh for reservoir-pipeline-valve system. 

 
Source: (BERGANT, ANTON et al., 2006). 

Compatibility equations for the configuration illustrated in Figure 2 are as 

follows, with index i representing the spatial step (x-axis): 

?�: ��� = ?� A B��� (4) 

 

?	: ��� = ?C + B��� (5) 

 

?� = ��	��	∆� 1 B��	��	∆� A D��	��	∆�E��	��	∆�E (6) 

 

?C - �����	∆� A B�����	∆� 1 D�����	∆�E�����	∆�E (7) 
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B - �
34��

 (8) 

 

D - ;. ∆G
234��2>��

 (9) 

 

From (4) e (5),  ��� can be obtained: 

 

��� - ?� 1 ?C
2  (10) 

 

The flow rate at point i and time t is obtained by: 

��� - ��� A ?C
B  (11) 

 

In the DVCM, the inlet (���,) and outlet (�) flow rates at point P can be 

different. In finite differences, equations (4) and (5) at index P i (spatial step) become 

(BERGANT, A. et al., 2006): 

� �� A ��	��	∆� 1 �
34��

H������ A ��	��	∆�I 1 ;∆G������E��	��	∆�E
234��2>��

- 0  

(12) 

 

��� A �����	∆� 1 �
34��

H��� A ��������	∆�I A ;∆G���E��������	∆�E
234��2>��

- 0  

(13) 

 

?�J��áL��M - ��	��	∆� 1 B��	��	∆� A D��	��	∆�E��	��	∆�E (14) 

 

It can be observed from Figure 3 that there is a modification in the 

volumetric flow rates in the computational section where column separation occurs, 

which influences the formulation of the negative characteristic equation (C-), as it 

has its initial point at ��������	∆� rather than �����	∆�. Thus, �����	∆� has been replaced by 

��������	∆� in equation (7), resulting in: 

?CJ��áL��M - �����	∆� A B��������	∆� 1 D��������	∆�E��������	∆�E (15) 
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Head in the computational section where column separation occurs is 

given by: 

��� - ?�J��áL��M 1 ?CJ��áL��M
2  (16) 

 

When the pressure becomes lower or equal to the vapor pressure, the 

nodes are treated as boundary nodes with a fixed pressure as described in equation 

(17): 

��N* - �� A ����
$�3 1 ��N*

$�3  (17) 

 

The inlet flow rate at point i and time t is calculated by: 

������ - ?�J��áL��M A ���
B  (18) 

 

Vapor cavity volume (���) in a computational section in terms of the 

downstream and upstream flow rate difference at point P is: 

��� - O P�� A �����QRS
��∆�

�
  

(19) 

 

Figure 3 - Grid for the MOC with two-phase fluid.. 

 
Adapted from (JENSEN et al., 2018). 
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The numerical integration of equation (19) in MOC with the discretization 

used in Figure 3 is given by: 

���� - ����	2∆� 1 Ψ��� A ������� 1 2ΔS1 A %�U���	2V� A ������	2V�W (20) 

 

In which ���� and ����	2∆� are the volumes of vapor cavities at the 

current time and 2∆t ago, and ψ is a numerical weighting factor. 

When volume of the vapor cavity becomes zero, it means that the 

collapse of this cavity has occurred. Then, the system can be treated as single-

phase, and calculation of the HT (two-phase flow) returns to the standard procedure, 

where ������ - ���. 
The compatibility equations ( (4), (5), (12), and (13)) are valid along the 

length of the pipeline (0 < x < L), and boundary conditions are required (x = 0 e x = 

L). 

3.3 Fluid Structure Interaction (FSI): 

In the past, researchers made it clear that classical two-phase flow theory 

(WYLIE, E.B.; STREETER, 1978) was sufficient and adequate to predict extreme 

loads in a system as long as it is rigidly anchored. However, when a pipeline system 

has certain degrees of freedom, significant deviations from classical theory can 

occur due to system movement. 

FSI is essentially a dynamic phenomenon in which the interaction is 

always caused by dynamic forces acting simultaneously on the fluid and pipeline. 

This interaction involves the transfer of momentum and forces between pipeline and  

fluid during transient flow, manifesting as pipe vibration and disturbances in the 

velocity and pressure of fluid (WIGGERT; TIJSSELING, 2001). 

