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BUCKLING ANALYSIS OF STIFFENED COMPOSITE

PANELS WITH CUTOUTS USING THE DISCRETE

RITZ METHOD

Lucas Garcia de Sampaio Lobianco

Thesis Committee Composition:

Prof. Dr. Mariano Andrés Arbelo President - ITA
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cionarem a oportunidade de aprimorar minhas competências técnicas.



“Success is the sum of small efforts,
repeated day in and day out.”

— Robert Collier



Resumo

A idealização da seção cŕıtica de um componente estrutural de uma aeronave é uma abor-

dagem estratégica na engenharia aeroespacial, equilibrando a necessidade de análise de-

talhada com as praticidades de projeto e a melhoria do desempenho numérico do modelo.

Assim, é posśıvel concentrar esforços nos aspectos mais cruciais do projeto da aeronave,

garantindo a segurança, o desempenho e a eficiência do produto final. Nesse contexto, este

trabalho apresenta o desenvolvimento de um modelo semianaĺıtico utilizando o software

Matlab® e empregando o Método de Ritz Discreto e o prinćıpio da energia potencial

total estacionária para conduzir análises de pré-flambagem e determinar a carga cŕıtica

de flambagem de placas com recortes circulares e reforçadores. Uma metodologia é pro-

posta para minimizar o esforço computacional requerido pelo modelo. Além disso, com o

uso de polinômios hierárquicos, pode-se simular diversas condições de contorno de borda,

com a realização de apenas um set de integrações. O modelo desenvolvido é validado

através de comparações com a literatura existente, análise de elementos finitos utilizando

o software Abaqus® e testes experimentais envolvendo a flambagem de painéis de um es-

tabilizador horizontal de uma aeronave sob a condição de carregamento de cisalhamento

puro, utilizando-se uma configuração de teste do tipo picture frame, conforme previsto

em (SINGER et al., 1998). Os resultados numéricos e experimentais demonstram exce-

lente concordância, indicando a robustez e precisão do modelo. A pesquisa destaca a

eficiência do método proposto na redução do custo computacional, mantendo alta pre-

cisão, tornando-o uma ferramenta valiosa para analisar o comportamento de flambagem

em aplicações de engenharia aeroespacial, naval, mecânica, dentre outras. Os estudos aqui

apresentados sugerem que a combinação de polinômios hierárquicos e integração numérica

via quadratura de Gauss-Legendre oferece vantagens significativas em termos de eficiência

computacional e precisão. Apesar de pequenas discrepâncias observadas nas correlações

com resultados experimentais, principalmente devido a variações nas condições de fixação

e processos de manufatura do material, o estudo fornece uma estrutura abrangente para

futuras pesquisas e implementação prática.



Abstract

The idealization of the critical section of a structural component of an aircraft is a strate-

gic approach in aerospace engineering, balancing the need for detailed analysis, addressing

particular issues related to the engineering design and improvement on numerical perfor-

mance of the model. Thus, it is possible to focus efforts on the most crucial aspects of

aircraft design, ensuring safety, performance, and efficiency in the final product. In this

context, this work presents the development of a semi-analytical model using Matlab®

software and employing the Discrete Ritz Method and the principle of stationary total

potential energy to conduct prebuckling analyses and determine the critical buckling load

of plates with circular cutouts and stiffeners. A methodology is proposed to minimize

the computational effort required by the model. Additionally, with the use of hierarchi-

cal polynomials, various edge boundary conditions can be simulated with only one set of

integrations. The developed model is validated through comparisons with existing liter-

ature, finite element analysis using Abaqus® software, and experimental tests involving

the buckling of panels of an aircraft’s horizontal stabilizer under pure shear loading condi-

tions, using a picture frame testing jig, as outlined in (SINGER et al., 1998). The numerical

and experimental results demonstrate excellent agreement, indicating the robustness and

accuracy of the model. The research highlights the efficiency of the proposed method in

reducing computational cost while maintaining high precision, making it a valuable tool

for analyzing buckling behavior in aerospace, naval, mechanical engineering applications,

among others. The findings presented herein suggest that the combination of hierarchical

polynomials and numerical integration via Gauss-Legendre quadrature offers significant

advantages in terms of computational efficiency and precision. Despite minor discrepan-

cies observed between experimental and numerical correlations, mainly due to variations

in clamping conditions and material manufacturing processes, the study provides a com-

prehensive framework for future research and practical implementation.



List of Figures

FIGURE 1.1 – Representative figure of the parts of a horizontal stabilizer, including

a rib and spar configuration. Source: (HALEY, 2012) . . . . . . . . . 25

FIGURE 1.2 – Representation of the idealization of a rib contained in a horizontal

stabilizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

FIGURE 1.3 – Representative figure illustrating the equivalence between pure shear

loading and diagonal tensile loading configurations. . . . . . . . . . 26

FIGURE 3.1 – Representative figure of the projection of segment AB, at a free edge,

on the x−z plane in the initial configuration and in the current con-

figuration, after the plate deforms under small rotations and under

the hypothesis of Kirchhoff or Reissner-Mindlin. Source: Adapted

from (LUCENA NETO, 2021). . . . . . . . . . . . . . . . . . . . . . . 35

FIGURE 3.2 – Representative figure of a lamina with unidirectional fibers and prin-

cipal material coordinate system x1x2x3. Source: Adapted from

(LUCENA NETO, 2021). . . . . . . . . . . . . . . . . . . . . . . . . . 37

FIGURE 3.3 – Forces and moments per unit width in the mid-plane of a laminate. 39

FIGURE 3.4 – Representative figure of the geometric arrangement of the plies of

an NL-layered laminate. . . . . . . . . . . . . . . . . . . . . . . . . . 40

FIGURE 3.5 – Representative figure of the Discrete Ritz Method (DRM), pro-

posed by (JING; DUAN, 2023), utilizing Gauss points to discretize

any shaped plate with arbitrary cutouts. Green points indicate zero

stiffness and thickness to simulate cutouts, while gray points repre-

sent the plate domain. Source: (JING; DUAN, 2023). . . . . . . . . . 43

FIGURE 3.6 – Integration points along plate with num_intξ = num_intη = 50. . . . 48

FIGURE 3.7 – Integration points for plate with a circular cutout with num_intξ =

num_intη = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

FIGURE 3.8 – Integration points along the stiffeners for num_intη = 50. . . . . . . 50



LIST OF FIGURES x

FIGURE 3.9 – Plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

FIGURE 3.10 –Plate with circular cutout. . . . . . . . . . . . . . . . . . . . . . . . 53

FIGURE 3.11 –Plate with circular cutout and two stiffeners parallel to the y direction. 54

FIGURE 3.12 –Plate with circular cutout and two stiffeners parallel to the y direc-

tion (xz view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

FIGURE 3.13 –Diagram of the implementation used in prebuckling analysis. . . . . 60

FIGURE 3.14 –Plate with circular cutout and two stiffeners parallel to the y direction. 63

FIGURE 3.15 –Representative figure of the flexural-torsional buckling deformation

acting on the stiffeners, modeled as beam elements. Source: Adapted

from (YOO; LEE, 2011). . . . . . . . . . . . . . . . . . . . . . . . . . 64

FIGURE 3.16 –Diagram of the implementation used in buckling analysis. . . . . . . 68

