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Abstract. A point-to-point optical link is usually based on a laser beam, where the most
common propagation model is the Gaussian beam type. Due to its directional characteristics,
minor alignment errors can cause considerable attenuation. The calculation of the misalignment
losses involves solving an integral of a Gaussian beam translated over a receiver’s effective sur-
face, leading to a more accurate link budget. Our work proposes a closed-form expression for
calculating the geometric and misalignment attenuation, caused by translational movements in
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1 Introduction

Optical communications are receiving special attention for being able to provide full support for
the implementation of emerging telecommunication technologies. Nowadays, with the emer-
gence of 5G networks and the expansion of the Internet of Things, the need for high-bandwidth
increases. In parallel with fiber-optic communications, optical wireless communication (OWC)
has gained significant importance due to their unique advantages: high bandwidth, license-free
spectrum, high data rate, fast and easy deployment, low power requirements, as well as being
able to operate on very light platforms.1

Most laser-based optical systems produce beams, whose irradiance profile can be modeled as
Gaussian, such as in He-Ne lasers.2 In optics, the Gaussian distribution is one of the most impor-
tant field solutions for the Helmholtz paraxial equation, being considered the fundamental mode
of propagation (TEM00).

3 However, problems involving the detection of misaligned (off-axis)
Gaussian beams require solving a surface integral, which does not have a closed-form solution.
This problem is quite common when dealing with OWC, such as in free-space optical (FSO)
communications4 or chip-to-chip communications,5 but it can also be applied in several other
areas of optics, whenever the fundamental mode is transmitted in free space, such as in optical
coupling or fiber splices.

The attenuation caused by a misaligned Gaussian beam is calculated through the integration
of the beam distribution over the receiver’s effective area. So far, this type of calculation has
depended upon numerical solutions6 or more complex expressions.7–9 The most classical sol-
ution for this double integral involves the analytical solution of the internal integral, followed by
a numerical solution to the integral of the resulting function.7,8 Another work presented a closed-
form solution involving infinite power series, which allows a faster implementation in some
cases.9

This paper aims to present an analytical solution to attenuation caused by misalignment of a
Gaussian beam, also considering the geometric attenuation, typical of OWC links. This approach
can enable faster and more efficient calculations, especially for mobile optical systems.
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2 Misaligned Gaussian Beam

Due to diffraction, even if a beam was perfectly collimated, its propagation through the atmos-
phere would not occur through a perfect cylindrical path. In reality, laser propagation is usually
modeled using a very thin cone, whose opening angle is called the divergence angle. Thus, a
portion of energy can be spread out and end up falling beyond the reception area as shown in
Fig. 1. This type of attenuation, inherent in OWC links, is known as geometric attenuation. In a
1-km-long optical link, for example, a divergence angle of just 1 mrad will spread the energy of
the signal along a circumference of 1 m in diameter.10

As OWC systems are normally employed with extremely directional beams, pointing errors
can cause major attenuation. Considering long-range terrestrial links, such as FSO, even if the
transceivers are over fixed structures, such as buildings, the inherent movement of the base
cannot be disregarded. Buildings are subject to thermal expansions, winds, and vibration.
Depending on the type of link, these small movements can be sufficient to displace the trans-
ceivers and interrupt communication.4 In addition to the vibrational misalignment, atmospheric
turbulence can generate the effect known as beam wander, which is the random wander of the
beam’s centroid over the reception plane.11 Figure 2 shows both situations, when the receiver is
perfectly aligned with the transmitted beam or when there are radial misalignment errors.

The radius rL represents the region where the irradiance becomes null, in the uniform beam
model, or where it falls in the ratio 1∕e2 of its peak, in the Gaussian beam model. This radius is
normally called the spot size of the beam. In Fig. 2(b), that for the uniform beam model, the
energy outside rL will not be captured by the receiver.

2.1 Simplified Uniform Model

A simplified model for geometric attenuation consists of a circular energy beam with uniform
distribution, instead of Gaussian. In this model, the geometric attenuation can be calculated by

Fig. 1 Representation of a Gaussian beam propagation and its geometric attenuation.

Fig. 2 Receiver and transmitted areas: (a) aligned and (b) misaligned.
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the ratio between the area of the receiver and the area of the beam at the position of the receiver,
z ¼ L, considering the beam aligned with the z-axis. For a circular receiver, the expression for
geometric attenuation (αgeo), which is widely used in link budgets, is as follows:4

EQ-TARGET;temp:intralink-;e001;116;699αgeo ¼
r2r�

rt þ θL
2

�
2
; (1)

where rr is the receiver aperture radius, rt is the transmitter aperture radius, θ is the beam diver-
gence angle (mrad), and L is the range (km).