There are three mechanisms that couple the dynamic behavior of the fluid 

and the pipeline system (TIJSSELING; LAVOOIJ, 1990): 

• Friction coupling: represents the mutual friction between the fluid and 

the pipe; 

• Poisson coupling: relates fluid pressures to axial stresses in the pipe 

through the contraction or expansion of its wall. Poisson coupling leads to precursor 

waves induced by disturbances in the fluid that travel faster than the wave front of 

classical two-phase flow; and 



 14 
 

• Connection coupling: describes the local forces acting mutually 

between the fluid and the pipeline system. 

Friction and Poisson coupling act throughout the pipeline system, while 

connection coupling occurs only at specific locations, such as in line accessories 

(valves, fittings, elbows). 

3.3.1 Fluid bulk modulus (Kf) 

The fluid bulk modulus is the property that relates pressure changes to 

volume changes (e.g., expansion and compression) (CROWE et al., 2009). The 

volume change is related to the change in fluid specific mass. 

For a fluid with a specific mass (ρf) subjected to a pressure increment dP 

necessary to induce a variation (dρf / ρf ): 

X� = R�R$� $�Y  (21) 

 

3.3.2 Sound velocity  in fluid (c) 

Compressibility term of the fluid will be expressed through the equation 

of state that relates fluid specific mass to the pressure. 

State equation: Z$�Z� = $�X� (22) 

 

Variables $� and K are functions of (P, T). 

For confined fluids in tubes, the speed of sound is significantly lower. 

HELMHOLTZ (1848) was the first to suggest that the decrease in velocity is due to 

the effect of tube elasticity, but theoretical model for this phenomenon in 

compressible fluids in elastic tubes emerged decades later with (KORTEWEG, 

1878). 

Speed of sound in an unconfined fluid (��� is given by: 

�� = [X�$�  (23) 

Speed of sound in a confined compressible fluid (��� in a flexible tube is 

given by (KORTEWEG, 1878): 
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 1��2 = 1��2 + 1��2 (24) 

 

�� = [ \7$�>�� (25) 

Studies conducted by (HALLIWELL, 1963), discrepancy in theoretical 

wave velocity formulas was discussed, and this difference was attributed to how the 

pipe supports are considered. In order to reduce the difference, a correction factor 

(ψ) was introduced, which is a function of the Poisson's ratio, in the wave equation 

model to account for different supports (WYLIE, E. B.; STREETER, 1978). 

• ψ = 1: for a pipe anchored with expansion joints along its entire length, 

the axial stress is negligible; 

• ψ = 1 - "²: for a fully anchored pipe that restricts axial movement, the 

axial displacements are negligible; 

• ψ = 1 – " /2: for a pipe anchored only upstream, the axial stress on the 

pipe wall is considered proportional to the fluid pressure acting on an unrestricted 

closed valve downstream. 

Thus, equation (24) is rewritten as: 

�� = [X�$� ]1 + % >��X�7\ ^	�
 (26) 

 

Equation (26) provides the velocity of the pressure wave (cf) used for 

classical HT calculations (TIJSSELING, 1996). 

3.3.3 Governing Equations: 

 

Fluid and the pipe interact through coupled radial motion. The development of these 

equations, in 1D, can be found in (TIJSSELING, 1993). 

Fluid: 

Starting point is the continuity and Navier-Stokes equations in 2D, 

expressed in cylindrical coordinates, where x represents the axial axis and r 

represents the radial axis. Assuming an isothermal condition, p << Kf, convective 

terms (c0 >> �� e ��) are neglected, and radial forces due to gravitational effects are 

disregarded due to axial symmetry. Thus, we have: 
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Continuity equation: 1X�
Z��ZS + Z�̅ZG + 2D�� ��|�_`ab = 0 (27) 

Axial momentum equation: 

$� Z�̅ZS + Z��ZG = $�3678# A 2D�� c� (28) 

For Newtonian fluid: 

c� = A!� Z��Zd e�_`ab (29) 

 

Radial momentum equation: 12 $�D�� Z��ZS e�_`ab + f|�_`ab A �� = 0 (30) 

Pipe: 

Starting point is two momentum equations expressed in cylindrical 

coordinates, where x represents the axial axis and r represents the radial axis. The 

effects of bending resistance, rotational inertia, transverse shear, convective terms, 

and gravitational forces acting on the pipe are neglected. The specific mass of the 

pipe material ($�) is assumed to be constant. The simplified 1D equations are as 

follows: 