FIGURE 4.1 – Representative diagram of the numerical improvement on the simu-

lation performance of the model using hierarchical polynomials. . . . 76

FIGURE 5.1 – Representative figure of the orientation adopted to characterize the

boundary conditions 1234, represented in a counterclockwise direction. 77

FIGURE 5.2 – Representative figure of the “jet” color scale used to characterize the

normalized absolute out-of-plane displacements. . . . . . . . . . . . 78

FIGURE 5.3 – Normalized absolute out-of-plane displacements for the 1◦ mode,

SSSS boundary condition, under pure shear loading, with a stacking

configuration of [0,0,0]. (a) (NARITA, 1990). (b) FEM. (c) Present. . 81

FIGURE 5.4 – Normalized absolute out-of-plane displacements for the 1◦ mode,

SSSS boundary condition, under pure shear loading, with a stacking

configuration of [15,-15,15]. (a) (NARITA, 1990). (b) FEM. (c) Present. 81

FIGURE 5.5 – Normalized absolute out-of-plane displacements for the 1◦ mode,

SSSS boundary condition, under pure shear loading, with a stacking

configuration of [30,-30,30]. (a) (NARITA, 1990). (b) FEM. (c) Present. 81

FIGURE 5.6 – Normalized absolute out-of-plane displacements for the 1◦ mode,

SSSS boundary condition, under pure shear loading, with a stacking

configuration of [45,-45,45]. (a) (NARITA, 1990). (b) FEM. (c) Present. 82

FIGURE 5.7 – Representative figure of the N̄x stress field under uniaxial loading

Nx, R/a = 0.3: (a) (JING; DUAN, 2023). (b) FEM. (c) Present.

These values do not have specific units of measurement but are in-

stead reference values relative to Nx. . . . . . . . . . . . . . . . . . 83



LIST OF FIGURES xi

FIGURE 5.8 – Representative figure of the N̄y stress field under uniaxial loadingNx,

R/a = 0.3: (a) (JING; DUAN, 2023). (b) FEM. (c) Present. These

values do not have specific units of measurement but are instead

reference values relative to Nx. . . . . . . . . . . . . . . . . . . . . . 83

FIGURE 5.9 – Representative figure of the N̄xy stress field under uniaxial loading

Nx, R/a = 0.3: (a) (JING; DUAN, 2023). (b) FEM. (c) Present.

These values do not have specific units of measurement but are in-

stead reference values relative to Nx. . . . . . . . . . . . . . . . . . 84

FIGURE 5.10 –Normalized absolute out-of-plane displacements for the uniaxial load-

ing Nx, SSSS, R/a = 0.3. (a) 1o mode (Present). (b) 1o mode

(FEM).(c) 2o mode (Present). (d) 2o mode (FEM). (e) 3o mode

(Present). (f) 3o mode (FEM). (g) 4o mode (Present). (h) 4o mode

(FEM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

FIGURE 5.11 –Normalized absolute out-of-plane displacements for the uniaxial load-

ing Nx, CCCC, R/a = 0.3. (a) 1o mode (Present). (b) 1o mode

(FEM).(c) 2o mode (Present). (d) 2o mode (FEM). (e) 3o mode

(Present). (f) 3o mode (FEM). (g) 4o mode (Present). (h) 4o mode

(FEM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

FIGURE 5.12 –Normalized absolute out-of-plane displacements for the biaxial load-

ing, CFCF, R/a = 0.3. (a) 1o mode (Present). (b) 1o mode

(FEM).(c) 2o mode (Present). (d) 2o mode (FEM). (e) 3o mode

(Present). (f) 3o mode (FEM). (g) 4o mode (Present). (h) 4o mode

(FEM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

FIGURE 5.13 –Normalized absolute out-of-plane displacements for the pure shear

loading, CCCC, R/a = 0.3. (a) 1o mode (Present). (b) 1o mode

(FEM).(c) 2o mode (Present). (d) 2o mode (FEM). (e) 3o mode

(Present). (f) 3o mode (FEM). (g) 4o mode (Present). (h) 4o mode

(FEM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

FIGURE 6.1 – Representative figure of the three experiments conducted in the

structural laboratory of ITA. (a) Plate. (b) Plate with a circular

cutout. (c) Plate with a circular cutout and two stiffeners. . . . . . 89

FIGURE 6.2 – Photographs taken from the three experiments conducted in the

structural laboratory of ITA. (a) Plate. (b) Plate with a circular

cutout. (c) Plate with a circular cutout and two stiffeners. . . . . . 90



LIST OF FIGURES xii

FIGURE 6.3 – Representative figure of the geometric characteristics of the three

experiments conducted in the structural laboratory of ITA. (a) Plate.

(b) Plate with a circular cutout. (c) Plate with a circular cutout and

two stiffeners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

FIGURE 6.4 – Representative figure of the actual geometric characteristics of the

stiffeners on the left, alongside their idealization used in the imple-

mented model on the right, as well as the geometric characteristics

of the stiffened panel with a circular cutout. . . . . . . . . . . . . . 91

FIGURE 6.5 – Representative figure of the quasi-isotropic stacking sequence con-

figuration of the plate and the stiffeners. . . . . . . . . . . . . . . . 92

FIGURE 6.6 – Figure obtained from a photograph taken in the structural labora-

tory of ITA, showcasing the apparatus used with a 3D Digital Image

Correlation setup by Dantec Dynamics during the tests. . . . . . . . 93

FIGURE 6.7 – Figure obtained from a photograph captured in the structural labo-

ratory of ITA, showcasing the setup apparatus, including the assem-

bly of the panel and picture frame on the testing apparatus during

the tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

FIGURE 6.8 – Representative figure showing the positioning of strain gauges on

both sides of the plate during all testing cases. . . . . . . . . . . . . 94

FIGURE 6.9 – Representative figure showing the positioning of strain gauges on

the plate during all testing cases. . . . . . . . . . . . . . . . . . . . 94

FIGURE 6.10 –Representative figure of the deformations obtained through strain

gauges when subjected to a load in the experiment involving the plate. 95

FIGURE 6.11 –Representative figure of the deformations obtained through strain

gauges when subjected to a load in the experiment involving the

plate with a circular cutout. . . . . . . . . . . . . . . . . . . . . . . 95

FIGURE 6.12 –Representative figure of the deformations obtained through strain

gauges when subjected to a load in the experiment involving the

stiffened plate with a circular cutout. . . . . . . . . . . . . . . . . . 96

FIGURE 6.13 –Figure obtained through the calculation of membrane deformation

and bending curvature from the deformation data derived from the

strain gauges in the experiment involving the plate. . . . . . . . . . 96



LIST OF FIGURES xiii

FIGURE 6.14 –Figure obtained through the calculation of membrane deformation

and bending curvature from the deformation data derived from the

strain gauges in the experiment involving the plate with a circular

cutout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

FIGURE 6.15 –Figure obtained through the calculation of membrane deformation

and bending curvature from the deformation data derived from the

strain gauges, in the experiment involving the stiffened plate with a

circular cutout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

FIGURE 6.16 –Representative figure of the Inflection Point method. Source: (SINGER

et al., 1998). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

FIGURE 6.17 –Illustration of the inflection point method applied to bending cur-

vature, concerning strain gauges SG03/SG04, in the experiment in-

volving the plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

FIGURE 6.18 –Illustration of the inflection point method applied to bending curva-

ture, concerning strain gauges SG03/SG04 and SG07/SG08, in the

experiment involving the plate with a circular cutout. . . . . . . . . 99

FIGURE 6.19 –Illustration of the inflection point method applied to bending curva-

ture, concerning strain gauges SG03/SG04 and SG07/SG08, in the

experiment involving the stiffened plate with a circular cutout. . . . 100

FIGURE 7.1 – Representative figure of the convergence analysis for the plate, using

the obtained finite element model values as a reference. . . . . . . . 102

FIGURE 7.2 – Normalized vertical displacement along the diagonal of the plate. . . 104