For the uniform beam model, a closed-form expression for attenuation by misalignment is
already known.12 This model, even inaccurate, is widely used in practice. However, in long-range
links, when misalignment is observed, the uniform beam model leads to significant errors for the
budget. Therefore, the accurate irradiance profile, with Gaussian energy distribution, is necessary.

2.2 Gaussian Beam Model

The wave solution for a Gaussian beam propagating along the z-axis, using cylindrical coor-
dinate system, can be expressed as3

EQ-TARGET;temp:intralink-;e002;116;521Uðρ;ϕ; zÞ ¼ A0

rt
rLðzÞ

exp

�
−

ρ2

rLðzÞ2
�
exp

�
−jkz −

jkρ2

2RðzÞ þ jΦ
�
; (2)

where A0 is a constant related to power at the transmitter output, rLðzÞ is the beam width along z,
RðzÞ is the curvature radius at a point z, andΦ represents a phase retardation relative to a uniform
plane wave. Due to circular symmetry, there is no variation along the coordinate ϕ.

The optical intensity can be observed through the irradiance profile, given by Iðρ; zÞ ¼
jUðρ; zÞj2. Thus, from Eq. (2), we have

EQ-TARGET;temp:intralink-;e003;116;419Iðρ;ϕ; zÞ ¼ A2
0

r2t
r2LðzÞ

exp

�
−

2ρ2

r2LðzÞ
�
; (3)

where rLðzÞ can be approximated as rt þ θz
2
.

Using Eq. (3) and neglecting absorption and scattering losses, the detected power is evaluated
by integration of the irradiation profile over the surface of the receiver. The ratio between
received power and total transmitted power, at the receiver plane, is usually known as geometric
attenuation. When considering Gaussian beams, for a circular receiver with radius rr, aligned
with the transmitter, the geometric attenuation has a closed-form solution,7

EQ-TARGET;temp:intralink-;e004;116;303αgeo ¼
R
S Iðρ;ϕ; z ¼ LÞdSR∞

0

R
2π
0 Iðρ;ϕ; z ¼ LÞρdϕ dρ

¼ 1 − exp

�
−

2r2r
r2LðLÞ

�
; (4)

where S is the aperture area of the receiver.
The most natural way to include the effect of radial misalignment in the model is to translate

axes over Eq. (3), written in rectangular coordinates. Thus, the peak of the translated Gaussian
beam is positioned at the point (xd, yd), while the center of the receiver is at the origin of the
coordinate system. Now, the power of the misaligned beam, detected at the receiver plane, can be
written in rectangular coordinates, as follows:

EQ-TARGET;temp:intralink-;e005;116;189Prxðz ¼ LÞ ¼
Z
S
A2
0

r2t
r2L

exp

�
−
2½ðx − xdÞ2 þ ðy − ydÞ2�

r2L

�
dS; (5)

where xd and yd are the misalignments on the x- and y-axes, respectively.
Rewriting back Eq. (5) to cylindrical coordinates, making xd ¼ d: cosðϕdÞ and yd ¼

d: sinðϕdÞ, where d is the absolute radial misalignment, and expanding the surface integral
as a double integral over the circular receiver area, the power detected by the receiver is

EQ-TARGET;temp:intralink-;e006;116;99Prx ¼ A2
0

r2t
r2L

exp

�
−2d2

r2L

�Z
rr

0

�
ρ · exp

�
−2ρ2

r2L

�Z
2π

0

exp

�
4d:ρ: cosðϕ − ϕdÞ

r2L

�
dϕ

	
dρ: (6)
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Particularly, without loss of generality, since the area of integration is circular, we can make
ϕd ¼ 0. Hence, the inner integral can be written as follows:

EQ-TARGET;temp:intralink-;e007;116;711

Z
π

0

exp

�
4d:ρ: cosðϕÞ

r2L

�
dϕþ

Z
2π

π
exp

�
4d:ρ: cosðϕÞ

r2L

�
dϕ: (7)

A substitution can be made in the last integral (ϕ 0 ¼ ϕþ π). Indeed, both integrals resemble
the modified Bessel function of the first kind and order α ¼ 0, in the integral form, given
by