Axial momentum equation: 

$� Z�� ����ZS = Zg����ZG + D�� + 7�D�� + 0,57�7 c��|�_`ab��� A D��D�� + 0,57�7 c��|�_`ab+ $�3678# 

(31) 

Radial momentum equation: 

$� Z�� ����ZS = D�� + 7�D�� + 0,57�7 g�|�_`ab��� A D��D�� + 0,57�7 g�|�_`ab
A 1D�� + 0,57� g+���� 

(32) 

Where: 

�� ���� = 12iD�� + 0,57�7 O 2id �� � Rd`ab���
`ab  (33) 
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 �� ���� = 12iD�� + 0,57�7 O 2id �� � Rd`ab���

`ab  (34) 

 

g���� = 12iD�� + 0,57�7 O 2id g�  Rd`ab���
`ab  (35) 

 

g+���� = 17 O g+  Rd`ab���
`ab  (36) 

Stress-strain relationships complete mathematical model and are 

provided by the generalized Hooke's law: Zg����ZS = \ Z�� ����ZG + " Zg+jjjjZS + " Zg����ZS  (37) 

 

g+jjjj = 12iD�� + 0,57�7  O 2i g+  Rd`ab���
`ab  (38) 

 

g���� = 12iD�� + 0,57�7  O 2i g�  Rd`ab���
`ab  (39) 

 

Fluid structure coupling: 

Fluid and pipe equations are coupled through boundary conditions that 

represent the contact between the fluid and the pipe wall at the interface r = D��. It 

is assumed that there is a constant pressure (����) outer of the pipe. 

Boundary conditions at the interface are: 

c��|�_`ab = Ac�                  c��|�_`ab��� = 0 (40) 

 

g�|�_`ab = Af|�_`ab                  g�|�_`ab��� = A���� (41) 

 

�� �|�_`ab = A��|�_`ab                  �� �|�_`ab��� = ��,��� (42) 

Using Darcy-Weisbach friction factor (;), 1D model of four equations, 

with unknowns �, �, g� and �� �   (LAVOOIJ; TIJSSELING, 1991), is presented below. 

Fluid: 
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Continuity equation: Z��ZS + 3 Z�ZG =  A ;4D�� ����,�E����,�E (43) 

 

Axial momentum equation: Z��ZG + 3��2
Z�ZS =  2" Z�� �ZG  (44) 

Pipe: 

Axial momentum equation: Z�� �ZS A 1$�
Zg�ZG = $�$�

4��4�
;4D�� ����,�E����,�E + 3678# (45) 

 Z�� �ZG A 1$���2
Zg�ZS = A$�3 D�� "7\ Z�ZS  (46) 

 

����,� = �� A �� � (47) 

 

��2 = \$� (48) 

 

3.4 Boundary conditions 

3.4.1 Reservoir 

It is assumed that the reservoir is large enough so that the fluid level 

elevation during operation can be neglected, and head in the reservoir (���L) is 

considered constant. 

� = ���L (49) 

 

�� = 0 (50) 

 

3.4.2 Steady-State – initial condition 

Initial condition is the solution of basic equations for steady-state 

(TIJSSELING, 1993). 
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 �G, 0� = ���L A $; ] ;4Dl8 �d7m,;E�d7m,;E A 3678#^ G (51) 

 

��G, 0� = �n86So8S7 (52) 

 

g��G, 0� = g��0, 0� A p 1]7 + 722Dl8^
$;;8 �d7m,;E�d7m,;E + $S 3 678#r G (53) 

 

�� ����G, 0� = 0 (54) 

 

3.4.3 Valve 

Each valve has different cavitation characteristics, flow rates, and 

torques. Cavitation is a complex subject, and accurate modeling of valve closure is 

important as it affects the magnitude and shape of the resulting pressure peak 

(JENSEN et al., 2018).  

The behavior of the valve can be approximated by (WYLIE, E.B.; 

STREETER, 1978): 

c� = 1 A ] SS�^)
 (55) 

Constant m is adjustable. If m is set to zero for an instantaneous closure 

valve, it produces the maximum pressure peak.  