FIGURE 7.3 – Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. First mode (plate). . . . . . . . 105

FIGURE 7.4 – Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. Second mode (plate). . . . . . 105

FIGURE 7.5 – Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. Third mode (plate). . . . . . . 106

FIGURE 7.6 – Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. Fourth mode (plate). . . . . . . 106

FIGURE 7.7 – Representative figure of the convergence analysis for the plate with

a cutout, using the obtained finite element model values as a reference.108

FIGURE 7.8 – Normalized vertical displacement along the diagonal of the plate

with a cutout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



LIST OF FIGURES xiv

FIGURE 7.9 – Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. First mode (plate with cutout). 110

FIGURE 7.10 –Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. Second mode (plate with cutout).111

FIGURE 7.11 –Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. Third mode (plate with cutout).111

FIGURE 7.12 –Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. Fourth mode (plate with cutout).112

FIGURE 7.13 –Representative figure of the error analysis for the stiffened plate with

cutout, using the obtained finite element model values as a reference. 113

FIGURE 7.14 –Normalized vertical displacement along the diagonal of the stiffened

plate with cutout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

FIGURE 7.15 –Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. First mode (stiffened plate

with cutout). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

FIGURE 7.16 –Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. Second mode (stiffened plate

with cutout). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

FIGURE 7.17 –Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. Third mode (stiffened plate

with cutout). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

FIGURE 7.18 –Normalized absolute out-of-plane displacements, CCCC boundary

condition, under pure shear loading. Fourth mode (stiffened plate

with cutout). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

FIGURE A.1 –Representative figure of the geometric parameters related to the stiff-

eners in the implemented model. . . . . . . . . . . . . . . . . . . . . 125

FIGURE A.2 –Representative figure showing the change in reference axes for the

quasi-isotropic stacking sequence configuration of the stiffeners. . . . 127



List of Tables

TABLE 3.1 – Procedure adopted to satisfy the boundary conditions for a given

problem using the ξ variable. . . . . . . . . . . . . . . . . . . . . . . 44

TABLE 3.2 – Behavior of the first ten hierarchical polynomials for the ξ variable.

Adapted from (BARDELL, 1991). . . . . . . . . . . . . . . . . . . . . 46

TABLE 4.1 – Table showing the procedure adopted to obtain the CCCC solution.

The polynomials indicated with a value of zero will not be used in

the solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

TABLE 4.2 – Table containing the terms that will be excluded in the given exam-

ple, with I = J = 6 terms and I ′ = J ′ = 4. . . . . . . . . . . . . . . 71

TABLE 4.3 – Columns of f(ξ, η) where the first four hierarchical polynomials ap-

pear for a total of I ′ terms in ξ and J ′ terms in η. . . . . . . . . . . 72

TABLE 4.4 – Removal sets for w0, φu and φv at the plate’s edges. . . . . . . . . . 73

TABLE 4.5 – Table containing all terms for I ′ = J ′ = 6. . . . . . . . . . . . . . . . 74

TABLE 5.1 – Table containing the layer material properties for the composite

plate studied, as provided in (NARITA, 1990). . . . . . . . . . . . . . 78

TABLE 5.2 – Table showing the procedure adopted to obtain the SSSS solution.

The polynomials indicated with a value of zero will not be used in

the solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

TABLE 5.3 – Table containing the simulated geometric conditions used to verify

the mathematical modeling with (NARITA, 1990). . . . . . . . . . . 79



LIST OF TABLES xvi

TABLE 5.4 – Normalized critical buckling load results λcr = Nxya
2/D0 across four

stacking configurations, including comparative analysis between the

methodology utilized in this study, findings documented in (NARITA,

1990), and through Finite Element Method (FEM) analysis con-

ducted with Abaqus®. The error calculated with respect to the re-

sults obtained through FEM is given by: Error = (λcr−λFEM)/λFEM . 80

TABLE 5.5 – Material properties of the isotropic square plates with a circular

cutout as specified in (JING; DUAN, 2023). . . . . . . . . . . . . . . . 82

TABLE 5.6 – Normalized critical buckling load results λcr = Ncra
2/(D1π

2) for

the plate under uniaxial, biaxial, and pure shear loading. The error

calculated with respect to the results obtained through FEM is given

by: Error = (λcr − λFEM)/λFEM. . . . . . . . . . . . . . . . . . . . . 84

TABLE 5.7 – Normalized critical buckling load results λcr = Ncra
2/(D1π

2) for a

SSSS plate under uniaxial loading Nx with R/a = 0.3. The error

calculated with respect to the results obtained through FEM is given

by: Error = (λcr − λFEM)/λFEM. . . . . . . . . . . . . . . . . . . . . 85

TABLE 5.8 – Normalized critical buckling load results λcr = Ncra
2/(D1π

2) for a

CCCC plate under uniaxial loading Nx with R/a = 0.3. The error

calculated with respect to the results obtained through FEM is given

by: Error = (λcr − λFEM)/λFEM. . . . . . . . . . . . . . . . . . . . . 85

TABLE 5.9 – Normalized critical buckling load results λcr = Ncra
2/(D1π

2) for

a CFCF plate under biaxial loading with R/a = 0.3. The error

calculated with respect to the results obtained through FEM is given

by: Error = (λcr − λFEM)/λFEM. . . . . . . . . . . . . . . . . . . . . 85

TABLE 5.10 – Normalized critical buckling load results λcr = Ncra
2/(D1π

2) for a

CCCC plate under pure shear loading with R/a = 0.3. The error

calculated with respect to the results obtained through FEM is given

by: Error = (λcr − λFEM)/λFEM. . . . . . . . . . . . . . . . . . . . . 85

TABLE 6.1 – Material properties of the plate and stiffeners utilized in the tests. . 91

TABLE 6.2 – Table containing the geometric characteristics of the panels modeled

in the three experiments, along with the stacking configuration of

the plate and stiffeners. . . . . . . . . . . . . . . . . . . . . . . . . . 91

TABLE 6.3 – Results of critical buckling, obtained from the conducted experiments.100



LIST OF TABLES xvii

TABLE 7.1 – Table showing the procedure adopted to obtain the CCCC solution.