EQ-TARGET;temp:intralink-;e008;116;629I0ðxÞ ¼
1

π

Z
π

0

exp½x: cosðϕÞ�dϕ: (8)

Thus, for x ¼ 4dρ
r2L
, as I0ðxÞ ¼ I0ð−xÞ, Eq. (6) can be rewritten as

EQ-TARGET;temp:intralink-;e009;116;569Prx ¼ A2
0

r2t
r2L

exp

�
−2d2

r2L

�
2π

Z
rR

0

�
ρ · exp

�
−2ρ2
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�
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�
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r2L

�	
dρ: (9)

The integral in ρ from Eq. (9) is directly related to the Rice distribution. It is convenient to rewrite
it as a difference of two improper integrals,

EQ-TARGET;temp:intralink-;e010;116;499

Z
rR

0

fðρÞdρ ¼
Z

∞

0

fðρÞdρ −
Z

∞

rR

fðρÞdρ: (10)

As presented in Ref. 13,

EQ-TARGET;temp:intralink-;e011;116;442

Z
∞

0

xα−1 expð−px2ÞI0ðcxÞdx ¼ 1

2
p

−α
2 · Γ

�
α

2

�
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�
α

2
; 1;

c2

4p

�
; (11)

where 1F1 is the confluent hypergeometric function and Γ is the gamma function.
When x ¼ ρ, α ¼ 2, p ¼ 2

r2L
, and c ¼ 4d

r2L
:

EQ-TARGET;temp:intralink-;e012;116;368

Z
∞

0
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2
·
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2
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�
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16d2

r4L
8
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�
: (12)

From the fact that 1F1ð1;1; zÞ ¼ expðzÞ and Γð1Þ ¼ 1, then Eq. (12) can be reduced to

EQ-TARGET;temp:intralink-;e013;116;302

Z
∞

0

�
ρ · exp

�
−2ρ2

r2L

�
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�
4dρ
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4
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: (13)

From the work of Ref. 14, we know that

EQ-TARGET;temp:intralink-;e014;116;244

Z
∞

b
xm · exp

�
−
p2x2

2

�
· Im−1ðaxÞdx ¼ 1

a
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a
p2

�
m−1

· exp
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a2

2p2
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· Qm
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a
p
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�
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where Qm is the Marcum Q-function of order m, defined as14

EQ-TARGET;temp:intralink-;e015;116;187Qmða; bÞ ¼
Z

∞

b
x

�
x
a

�
m−1

· exp

�
−
x2 þ a2

2

�
· Im−1ðaxÞdx; m ≥ 1: (15)

When m ¼ 1, p ¼ 2
r2L
, a ¼ 4d

r2L
, and b ¼ rr, Eq. (14) can be written as

EQ-TARGET;temp:intralink-;e016;116;124

Z
∞

rr

�
ρ · exp

�
−2ρ2

r2L

�
· I0

�
4dρ
r2L

��
dρ ¼ r2L

4
· exp

�
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�
· Q1

�
2d
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;
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�
: (16)
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Now, using Eqs. (13)–(16), Eq. (9) can be rewritten as

EQ-TARGET;temp:intralink-;e017;116;723Prx ¼ A2
0

r2t
r2L

exp

�
−2d2

r2L

�
· 2π

�
r2L
4

exp

�
2d2

r2L

�
−
r2L
4

exp

�
2d2

r2L

�
Q1

�
2d
rL

;
2rr
rL

��
; (17)

which leads to

EQ-TARGET;temp:intralink-;e018;116;668Prx ¼ A2
0 ·

πr2t
2

�
1 −Q1

�
2d
rL

;
2rr
rL

��
: (18)

When losses by absorption and atmospheric scattering are not considered, the geometric and
misaligment attenuation are defined by α ¼ Prx∕Ptx, where Ptx is the total transmitted power of
beam. The term outside the brackets in Eq. (18) is equal to the total transmitted power, as it was
obtained in Eq. (13) by integrating the irradiance over an infinite plane z ¼ L, in cylindrical
coordinates. Consequently, the geometric attenuation and radial misalignment attenuation are

EQ-TARGET;temp:intralink-;e019;116;565α ¼
�
1 −Q1

�
2d
rL

;
2rr
rL

��
: (19)

Note that Eq. (19) has the same form of the Rician cumulative distribution function of rr with
shape parameter K ¼ 2d2∕r2L and scale parameter Ω ¼ d2 þ r2L∕2.