The valve discharge flow rate (��� for any opening is given by: 

�� = ��s�� c�√Δ� (56) 

In this case, Δ� represents the pressure drop across the valve. By 

simultaneously solving equations (4) and (56): 

�u = AB?� + sB?��2 + 2?�?� (57) 

 

?� = ��c��22��  (58) 

Conditions for an instantaneous closure fixed valve (LAVOOIJ; 

TIJSSELING, 1991): 
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 ��v, S� = 0 (59) 

 

�� = 0 (60) 

 

3.4.4 Column separation 

In the computational section where column separation occurs, it is not 

allowed for local absolute pressure (�NJL) to be lower than the vapor pressure (��N*) 

of fluid. In this section, the following condition is imposed: 

�NJL = ��N* (61) 

Which is equivalent to: 

��N* = �� A G 678# A ����$�3 + ��N*$�3  (62) 

Volume of vapor cavity is calculated as: 

��� = ���S A 2∆S� ± 4��H��S� A �� �S�I∆S (63) 

Vapor cavity collapses when ��� = 0. 

When absolute pressure equals vapor pressure, vapor cavities appear. 

In the present model, cavities are concentrated in the computational section (i). 

Between the sections, it is assumed that pure liquid exists, where the basic HT 

equations (43) to (46) remain valid. This means that the velocity of the pressure 

wave �̃� is maintained between the points i. However, pressure waves do not 

propagate through the cavitation region since constant vapor pressure is assumed. 

The collapse of the vapor cavity caused by the pressure wave results in a delay in 

propagation, which is observed as a reduction in wave velocity (TIJSSELING, 1993). 

3.5 Method of characteristics (MOC) 

A significant portion of HT analysis is carried out using codes based on 

MOC due to the simplicity of treating a constant time increment and adopting a 

staggered discretization (SHARP; SHARP, 1996). MOC is a mathematical 

procedure for obtaining a general wave propagation solution. The solution describes 

characteristic lines (C- and C+) in an x-t plane of wave propagation, where the 

functions of v and H are constant. When characteristic lines intersect, local values 

for v and H are determined (MOODY, 1990). 
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By applying the MOC to governing equations, (43) to (46) (TIJSSELING, 

1993): 

Fluid: 

 

R��R� + 3�� xy�̃���z + 2"2  D��7 $�$�
U���̃�W ��2⁄|1 A U�̃� ��⁄ W2}~ R�RS + 2" U�̃� ��⁄ W2

|1 A U�̃� ��⁄ W2} ]R�� �RS ^
A 2"$��̃�

U�̃� ��⁄ W2
|1 A U�̃� ��⁄ W2} ]Rg�RS ^ 

= A ;4D�� ����,�E����,�E A 2" U�̃� ��⁄ W2
|1 A U�̃� ��⁄ W2} �$�$�

4��4�
;4D�� ����,�E����,�E + 3678#� 

(64) 

 

R��R� A 3�� xy�̃���z + 2"2  D��7 $�$�
U���̃�W ��2⁄|1 A U�̃� ��⁄ W2}~ R�RS + 2" U�̃� ��⁄ W2

|1 A U�̃� ��⁄ W2} ]R�� �RS ^
A 2"$��̃�

U�̃� ��⁄ W2
|1 A U�̃� ��⁄ W2} ]Rg�RS ^ 

= A ;4D�� ����,�E����,�E + 2" U�̃� ��⁄ W2
|1 A U�̃� ��⁄ W2} �$�$�

4��4�
;4D�� ����,�E����,�E + 3678#� 

(65) 

Pipe: 

A" D��7 $�$�
U�� ��⁄ W2

|1 A U�� ��⁄ W2} yR��R� z A " D��7 $�$�
3�� ]�̃���^ U�� ��⁄ W2

|1 A U�� ��⁄ W2} R�R�
+ x1 + 2"2 D��7 $�$�

U�� ��⁄ W2
|1 A U�� ��⁄ W2}~ ]R�� �RS ^ A 1$��� ]�̃���^ ]Rg�RS ^ 

= x1 + 2"2 D��7 $�$�
U�� ��⁄ W2

|1 A U�� ��⁄ W2}~ �$�$�
4��4�

;4D�� ����,�E����,�E + 3678#�
+ " D��7 $�$�

U�� ��⁄ W2
|1 A U�� ��⁄ W2} ;4D�� ����,�E����,�E 

(66) 
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A" D��7 $�$�
U�� ��⁄ W2