The polynomials indicated with a value of zero will not be used in

the solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

TABLE 7.2 – Buckling loads for the first four modes, in kN/m for the plate as the

number of Ritz terms increases. . . . . . . . . . . . . . . . . . . . . 102

TABLE 7.3 – Table containing the convergence analysis of the Finite Element

Model (FEM), implemented in the Abaqus® software, showing the

buckling loads for the first four modes, in kN/m, for the plate con-

figuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

TABLE 7.4 – Results for the present model with I = J = 30 terms and 292× 292

Gauss points, and comparisons between the implemented model,

FEM and experimental test of the first four buckling modes for the

plate. The error with respect to FEM is calculated as ErrorFEM =

(λcr − λFEM)/λFEM . The error with respect to experimental result

is calculated as Errorexp = (λcr − λexp)/λexp. . . . . . . . . . . . . . 104

TABLE 7.5 – Loads for the first four modes, in kN/m for the plate with cutout as

the number of Ritz terms increases. . . . . . . . . . . . . . . . . . . 107

TABLE 7.6 – Table containing the convergence analysis of the Finite Element

Model (FEM), implemented in the Abaqus© software, showing the

buckling loads for the first four modes, in kN/m, for the plate with

a circular cutout configuration. . . . . . . . . . . . . . . . . . . . . . 109

TABLE 7.7 – Results for the present model with I = J = 30 terms and 292× 292

Gauss points, and comparisons between the implemented model,

FEM and experimental test of the first four buckling modes for the

plate with a circular cutout. The error with respect to FEM is cal-

culated as ErrorFEM = (λcr − λFEM)/λFEM . The error with respect

to experimental result is calculated as Errorexp = (λcr − λexp)/λexp. . 110

TABLE 7.8 – Loads for the first four modes, in kN/m for the stiffened plate with

cutout as the number of Ritz terms increases. . . . . . . . . . . . . . 112

TABLE 7.9 – Table containing the convergence analysis of the Finite Element

Model (FEM), implemented in the Abaqus© software, showing the

buckling loads for the first four modes, in kN/m, for the stiffened

plate with a circular cutout. . . . . . . . . . . . . . . . . . . . . . . 114



LIST OF TABLES xviii

TABLE 7.10 – Results for the present model with I = J = 30 terms and 292× 292

Gauss points, and comparisons between the implemented model,

FEM and experimental test of the first four buckling modes for the

stiffened plate with circular cutout. The error with respect to FEM

is calculated as ErrorFEM = (λcr − λFEM)/λFEM . The error with

respect to experimental result is calculated as Errorexp = (λcr −
λexp)/λexp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



List of Abbreviations and Acronyms

BC Bending Curvature

CLT Classical Lamination Theory

DIC Digital Image Correlation

DRM Discrete Ritz Method

ITA Instituto Tecnológico de Aeronáutica
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1 Introduction

In engineering design, laminated composite materials have become indispensable, par-

ticularly in applications where a balance between lightweight and structural strength is

crucial, such as in the aerospace and marine industries. These composites are highly val-

ued for their exceptional specific strength and stiffness, which surpass traditional metallic

materials, as documented in the literature (WANG; QIAO, 2021).

To ensure the stability of these composite structures, various modeling techniques

have been developed and applied, including numerical, semi-analytical, and analytical

solutions. Among these, semi-analytical methods, particularly the Ritz method, have

been prominently utilized for buckling analysis due to their efficiency and effectiveness

(DHURIA et al., 2024). The Ritz method, developed over a century ago, is a fundamental

tool in solid mechanics. It approximates the displacement function through a series of

trial functions that satisfy essential boundary conditions (MORENO-GARCÍA et al., 2017).

In buckling analysis, this method is distinguished by its ability to select displacement

functions that accurately reflect specific edge conditions. However, its application has

been somewhat limited to a select range of scenarios due to the unique characteristics of

these displacement functions (NI et al., 2005).

The complexities of structural design in aerospace, civil, marine, and mechanical en-

gineering require careful analysis of various factors, including natural frequencies, mode

shapes, stresses, moments, and especially critical buckling loads (KUMAR, 2018). To

enhance structural efficiency and buckling resistance, thin-walled composite plates of-

ten incorporate stiffening elements. These elements are crucial in addressing stability

challenges and are widely used in composite stiffened plates. Their design and stiffness

parameters significantly influence their buckling behavior, which can manifest in both

global and local modes. By strategically allowing the skin or stiffeners to buckle before

complete structural failure, engineers can design structures that redistribute stress and

maintain load-carrying capacity in the post-buckling phase, an approach extensively used

in optimizing lightweight aerospace structures for enhanced post-buckling load-carrying

capacity (STAMATELOS et al., 2011).

The influence of different shapes and sizes of cutouts on the buckling behavior of plates
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is also significant. Buckling analysis helps in understanding how various geometries affect

the critical buckling load and the mode shapes. This understanding is crucial for making

well-founded design decisions, ensuring that the cutouts do not significantly compromise

the plate’s load-carrying capacity.

Moreover, idealizations in aerospace engineering for performing buckling analysis are

motivated by several critical factors that enhance the design and optimization process.

Many structures are composed of numerous intricate components, making comprehensive

analysis challenging. Idealization mitigates this complexity, enabling engineers to focus on

critical sections that substantially influence the component’s performance. This approach

makes the analysis more manageable and comprehensible.

By enhancing our understanding of how stiffeners and cutouts influence structural

stability, this work supports the design of more efficient, lightweight, and robust struc-

tures. This has significant implications for improving the safety, performance, and cost-

effectiveness of engineering applications in aeronautics, naval, mechanical, and other fields.

Buckling analysis can be applied to aircraft wings, submarine control surfaces, ship

rudders, among others. An example of an application in the aeronautical field is the

evaluation of the dimensions of a stiffener to ensure it compensates for the inclusion of

a cutout in a rib of an aircraft’s horizontal stabilizer, as represented in Figure 1.1. This

analysis is crucial for maintaining structural integrity and performance and will also be

thoroughly evaluated throughout this study.

FIGURE 1.1 – Representative figure of the parts of a horizontal stabilizer, including a rib and spar
configuration. Source: (HALEY, 2012)

Furthermore, a rib of a horizontal stabilizer, for example, can be idealized by its critical

section in an aircraft, as shown in Figure 1.2.



CHAPTER 1. INTRODUCTION 26

FIGURE 1.2 – Representation of the idealization of a rib contained in a horizontal stabilizer.

Additionally, an experimental buckling analysis under pure shear conditions can be

performed using a picture frame testing jig, as illustrated in Figure 1.3. This technique

is validated by the equivalence of the force vector applied to the plate and has shown

satisfactory results by (SINGER et al., 1998) and (SILVA, 2021).

FIGURE 1.3 – Representative figure illustrating the equivalence between pure shear loading and diagonal
tensile loading configurations.

1.1 Objectives

In this context, the primary objectives of this research are:

• Semi-analytical model development:
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– To utilize the Discrete Ritz Method to conduct prebuckling analysis and deter-

mine the critical buckling load of a plate with a circular cutout and stiffeners

under various loading conditions. This explores the use of the total energy

potential principle and hierarchical polynomials, as well as computational in-

tegration techniques using the Gauss quadrature method.

– To assess the effectiveness of hierarchical polynomials as trial shape functions

for analyzing stiffened plates with cutouts, using the Discrete Ritz Method.

– To verify the implemented semi-analytical model by comparing it with existing

literature for plates without cutouts (NARITA, 1990) and for plates with circular

cutouts as described in (NIMA; GANESAN, 2021) and (JING; DUAN, 2023), as

well as with finite element analysis.

• Numerical improvement on the simulation performance of the model:

– To develop a methodology for applying hierarchical polynomials to minimize

the number of simulations required for various edge boundary conditions of a

plate.

– To maximize the use of limited computational resources by calculating critical

buckling for lower indices of hierarchical polynomials using the same number

of Gauss-Legendre quadrature points, eliminating the need for additional sets

of integration and facilitating reliable convergence studies.

– To improve computational efficiency by implementing methods that signifi-

cantly reduce computational time and effort through the use of hierarchical

polynomials and Gauss-Legendre quadrature for numerical integration.