2.3 Other Considerations

Using Eq. (15), for d ¼ 0 and m ¼ 1, Eq. (19) becomes equal to Eq. (4), as

EQ-TARGET;temp:intralink-;e020;116;454Q1

�
0;
2rr
rL

�
¼

Z
∞

2rr
rL

x exp

�
−
x2

2

�
dx ¼ exp

�
−
2r2r
r2L

�
: (20)

Hence, Eq. (19) is a general solution for Eq. (4) when considering misalignment. When only the
misalignment attenuation is considered, its expression is as follows:

EQ-TARGET;temp:intralink-;e021;116;385αmiss ¼
1 −Q1

�
2d
rL
; 2rrrL

�

1 − exp
�
− 2r2r

r2L

� : (21)

The Marcum’s Q-function is widely used to solve problems of radar detection, statistics, and
probability theory. Although its formulation involves Bessel functions and improper integral,
there are already consolidated algorithms capable of solving it with exceptional performance.15,16

Thus, the direct use of Eq. (18) as a solution for Eq. (5) brings a performance gain in simulations
of optical links with misalignment, especially in moving systems, where it is necessary to recal-
culate the integral in each iteration.

Equation (18) can also be used when there is a small angular misalignment, also known as
tilt, between transmitter and receiver. To consider radial and angular misalignment in both
directions (x and y), the received power can be calculated substituting d in Eq. (19) by

EQ-TARGET;temp:intralink-;e022;116;222d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xc þ L · tanðγyÞ�2 þ ½yc þ L · tanðγxÞ�2

q
; (22)

where γy is the angle for a rotation on the y-axis and γx is the angle for a rotation on the x-axis.

3 Proof of Concept, Comparisons, and Discussion

To demonstrate the efficiency of the analytical solution in modeling the optical links with
misalignment, two approaches have been proposed. First, as a proof of concept, an experiment
was conducted to demonstrate that the attenuation due to misalignment is well modeled by
the Gaussian beam model. The limitations of the simplified uniform model were also verified.
In the sequence, three numerical simulations were carried out, to compare this analytical expres-
sion with other solutions, in terms of precision and execution time.
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3.1 Experimental Proof of Concept

For the execution of this proof of concept, a laser source operating at 980 nm was positioned at
the focal point of an OWC scope. This beam was transmitted over 2.82 m and captured by a
similar scope, but with a phototransistor positioned at the focal point. Translational movements
were performed, using a micrometer at the transmitter. Finally, standardized measurements were
performed using an analog-to-digital converter on the voltage drop over a trimpot in series with
a phototransistor emitter.

To characterize the source adequately, the beam pattern was measured at the receiver. The
observed profile was circular and Gaussian, with a well-defined radius. The parameters used in
this experiment are provided in Table 1.

Figure 3 shows the comparisons between the experimental results and the theoretical models.
Figure 3(a) presents the attenuation curves as a function of radial misalignment for the exper-
imental results, the theoretical model for Gaussian beam, and the simplified uniform model.
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Fig. 3 Experimental and theoretical model for Gaussian beam misalignment. (a) Experimental
and theoretical model for geometric and misalignment attenuation. (b) Absolute attenuation error.

Table 1 Parameters of the experimental OWC system.

Parameter Description Value

r r Receiver radius 2.1 cm

r L Beam radius 1.65 cm

L Link range 2.82 m
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It can be seen in Fig. 3(b) that, for misalignments smaller than the radius of the lens, both models
present errors, in relation to the experiment, smaller than 1 dB. However, as the radial shift
increases, causing a considerable decrease in the signal-to-noise ratio, the errors increase for
both models. It should be noted that the uniform simplified model is not suitable for misalign-
ment greater than rr þ rL.

3.2 Numerical Simulations

As presented in Sec. 2, the proposed analytical solution involves calculating the Marcum
Q-function. Currently, there are a few highly optimized algorithms capable of performing these
calculations more efficiently than direct numerical integration.16 In our work, the proposed ana-
lytical expression was calculated using themarcumq function, based on the algorithm presented
in Ref. 15, present in MATLAB R2019b software. This algorithm has exceptional performance
with quite precise results, as shall be noted later.

To demonstrate the precision of the closed-form expression presented in this paper, some
comparisons were carried out. The analytical solution in Eq. (19) was compared with a purely
numerical integration solution and with the power series solution, proposed in Ref. 9. The results
for the uniform beam were also observed, as this model is still commonly used. Unless otherwise
stated, all simulation results presented in this section considered the link parameters presented in
Table 2, which are very close to commercial equipment currently available.