|1 A U�� ��⁄ W2} yR��R� z + " D��7 $�$�
3�� ]�̃���^ U�� ��⁄ W2

|1 A U�� ��⁄ W2} R�R�
+ x1 + 2"2 D��7 $�$�

U�� ��⁄ W2
|1 A U�� ��⁄ W2}~ ]R�� �RS ^ + 1$��� ]�̃���^ ]Rg�RS ^ 

= x1 + 2"2 D��7 $�$�
U�� ��⁄ W2

|1 A U�� ��⁄ W2}~ �$�$�
4��4�

;4D�� ����,�E����,�E + 3678#�
+ " D��7 $�$�

U�� ��⁄ W2
|1 A U�� ��⁄ W2} ;4D�� ����,�E����,�E 

(67) 

Real axial wave velocities (68) and (69) include the effects of Poisson 

coupling (FSI). 

�̃� = [0,5 ��2 A ]��� A 4��2��2^� (68) 

 

�̃� = [0,5 ��2 + ]��� A 4��2��2^� (69) 

 

�2 = ��2 + ��2 + 2"2 y$;$S z ]Dl87 ^ ��2 (70) 

A convenient way to represent equations (64) and (65), (66) and (67) 

respectively is: 

�� yR��R� z ± �� R�R� + "&� ]R�� �RS ^ ± "�� ]Rg�RS ^ = ��U�� �, ��W (71) 

 

"�� yR��R� z ± "�� R�R� + &� ]R�� �RS ^ ± �� ]Rg�RS ^ = ��U�� �, ��W (72) 

Coefficients �� , ��, �� , ��, &� , &�, �� , �� represent the corresponding 

coefficients from equations (64) to (67). The functions ��U�� �, ��W and ��U�� �, ��W 

represent the right-hand side of equations (64) to (67). 

Integrating compatibility equations results in a system of four equations and four 

unknowns P(x,t), v(x,t), σ(x,t), and �̇ (x,t). This 4x4 system will be used to obtain the 

solution for points inside the grid. 
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3.5.1 Computational grids 

The computational sections used in classical HT theory is the starting 

point. They are based on characteristic lines along which pressure waves 

propagate. The grid spacings (∆x e ∆t) are constant (Lavooij & Tijsseling, 1991). 

Following Tijsseling (1993) work of, the pressure wave grid U�̃� = ΔG ΔS⁄ W will be 

used. 

3.5.2 Convergence and stability 

For an accurate numerical solution of a partial differential equation (PDE), 

finite difference approximations must satisfy the conditions of convergence and 

stability (Smith et al., 1985). 

Convergence: 

A finite difference formulation is considered convergent if the exact 

solution of the finite difference equation tends to the exact solution of the PDE as 

Δx and Δt approach zero (Chaudhry, 2014). 

Stability: 

Stability of a finite difference scheme can be investigated using a method 

developed by Von Neumann. In this method, applicable only to linear equations, the 

errors in the numerical solution at a particular time are expressed as a Fourier 

series. It is then determined whether these errors decrease or increase with time. A 

scheme is said to be stable if the errors decay with time and unstable if the errors 

grow with time. Thus, it can be shown that the finite difference scheme is stable if 

(Chaudhry, 2014): 

∆G ≥ �. ∆S (73) 

This condition is known as the Courant-Friedrich-Lewy (CFL) stability 

condition. The Courant number (CN) is defined as the ratio of the actual wave speed 

(c) to the numerical wave speed (Δx/Δt); that is: 

�? = �. ∆S∆G  (74) 

Therefore, for the numerical scheme to be stable, the computational time 

step (Δt) and the spatial interval (Δx) must be selected such that CN ≤ 1. 
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3.6 Validation 

The code was tested by comparing it with experimental data from the base article 

(Bergant, Anton et al., 2005) for a simple hydraulic system, in which transients were 

induced by opening or closing a valve. 

Code algorithm for TH with FSI and separation column (SC) can be found 

in Appendix. 

4 RESULTS AND DISCUSSION 

In this section, the results of the simulations performed with the 

developed code will be presented. The inputs for each simulation can be found in 

Tables 5 and 6, Appendix. 