• Semi-analytical model validation:

– To conduct experimental tests involving three idealized configurations of a rib

of a horizontal stabilizer: one considering only the plate, another with the plate

with a circular cutout, and another considering a stiffened plate with a cutout.

– To verify the adherence of the idealized model through the implementation of

the semi-analytical model and finite element analysis.

– To observe the change in behavior of the mode shapes after the inclusion of

the cutout and the stiffener.

– To verify if the buckling load of the stiffened panel with a cutout compensates

for the inclusion of the cutout in the plate in the experimental cases performed.
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1.2 Dissertation Layout

This dissertation is organized into eight chapters. Chapter 1 provides an introduction

and outlines the objectives of the research topic. Chapter 2 offers a literature review con-

cerning buckling studies in laminated panels, including plates, plates with cutouts, and

stiffened plates with cutouts. Chapter 3 outlines the development and formulation of the

semi-analytical model, employing the Discrete Ritz Method (DRM) and the First-Order

Shear Deformation Theory (FSDT). It also covers the use of hierarchical polynomials,

the Gauss-quadrature integration method, and the analysis of prebuckling and buckling.

Chapter 4 describes the numerical improvements on the simulation performance of the

model, including the simulation of various boundary conditions using a single set of inte-

grations and a methodology to address initially unsuccessful numerical integrations, along

with other enhancements. Chapter 5 presents the verification and convergence of the pro-

posed model for plates and plates with cutouts. Chapter 6 details the experimental setup

and procedures, including the experimental determination of critical buckling. Chapter

7 discusses the results obtained and provides a comprehensive analysis. Finally, Chap-

ter 8 concludes the dissertation with a summary of findings and suggestions for future

research.



2 Literature Review

2.1 Buckling Studies in Laminated Panels

In the field of laminated composite materials, the determination of the critical buckling

load is essential for ensuring structural stability under various loading conditions. Detailed

numerical results for the critical buckling loads of simply supported, rectangular laminated

composite plates under five loading scenarios, using the Ritz method with double sine

series displacement assumptions, are provided by (NARITA, 1990). Convergence studies

and contour plots of buckled mode shapes confirm the accuracy of these findings.

An examination of ten boundary conditions for plate analysis, including free edges and

point supports, demonstrating how frequency varies with the aspect ratio and Poisson’s

ratio, is presented by (BARDELL, 1991). The Hierarchical Finite Element Method (HFEM)

demonstrates precision across various plate aspect ratios and boundary conditions, proving

its versatility and robustness compared to other methods.

A method using hierarchical trigonometric functions for modeling plate bending at

medium frequencies was introduced by (BESLIN; NICOLAS, 1997). This approach efficiently

handles very high orders and offers better accuracy and convergence rates for predicting

bending modes and high-order natural flexural modes of rectangular plates with any

boundary conditions.

A comparison of the Generalized Differential Quadrature Rules (GDQR) with the

Ritz method for analyzing laminated composite plates was conducted by (DARVIZEH et

al., 2004). GDQR showed reliable and precise results, proving more computationally

efficient than the Ritz method.

A buckling analysis for rectangular laminated composite plates with arbitrary edge

supports under biaxial compression using Higher-Order Shear Deformation Theory was

detailed by (NI et al., 2005). This approach, integrated into the Ritz method, effectively

analyzes composite plates with diverse edge supports, yielding precise buckling loads and

modes.

Polynomial and trigonometric hierarchical sets for constructing Ritz bases to solve
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the linear buckling of anisotropic Kirchhoff plates were examined by (YSHII et al., 2018).

Both sets provided upper bounds on the buckling load, with the polynomial Ritz basis

proving more efficient and accurate for orthotropic and anisotropic plates compared to

the trigonometric set and Nastran models.

A buckling solution considering prebuckling stress field heterogeneities due to edge

constraints was developed by (NIMA; GANESAN, 2021). Using eigenvalue buckling analysis

based on a calculated prebuckling in-plane stress field, this method effectively examines

the impact of in-plane constraints and geometric configurations on the buckling behavior

of anisotropic laminate plates.

These studies highlight significant advancements and diverse methodologies in the

buckling analysis of laminated composite plates, emphasizing the importance of method-

ological accuracy, computational efficiency, and addressing complex boundary conditions

for optimal structural design and stability.

2.2 Buckling Studies in Laminated Panels with Cutouts

A new design concept for composite panels under compression, featuring panels with

two different concentric layups, was introduced by (KASSAPOGLOU, 2008). Using a Ritz-

based approach, this study models rectangular panels to determine buckling loads and

in-plane stresses, closely matching finite element models except in cases with significant

twisting–bending coupling. The method also applies to plates with rectangular cutouts

and terminated stiffeners.

The Ritz method with suitable admissible functions for accurately determining nondi-

mensional frequencies of thick, cracked rectangular plates was demonstrated by (HUANG et

al., 2011). These functions effectively model stress singularities and discontinuities around

cracks, with convergence studies confirming their efficiency.

A technique for modeling laminates with circular and elliptical holes, focusing on

post-buckling and nonlinear behaviors under uniaxial compressive load, was introduced

by (GHANNADPOUR; MEHRPARVAR, 2018). Using First-Order Shear Deformation Plate

Theory and von Kármán’s assumptions, the method approximates displacement fields with

the Ritz method and Chebyshev polynomials, validated against finite element analyses.

An analytical solution for stress distribution in finite elastic plates with circular or

square holes under biaxial partial loading was developed by (DEHGHANI, 2018). The

method maps circular holes in rectangular plates, using Airy stress functions and Muskhe-

lishvili’s complex variable method to derive stress factors, showing significant effects of

plate dimensions, hole size, and loading length on von Mises stress.
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A Semi-Energy Finite Strip Method (SE-FSM) for analyzing buckling in laminated

composites with a circular notch was presented by (SHOJAEE et al., 2019). Combining

the strengths of FEM and the Ritz method, SE-FSM showed high accuracy and effi-

ciency compared to the full-energy FSM and FEM in examining specimen thickness, hole

diameter, and stiffener thickness.

An investigation into the stress concentration effects at composite laminate openings

was conducted by (ZHANG et al., 2020), highlighting the effectiveness of local reinforcement

and curvilinear laying schemes in enhancing stiffness and load-bearing capacities.

The impact of in-plane constraints on composite panel buckling was investigated by

(NIMA; GANESAN, 2021). The study found that these constraints significantly affect crit-

ical buckling behavior, especially in laminates with shearing-stretching coupling. Oscil-

lations in stress resultants, influenced by the plate’s aspect ratio, were mitigated by in-

creasing terms in the Ritz method. This research aids in optimizing composite structures

by enhancing the understanding of in-plane constraints’ effects on buckling.

A semi-analytical tool using the Ritz method for analyzing Variable Angle Tow (VAT)

laminates with cutouts was developed by (JANSSENS, 2020), reducing computational costs

while accurately predicting behavior near cutouts, prebuckling stresses, and buckling

modes, validated against existing models and finite element solutions.

The Discrete Ritz Method (DRM) for buckling analysis of perforated plates with

various geometries was introduced by (JING; DUAN, 2023). Utilizing Legendre polynomials

for different boundary conditions and variable stiffness within a rectangular domain, the

DRM effectively simulates the shapes of plates and cutouts. Numerical examples for

isotropic and orthotropic materials demonstrate its effectiveness and stability, showing

good agreement with previous results.