The numerical integration on Eq. (5) was performed through the integral2 function, which is
based on the algorithm named TwoD, also present in MATLAB.17 This function allows an
absolute and relative error tolerance adjustment and was chosen as our reference, considering
maximum error tolerance close to our computational limit, that is, both adjusted for the smallest
positive normalized floating-point number (accessed by the command realmin). The power
series solution was implemented directly and is subject to truncation errors according to the
number of terms used.

In Fig. 4, the attenuation was calculated as a function of the radial misalignment between
transceivers. Figure 4(a) shows our proposed solution and the other three previously mentioned
solutions. The absolute errors between the reference and other Gaussian solutions are presented
in Fig. 4(b).

In Fig. 4(a), it can be noticed that the simplified uniform model may not be accurate enough
in some situations, in accordance with the results of Ref. 12, requiring the use of the Gaussian
irradiance profile. It is also noticed that there is no visible error in calculating the Gaussian beam
using numerical methods (reference), the analytical method, or by the power series solution
(calculated for 300 terms). In fact, as shown in Fig. 4(b), the error is quite low, on the order
of 10−10 dB for highly displaced links, which is comparable to the tolerance region for most
numerical calculations.

As a second comparison, the attenuation was calculated for a case of 40 cm of misalignment
between the transceivers, but for different values of receiver radius. Again, all four solutions are
presented in Fig. 5, along with the absolute errors between our reference and the other two
Gaussian solutions.

Table 2 Parameters of the simulated OWC system.

Parameter Description Value

r t Transmitter radius 2.5 cm

r r Receiver radius 10 cm

θ Divergence angle 1 mrad

r L Beam radius 52.5 cm

L Link range 1000 m
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It is noticed in Fig. 5(a) that the uniform simplified model leads to errors up to 3 dB for this
particular case. Again, Fig. 5(b) shows a good proximity between the numerical solution and
the analytical or series solutions.

Finally, efficiency tests were carried to compare the presented methods. Thus, all solutions
were simulated for a link with misalignment ranging from 0 to 1 m. The analyzed criteria
were the average time of execution and the root-mean-square error (RMSE) in comparison
to the reference. The execution time was measured using the timeit command, also present
in MATLAB. This command measures the time required to run a function, but in a robust
way, as it calls the function several times, returning the average between the measurements.
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Fig. 5 (a) Attenuation for different receiver sizes. (b) Absolute attenuation error.
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Fig. 4 (a) Attenuation by misalignment of tranceptors in dB. (b) Absolute attenuation error.
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All simulations were performed in MATLAB R2019b software, using Windows 10 as the oper-
ating system, on a machine with an Intel Core i7-7700HQ CPU and 16 GB RAM.

Table 3 presents the main results of these simulations. It is possible to check the RMSE and
the average execution time for each technique. The first technique is the reference itself, which
has a relatively high execution time for maximum precision. The second is the same numerical
solution, but using the default setting for the integral2 function in MATLAB, which uses 10−10

and 10−6 as absolute and relative error tolerances, respectively. The series solution was truncated
at different terms, to show its compromise between precision and time. The last line of the table
has our proposed analytical solution, calculated using the marcumq function.

With these results, it is possible to observe the improvement in performance brought by the
analytical solution for problems of misalignment of Gaussian beams. The series solution took
a long time and did not achieve the same precision, even using 300 terms. The numerical inte-
gration solution, used as a reference, would also present numeric errors when modeling the real
phenomenon, and it is about 263 times slower than the proposed solution. On the other hand,
when trying to achieve the same computational time, as the implemented Marcum Q-function,
the RMSE becomes too high.

4 Summary and Conclusions

In this work, we present the mathematical deduction of an analytical solution to the problem
of calculating the attenuation by misalignment of Gaussian beams, which has a direct application
in OWC systems. Although the presented solution involves the calculation of the Marcum
Q-function, we demonstrated through simulations that the current algorithm allows a consid-
erable performance gain in relation to other solutions, without losing precision. It is also dem-
onstrated, through a small experiment, that the analytical solution presented is quite satisfactory
for the modeling of an OWC system.

In conclusion, this solution proved to be more efficient than the calculation methods used
so far, offering a more accurate and fast implementation option than others. As said before, the
Marcum Q-function is widely used in problems of radar detection, statistics, probability theory,
or whenever a shifted circular Gaussian function must be integrated. Given its simplicity and
generality, we believe it should also become a reference solution in the field of optics.
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