It should be noted that the assignment of certain fluid and material 

properties, based on available literature data, was necessary since the data was not 

provided or mentioned in the reference article: 

• Specific mass, Young's modulus, roughness, and Poisson's ratio of 

the material used; 

• Experimental temperature; 

• Type of valve used and discharge coeficiente. 

4.1 Tests 

A numerical and experimental analysis of HT is presented for two 

different cases of initial flow velocity v0 = {0,30; 1,40} m/s at a constant static head 

in the reservoir of 22 m. 

Numerical results from code are compared with experimental data at 

midpoint of the pipe and valve. Computational runs were performed for a rapid 

closure of the valve fixed rigidly at the downstream end of the pipe. The valve 

closure time is tc = 0.009 s. Simulation inputs are listed in Tables 5 and 6 in 

Appendix. 

4.1.1 Comparison with experimental data for an initial flow velocity of 0.30 

m/s  

Figure 4 shows results of the simulations for the partitions Nx = {16, 32, 

64, 128}, v0 = 0.30 m/s, and ψ = 1, along with experimental data for the midpoint of 

pipe. For validation purposes, ψ = 1 was chosen as the weighting factor used by 

reference researchers in the field. 
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Traditionally, a smaller number of partitions is used in HT analysis, but a 

larger number should provide more accurate results (convergence and stability 

criteria) (Bergant, Anton et al., 2005). 

Figura 4. Comparison with experimental data at midpoint of pipe (v0 = 0,30 m/s e ψ = 1,0). 

 

Comparing simulated curves with experimental ones, it can be observed 

that in the first pressure pulse, curves for Nx = {16, 64, 128} successfully captured 

the increase in head due to the valve closure, as well as the column separation in 

the interval of 0.08 s to 0.11 s. The pressure peak at 0.04 s in the simulated curves 

can be explained by the fact that the DVCM model generates unrealistic pressure 

peaks due to pressure waves reflected in vapor cavities and end limits, as well as 

the collapse of multicavities (Simpson, Bergant, 1994a). 

In Table 1, focusing on the first pressure peak, the maximum head values 

at the midpoint of pipe and the corresponding times are compiled for the simulations 

and experiment.  

Table 1. Maximum Hmp and occurrence time for each Nx, v0 = 0,30 m/s e ψ = 1,0. 

Nx Hmpmáx (m) t (s) Hmpmax* (m)1 t* (s)2 

 
1 Maximum head of the simulated curves at the midpoint of the pipe, when disregarding the unrealistic 

pressure peak. 
2 Time at which the maximum head of the simulated curves occurs at the midpoint of the pipe, when 

disregarding the unrealistic pressure peak. 
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16 74,92 0,043 62,77 0,026 
32 76,20 0,044 62,85 0,025 
64 79,88 0,044 62,97 0,025 

128 81,47 0,043 63,08 0,025 
Experimental 61,84 0,031 61,84 0,031 

The objective of this table was to demonstrate that when disregarding the 

unrealistic pressure peaks resulting from the adopted DVCM model, the maximum 

captured pressures are very close to the experimentally obtained values, differing 

at most by 2% (maximum Hmp* difference in Nx = 128). Additionally, the occurrence 

times are approximately identical. 

Simulation with Nx = {16, 64, 128} is able to predict the second head rise, 

although in a damped manner. This damping can be explained by use of linear 

interpolations to solve the PDEs (TIJSSELING, 1993). However, these dampings 

have the drawback of not capturing real pressure oscillations. 

The pressure drop at 0.015 s is due to the globe valve used in the simulated 

numerical model. It is evident from the comparison that the valve used in the 

experiment differs from the modeled one. 

The curve for Nx = 32 generates non-real pressure oscillations 

throughout the simulation, which can be attributed to pressure waves reflected at 

the boundaries when adopting the partition 32. 

Figure 5 presents the results of the simulations for the partitions Nx = {16, 32, 64, 

128}, v0 = 0,30 m/s e ψ = 1, along with experimental data at valve. 
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Figure 5. Comparison with experimental data at valve (v0 = 0,30 m/s e ψ = 1,0). 

 

Comparing the simulated curves with the experimental curve, it can be 

observed that for the first pressure pulse, curves of Nx = {16, 32, 64, 128} captured 

the moment of head elevation. However, only Nx = {64} obtained a maximum head 

value close to experimental data (with a slight upward difference). Apart from the 

previous observations, the values obtained from the simulation curves do not 

represent the experimental data, as compiled in Table 2. This discrepancy can be 

explained by the choice of the valve in the numerical model, which differs from the 

one used in the experiment. 