2.3 Buckling Studies in Stiffened Laminated Panels

An analysis method for stiffened plate systems supported by steel girders, focusing

on ribbed and grid plate systems, was presented by (KUKRETI; CHERAGHI, 1993). Using

energy principles, the deflection function combines polynomial and trigonometric series,

with computed moments under static loading showing good agreement with finite element

results.

The local buckling behavior of isotropic and laminated symmetric composite blade-

stiffened plates under uniaxial compression was investigated by (STAMATELOS et al., 2011).

Using elastic edge supports modeled as springs, Classical Lamination Theory, pb-2 Ritz

displacement functions, and the Ritz approach, the study provides an accurate, low-cost
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analysis tool. Comparisons with non-linear finite element analysis confirm the method’s

accuracy for predicting critical buckling loads and post-buckling behavior.

A procedure for analyzing the vibration of stiffened panels with various openings and

edge constraints using the assumed mode method was presented by (CHO et al., 2014).

Validated against finite element results, this method accurately incorporates stiffeners

and openings, showing good agreement in natural frequencies and mode shapes.

A semi-analytical method to study the effects of skin-stiffener bonding flaws on the

vibration and buckling of T-stiffened composite panels was introduced by (CASTRO; DON-

ADON, 2017). Using hierarchical polynomial functions and a penalty-based approach, the

method accurately models debonding lengths, aligning well with finite element analyses.

The buckling analysis of stiffened composite panels with debonding defects was inves-

tigated by (SILVA, 2021), underlining the adaptability of the Ritz method. Validated by

finite element analyses and experimental tests, this model helps understand the impact of

defect size on panel stability, providing a valuable tool for damage-tolerant aerostructure

design.

An energy-based solution for calculating the buckling loads of partially anisotropic

stiffened plates was detailed in (STAMATELOS; LABEAS, 2023), extending the Ritz method

to anisotropic plate buckling solutions. This approach shows accuracy and efficiency over

finite element analysis, highlighting its utility in preliminary design phases.



3 Buckling Problem Formulation

This study aims to implement the Discrete Ritz Method (DRM), as introduced by

(JING; DUAN, 2023), to analyze the buckling behavior of panels featuring circular cutouts

and stiffeners.

The adopted approach is based on a two-step solution for investigating the buckling

behavior of laminated composite plates under in-plane constraints, as outlined in (NIMA;

GANESAN, 2021) and (JING; DUAN, 2023). The initial step involves solving the in-plane

elasticity problem to determine the distribution of stress resultants. The subsequent step

uses the results from the first step to derive the linear stability equations. In both stages,

the laminate is modeled using the First-Order Shear Deformation Theory (FSDT), and

the solutions are obtained via the Ritz method. Hierarchical polynomials are used to

formulate an admissible function capable of accommodating various boundary conditions,

while avoiding the effects of discontinuities.

By utilizing a global trial function with variable stiffness properties in a virtual design

domain, the deformation of arbitrarily shaped plates is accurately assessed through Gauss

quadrature numerical integration. Additionally, this method enables the application of

boundary conditions and load potential on any plate contour.

The mathematical modeling process initiates with the First-Order Shear Deformation

Theory to delineate the relationships between in-plane forces and moments and the deriva-

tives of mid-plane displacements. This step enables the substitution of these relationships

into the energy equations, enabling the application of the Ritz method, which yields the

buckling loads and corresponding displacement functions.

3.1 Limitations of the Ritz Method

According to (LUCENA NETO, 2021), the fundamental idea of the Ritz method is

to reduce a continuous problem, with an infinite number of degrees of freedom, to a

discrete problem with a finite number n of degrees of freedom. The coefficients ci are

the generalized coordinates of the discrete problem. By using this method, the direct
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solution of differential equations is avoided, and algebraic equations are dealt with instead.

However, according to (LUCENA NETO, 2021), in practice, there are several difficulties

encountered in the application of the Ritz method:

1. It is a difficult, if not impossible, task to obtain approximations that satisfy the

boundary conditions when the domain has an irregular geometry.

2. Changing the boundary conditions or the domain geometry can mean a complete

change in the adopted approximation, with no systematic choice of the basis. Any

computational implementation of these methods is usually limited to solving a very

specific problem.

3. Adding terms to the approximation implies more laborious integrations and often

results in an ill-conditioned problem.

4. There are cases where the exact solution of the problem is not given by a single

function valid throughout the domain. This situation is clearly observed in the

solution of the differential equation

au
′′
+ f(x) = 0, (3.1)

where ( )′ = d( )
dx

, when the coefficient a or the function f(x) are defined differently

in distinct parts of the domain.

5. A solution could be improved by modifying the approximation only in the regions of

the domain where it is necessary, such as where the solution varies abruptly. The use

of new approximations that unnecessarily extend over the entire domain, as done

by the Ritz method, could thus be avoided.

6. The coefficients ci have no physical meaning. This is not, strictly speaking, a diffi-

culty, but rather something that may be undesirable. There are some formulations

of the finite element method that also use coefficients ci without physical meaning.

3.2 The First-Order Shear Deformation Theory

The First-Order Shear Deformation Theory (FSDT) is an approach used in the struc-

tural analysis of laminated composite materials. Given appropriate assumptions, FSDT

can predict the stress and strain distributions within each layer of a laminate in response

to external loads. Furthermore, in this study, the mathematical modeling will consider

the analysis of symmetric laminated composites. Therefore, simplifications consistent

with this hypothesis will be made.
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Classical Lamination Theory (CLT) is based on Kirchhoff’s hypothesis, which assumes

that a line segment normal to the mid-surface before deformation remains (LUCENA NETO,

2021):

• straight;

• normal to the deformed surface;

• with constant length.

In contrast, the First-Order Shear Deformation Theory is based on the Reissner-

Mindlin hypothesis, which includes the effect of transverse shear deformation. According

to this Theory, a line segment normal to the mid-surface before deformation remains

straight and of the same length but does not necessarily remain orthogonal to the mid-

surface after deformation, as depicted in Figure 3.1.
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Figura 11.2 (a) Com a deformação, um segmento de reta AB normal à superfície média da placa,

inicialmente paralelo a z, translada e rotaciona até a posição ab (os eixos x̄, ȳ e z̄ são paralelos aos

eixos x, y e z, respectivamente); (b) projeção do segmento AB no plano xz na configuração inicial e

na configuração atual, após a placa deformar-se sob pequenas rotações e sob a hipótese de Kirchhoff

ou de Reissner-Mindlin.
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, (11.3)

que é de fácil interpretação geométrica usando a projeção do movimento nos planos xz (veja Figura

11.2b) e yz.

Substituindo (11.3) em (8.1),
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Within the framework of the First-order Shear Deformation Theory (FSDT) for lam-

inated plates, the conventional Kirchho↵ hypothesis is modified by no longer assuming

that transverse normals remain orthogonal to the mid-surface following deformation, as

depicted in Figure 3.1.

FIGURE 3.1 – Undeformed and deformed geometries of an edge of a plate in various plate theories. Image
from (KOLVIK; HELLESLAND, 2013).