Table 2. Maximum Hv and occurrence time for each Nx, v0 = 0,30 m/s e ψ = 1,0. 

 

The curve for Nx = 32 generates non-real pressure oscillations 

throughout the simulation, which can be attributed to pressure waves reflected at 

the boundaries when using a partition of 32. 

Nx Hmáx (m) t (s)

16 85,57 0,058
32 87,87 0,058
64 96,01 0,058

128 99,69 0,058
Experimental 95,5 0,057



 28 
 

4.1.2 Comparative analysis with experimental data for an initial flow velocity 

of 1,40 m/s 

Figure 6 displays the results of the simulations for the partitions Nx = {16, 

32, 64, 128}, v0 = 1,40 m/s e ψ = 1, along with experimental data. For the same 

reasons explained in section 4.1.1, ψ = 1was chosen. 

Figura 6. Comparative analysis with experimental data at midpoint of pipeline (v0 = 1,40 m/s e ψ = 

1,0). 

 

When comparing simulated curves with experimental data, it is observed 

that in the first pressure pulse, curves for Nx = {16, 32, 64, 128} successfully capture 

the increase in head due to valve closure, as well as the column separation in the 

interval 0.07 s - 0.09 s. 

For times beyond 0.1 s, the simulations fail to capture the oscillatory 

behavior observed in the experimental data, which reflects the complexity of the flow 

due to pressure wave reflections. 

Due to the higher initial fluid flow rate, there is no initial pressure drop resulting from 

the closure of the globe valve used in the simulated numerical model, as shown in 

Figure 4. 

Table 3 compiles maximum head values at midpoint of pipeline and 

corresponding occurrence times for simulations and experiments. 

Tabela 3. Maximum Hmp and occurrence time for each Nx, v0 = 1,40 m/s e ψ = 1,0. 
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From Table 3, it can be observed that the maximum head values at 

midpoint of pipeline are slightly higher (0.67% for Nx = {16, 32, 64} and 1.78% for 

Nx = {128}) compared to the experimental values. In the cases of Nx = {16, 32, 64}, 

there was an advance in the pressure pulse by approximately 0.17 s, while for Nx = 

{128}, it can be considered that the time of capturing the maximum pressure was 

the same as experimental value. 

The objective of this table was to demonstrate that when disregarding the 

unrealistic pressure peaks resulting from the adopted DVCM model, the captured 

maximum pressures are very close to experimental values, differing at most by 2% 

(Hmp* in Nx = 128), and occurrence times are approximately identical. 

Figure 7 displays results of simulations for partitions Nx = {16, 32, 64, 128}, v0 = 

1,40 m/s e ψ = 1, along with experimental data at valve. 

Figure 7. Comparison with experimental data at valve (v0 = 1,40 m/s e ψ = 1,0). 

 

In Table 4, maximum head values at valve and corresponding occurrence 

times are presented for each Nx simulation and experimental data. 

Table 4. Maximum Hv and occurrence time for each Nx, v0 = 1,40 m/s e ψ = 1,0. 

Nx Hmáx (m) t (s)

16 209,10 0,026
32 209,20 0,025
64 209,30 0,024

128 211,50 0,043
Experimental 207,8 0,042
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In comparing simulation results with experimental data, it can be 

observed that the curves for Nx = {16, 32, 64, 128} successfully captured the 

increase in head due to valve closure, with similar timing and magnitude, as shown 

in Table 4. They also captured the column separation within the range of 0.06 s to 

0.18 s. 

For times greater than 0.18 s, simulations exhibit oscillatory behavior that 

differs from the experimental data. This can be attributed to the fact that in 

experiment, the valve was axially free, allowing for damping of the pressure pulse 

at the valve. In contrast, the simulations with a fixed valve are more sensitive to 

effects of pressure wave reflections. 

 

5 CONCLUSIONS 

In this work was presented implementation of Python® code for 

simulating two-phase flow in a liquid-filled pipe, with without column separation, 

including combined fluid-structure interaction effects,. Governing equations in one 

dimension (1D), derived from integration of general three-dimensional (3D) 

equations for fluid and structure, were used. Fluid structure interaction mechanism 

included Poisson and friction couplings. Derived equations are valid for phenomena 

with long wavelength behavior, characteristic of pipes that respond axially and 

where the fluid wavelength is large compared to the pipe diameter. 