This modification permits the incorporation of transverse shear strains within the the-

oretical model. The theory stipulates that the displacement function w, representing the

out-of-plane displacement, must not vary with the thickness coordinate z, maintaining

the inextensibility of the transverse normals (REDDY, 2003). Consistent with the afore-

mentioned premises, the displacement field in the first-order theory can be expressed as:

u(x, y, z) = u0(x, y) + z'u(x, y) (3.1)

v(x, y, z) = v0(x, y) + z'v(x, y) (3.2)

w(x, y, z) = w0(x, y) (3.3)

Here, the functions (u0, v0, w0, 'u, 'v) represent the unknowns of the problem, with

u0, v0, and w0 specifically denoting the displacements at the mid-plane (z = 0). It should
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u0, v0, and w0 specifically denoting the displacements at the mid-plane (z = 0). It shouldinitial configuration

Kirchhoff Reissner-Mindlin

FIGURE 3.1 – Representative figure of the projection of segment AB, at a free edge, on the x− z plane
in the initial configuration and in the current configuration, after the plate deforms under small rotations
and under the hypothesis of Kirchhoff or Reissner-Mindlin. Source: Adapted from (LUCENA NETO, 2021).

This modification allows the incorporation of transverse shear strains within the the-

oretical model. The theory stipulates that the displacement function w, representing the

out-of-plane displacement, must not vary with the thickness coordinate z, maintaining

the inextensibility of the transverse normals (REDDY, 2003). Consistent with the afore-

mentioned premises, the displacement field in the First-Order Shear Deformation Theory

can be expressed as:
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u(x, y, z) = u0(x, y) + zφu(x, y) (3.2)

v(x, y, z) = v0(x, y) + zφv(x, y) (3.3)

w(x, y, z) = w0(x, y) (3.4)

where the functions (u0, v0, w0, φu, φv) represent the unknowns of the problem, with u0,

v0, and w0 specifically denoting the displacements at the mid-plane (z = 0). It should be

noted that:

∂u

∂z
= −φu and

∂v

∂z
= −φv, (3.5)

where φu and φv are, respectively, the rotations of a transverse normal around the y and x

axes. Although the use of φu and φv to denote these rotations might seem unconventional

and does not comply with the right-hand rule, this notation is prevalent in the literature

(REDDY, 2003).

These parameters (u0, v0, w0, φu, φv) are termed the generalized displacements. For

thin plates, the rotation functions φu and φv are expected to approximate the respective

slopes of the transverse deflection (REDDY, 2003). Given the aforementioned displacement

distribution, the infinitesimal mid-plane strains and curvatures of a laminate are expressed

in terms of the displacements as:

ε =


εx

εy

γxy

 =


∂u0

∂x
∂v0
∂y

∂u0

∂y
+ ∂v0

∂x

+ z


∂φu

∂x
∂φv

∂y
∂φu

∂y
+ ∂φv

∂x

 = ε0 + zκ (3.6)

where ε0 and κ represent the in-plane strains and curvatures, respectively.

As adopted in (NIMA; GANESAN, 2021), a nonlinear strain definition capable of ac-

commodating moderate rotational effects is used. Within this framework, von Kármán’s

approximations, represented by ε̃, are included as additional nonlinear terms to compute

the mid-plane strains induced by out-of-plane deflections. These extra nonlinear terms

are shown in Equation 3.7. It should be noted that in the adopted model, these nonlinear

terms are not used to derive the constitutive model. Instead, they contribute only to the

stress stiffening energy in the buckling analysis stage, which will be discussed later.

ε̃ =


1
2

(
∂w0

∂x

)2
1
2

(
∂w0

∂y

)2

∂w0

∂x
∂w0

∂y

 (3.7)
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The transverse shear strains to be incorporated in the First-Order Shear Deformation

Theory are defined as:

γ =

{
γyz

γxz

}
=

{
φv +

∂w0

∂y

φu +
∂w0

∂x

}
(3.8)

The coordinate system that will be adopted in the mathematical modeling, considering

a generic lamina k of an orthotropic material, is represented in Figure 3.2. The system

x1x2x3 is obtained from the xyz system, common to all laminas, by a counterclockwise

rotation θ of the xy plane around the x3 axis.
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Figura 11.17 Lâmina com fibras unidirecionais e sistema de eixos principais do material x1x2x3.

11.7 Placas laminadas

Uma placa laminada resulta do empilhamento de duas ou mais lâminas (camadas) de materiais

com propriedades mecânicas criteriosamente escolhidas, com o propósito de se conseguir uma relação

rigidez/peso elevada para a placa como um todo. O material e a espessura podem mudar de lâmina

para lâmina. Cada lâmina é normalmente constituída de um material compósito que combina dois

outros materiais que juntos apresentam desempenho superior ao dos materiais constituintes agindo

isoladamente. Um desses materiais que constitui o compósito é denominado matriz e o outro, de

mais alta resistência, é denominado reforço. A Figura 11.17 mostra uma lâmina com reforço de fibras

unidirecionais. A matriz é responsável por manter o reforço na posição desejada e por transferir as

tensões no meio pela aderência que existe entre a matriz e o reforço. Um dos materiais compósitos

mais empregados na indústria é o grafite-epóxi (matriz: resina epóxi; reforço: grafite).

A falha do material pode levar uma estrutura à ruína. No caso de uma placa laminada, a falha

pode ocorrer no reforço, na matriz, na interface entre reforço e matriz, ou nas interfaces entre lâminas.

Avaliações dessa natureza são devidamente abordadas em textos específicos (Dávila e Camanho, 2003;

Knops, 2008; Mendonça, 2019).

A Tabela 11.7 apresenta valores ilustrativos para as constantes de engenharia do grafite-epóxi,

vidro-epóxi e boro-epóxi, quando reforçados numa única direção (direção na qual o módulo de Young

E1 é avaliado). Outros valores podem ser encontrados para esses mesmos materiais, principalmente

em se tratando do grafite-epóxi. O alumínio é incluído na tabela apenas como referência.

A Figura 11.18a mostra uma placa laminada referida a um sistema cartesiano ortogonal xyz, com

o plano xy situado na superfície média, formada porN lâminas de espessura constante e perfeitamente

solidárias. O procedimento natural e direto de se propor modelos para descrever o comportamento de

placas laminadas é admitir que as componentes ux, uy e uz do deslocamento tenham variação definida

ao longo da espessura de cada camada, mantendo a continuidade dessas componentes (continuidade

C0) nas interfaces laminares (Reddy, 2004). Se uma variação linear por camada for adotada para ux,

por exemplo, N +1 funções u1(x, y), u2(x, y), . . ., uN+1(x, y) incógnitas seriam necessárias para defi-

fiber

matrix

FIGURE 3.2 – Representative figure of a lamina with unidirectional fibers and principal material coordi-
nate system x1x2x3. Source: Adapted from (LUCENA NETO, 2021).

For a generic lamina k of an orthotropic material, as shown in Figure 3.2, with uni-

directional fiber and material axis system x1x2x3, the stress-strain relationship can be

expressed as:


σ1

σ2

τ12


(k)

=

Q11 Q12 0

Q12 Q22 0

0 0 Q66


(k) 

ε1

ε2

γ12


(k) {

τ23

τ13

}(k)

=

[
Q44 0

0 Q55

](k) {
γ23

γ13

}(k)

(3.9)

where

Q11 =
E1

1− ν21ν12
Q12 =

ν12E2

1− ν21ν12
=

ν21E1

1− ν21ν12
Q22 =

E2

1− ν21ν12

Q44 = G23 Q55 = G13 Q66 = G12
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The relationship between σ(k) and ε(k) in the xyz system can be written as:


σx

σy

τxy


(k)

=

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


(k) 

εx

εy

γxy


(k)

⇔ σ(k) = Q
(k)

b ε(k) (3.10)

where the stiffness matrix Q
(k)

b is obtained from the rotation of the stiffness matrix by an

angle θ equal to the fiber orientation of the ply, as shown in Equation 3.11.