For the fluid, Darcy-Weisbach friction model and DVCM model for column 

separation effects were used as boundary conditions. The basic equations valid for 

the pipe in question were formulated as a set of four hyperbolic PDEs solved using 

the method of characteristics, which is considered in the literature to be the best 

solution for hyperbolic problems where disturbances propagate at constant 

velocities. 

The FSI TH SC model was validated using experimental data from the 

base article (BERGANT, ANTON et al., 2005) provided by author. 

Nx Hmáx (m) t (s)

16 211,00 0,038
32 211,10 0,037
64 211,10 0,038

128 211,40 0,039
Experimental 210,9 0,038
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For the available experimental data, proposed model using DVCM with 

fluid-structure coupling provided a good fit between experimental and numerically 

simulated data for the first pressure peak at the two evaluated cavitation severity 

levels (v0 = 0.30 m/s and v0 = 1.40 m/s), with slightly better results for the v0 = 1.40 

m/s experiment. This is because the Darcy-Weisbach friction term is capable of 

predicting the pressure at the first peak, but as the wave propagates, the pressure 

damping is not sufficient (KWON, 2007). 

Theoretical and experimental results were compared. Considering the 

complexity of the studied phenomenon and the assumptions made for the 

developed numerical model, combined with the simplicity of DVCM model, 

maximum manometric head and occurrence time of the first two-phase flow with 

column separation were accurately predicted. 
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APPENDIX  

HYDRAULIC TRANSIENT WITH FLUID STRUCTURE INTERACTION AND 
COLUMN SEPARATION 

 

 



 41 
 

First it is necessary to calculate the unknowns �, �, g� and �� �  , then block with ���l, � A 2� > 0 investigates the presence of vapor cavity in the previous time step. 

If cavity exists, it is assumed that the current time interval should be treated as a 

pressure threshold. If the node is calculated as a pressure threshold, the 

calculations are followed by a check to see if the vapor cavity is less than or equal 

to zero. If this is true, it is assumed that the vapor cavity has collapsed, but the 

pressure has not risen above the vaporization pressure of the fluid and consequently 

there is a new check of the calculated head and the vaporization head (��� ≤ ��N*). 

This loop is reapeted for all j. 
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Table 5. Properties and parameters for the simulation v0 = 0,30 m/s e ψ = 1,0. 

Properties and parameters 

g 9,81 [m/s²] 

Pipe 

L 37,23 [m] 

Din 2,21E-02 [m] 

Rin 1,11E-02 [m] 

e 1,63E-03 [m] 

E 1,24E+11 [Pa] 

roughness 7,00E-06 [m] 

rho_t 8940 [kg/m³] 

coef. Poisson 0,34 [dimensionless] 

theta 0,0545 [rad] 

tc 9,00E-03 [s] 

Pext 1,00E+05 [Pa] 

Fluid 

rho_f 998,2 [kg/m³] 

kf 2,10E+09 [Pa] 

mi_f 1,00E-03 [kg/m.s] 

Hvap -10,221 [m] 

psi 1 [dimensionless] 

Initial conditions of system 

Hres 22 [m] 

v0 0,30 [m/s] 

U0 0 [m/s] 
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Table 6. Properties and parameters for the simulation v0 = 1,40 m/s e ψ = 1,0. 

Properties and parameters 

g 9,81 [m/s²] 

Pipe 

L 37,23 [m] 

Din 2,21E-02 [m] 

Rin 1,11E-02 [m] 

e 1,63E-03 [m] 

E 1,24E+11 [Pa] 

roughness 7,00E-06 [m] 

rho_t 8940 [kg/m³] 

coef. Poisson 0,34 [dimensionless] 

theta 0,0545 [rad] 

tc 9,00E-03 [s] 

Pext 1,00E+05 [Pa] 

Fluid 

rho_f 998,2 [kg/m³] 

kf 2,10E+09 [Pa] 

mi_f 1,00E-03 [kg/m.s] 

Hvap -10,221 [m] 

psi 1 [dimensionless] 

Initial conditions of system 

Hres 22 [m] 

v0 1,40 [m/s] 

U0 0 [m/s] 

 

 

 

 