Q
(k)

b =

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


(k)

= T−1
b

(k)

Q11 Q12 0

Q12 Q22 0

0 0 Q66


(k)

T−T
b

(k)
(3.11)

where

T
(k)
b =

 cos2 θ sin2 θ 2 cos θ sin θ

sin2 θ cos2 θ −2 cos θ sin θ

− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ


(k)

(3.12)

The relationship between τ (k) and γ(k) in the xyz system can be written as:{
τyz

τxz

}(k)

=

[
Q44 Q45

Q45 Q55

](k){
γyz

γxz

}(k)

⇔ τ (k) = Q
(k)

s γ(k) (3.13)

where the stiffness matrix Q
(k)

s is obtained from the rotation of the stiffness matrix by an

angle θ equal to the fiber orientation of the ply, as shown in Equation 3.14.

Q
(k)

s = T(k)
s

T

[
Q44 0

0 Q55

](k)

T(k)
s (3.14)

where

T(k)
s =

[
cos θ − sin θ

sin θ cos θ

](k)

(3.15)

The representation of transverse shear strains as constant through the laminate thick-

ness implies that the transverse shear stresses will also be constant. This inconsistency

generates excessive stiffness, especially for relatively thick laminates (NIMA; GANESAN,

2021). However, elementary theory of homogeneous beams indicates that the transverse

shear stress varies parabolically through the beam thickness (REDDY, 2003). In compos-

ite laminated beams and plates, the transverse shear stresses exhibit at least a quadratic

variation through the layer thickness. The discrepancy between the actual stress state and
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the constant stress state predicted by the First-Order Shear Deformation Theory necessi-

tates the correction of transverse shear stress resultants by introducing a shear correction

coefficient, Ks (REDDY, 2003):

{
Syz

Sxz

}
=

∫ h/2

−h/2

Ks

{
τyz

τxz

}
dz (3.16)

This modification adjusts the plate transverse shear stiffnesses. The shear correction

coefficient, Ks, is determined to ensure that the strain energy due to transverse shear

stresses equals the strain energy due to the true transverse stresses predicted by three-

dimensional elasticity theory (REDDY, 2003).

According to (NIMA; GANESAN, 2021), unlike isotropic materials, no single optimum

value can be prescribed for layered composite materials, and the correction factors need to

be calculated for each laminate separately. Studies, such as those by (REDDY, 2003), have

shown that using Ks = 5
6
provides an accurate approximation for the transverse shear

stiffness in composite laminates, making it a standard choice in structural analysis. This

value is derived to equate the shear strain energy in both actual and simplified theories,

thereby ensuring accurate modeling of transverse shear effects in composite laminates.

However, this is a simplified approach adopted to avoid increased methodological com-

plexity. Various methodologies for determining the shear correction factor are available,

including dynamic analysis where this factor depends on the plate material constants and

aspect ratio (ZWEBEN; BEAUMONT, 2017). Therefore, the value of Ks = 5
6
was used in

this work. In Figure 3.3, the orientations of the forces and moments per unit width in the

mid-plane of a laminate can be observed.
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FIGURE 3.3 – Forces and moments per unit width in the mid-plane of a laminate.
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In Figure 3.4, the geometric arrangement of the plies of an NL-layered laminate can

be observed.

Ply 1

Ply 2

...

Ply k

...

Ply NL

...

z

x

z0
z1

z2

zk
zk+1

zNL

tk

h

2

h

2

middle
surface

FIGURE 3.4 – Representative figure of the geometric arrangement of the plies of an NL-layered laminate.

For an NL-layered laminate of thickness h, with axis orientation such as the one shown

in Figure 3.4, the forces and moments per unit width, which are displayed in Figure 3.3,

can be calculated as

N =


Nx

Ny

Nxy

 =

∫ h/2

−h/2


σx

σy

τxy

 dz =

NL∑
k=1

∫ zk

zk−1


σx

σy

τxy

 dz (3.17)

M =


Mx

My

Mxy

 =

∫ h/2

−h/2


σx

σy

τxy

 zdz =

NL∑
k=1

∫ zk

zk−1


σx

σy

τxy

 zdz (3.18)

S =

{
Syz

Sxz

}
≈

∫ h/2

−h/2

Ks

{
τyz

τxz

}
dz =

NL∑
k=1

∫ zk

zk−1

Ks

{
τyz

τxz

}
dz (3.19)

Substituting the relationship between σ(k) and ε(k) given in Equation 3.10 and the

relationship between τ (k) and γ(k) given in Equation 3.13 into Equations 3.17, 3.18, and

3.19, and the following is obtained:
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Nx

Ny

Nxy

 = A


ε0x

ε0y

γ0
xy

+B


κx

κy

κxy

 (3.20)


Mx

My

Mxy

 = B


ε0x

ε0y

γ0
xy

+D


κx

κy

κxy

 (3.21)

{
Syz

Sxz

}
= H

{
φv +

∂w0

∂y

φu +
∂w0

∂x

}
(3.22)

where

A =

A11 A12 A16

A12 A22 A26

A16 A26 A66

 =

NL∑
k=1

(zk − zk−1)Q̄
(k)
b (3.23)

B =

B11 B12 B16

B12 B22 B26

B16 B26 B66

 =
1

2

NL∑
k=1

(z2k − z2k−1)Q̄
(k)
b (3.24)

D =

D11 D12 D16

D12 D22 D26

D16 D26 D66

 =
1

3

NL∑
k=1

(z3k − z3k−1)Q̄
(k)
b (3.25)

H =

[
A44 A45

A45 A55

]
=

NL∑
k=1

(zk − zk−1)Q̄
(k)
s (3.26)

The constitutive relationship for the laminated composite plate is
N

M

S

 =

A B 0

B D 0

0 0 H



ε0

κ

γ

 (3.27)

Laminates that are symmetric in both geometry and material properties about the mid-

surface have B = 0, indicating that there is no coupling between bending and extension,

nor between torsion and in-plane shear (LEVY NETO; PARDINI, 2018). Furthermore, if

the layers are specially orthotropic (i.e., principal material directions aligned with the

laminate axis), then A16 = A26 = 0, D16 = D26 = 0 and A45 = 0 (JONES, 1998).
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3.3 Discrete Ritz Method

The Discrete Ritz Method (DRM) was introduced by (JING; DUAN, 2023) to overcome

the limitations of the traditional Ritz method in handling complex geometric domains.

This numerical approach is designed for analyzing the buckling of plates with arbitrary

shapes and cutouts. DRM utilizes polynomials to construct admissible functions that can

accommodate various boundary conditions. By integrating the principles of variational

calculus with the concept of stationary total potential energy, standard energy functionals

and computational procedures are developed to determine buckling eigenvalues and mode

shapes.

In DRM, the modeling process for perforated plates of arbitrary geometries is stan-

dardized. A rectangle that covers the plate’s geometric domain is initially constructed,

with dimensions matching the plate’s maximum dimensions in the x and y directions.

This rectangle and the plate geometry are then mapped into a standard square domain in

the ξ ∈ [−1, 1] and η ∈ [−1, 1] directions. Within this virtual rectangular design domain,

a global trial function with variable stiffness properties models the deformation of plates

with complex geometries through numerical integration via Gauss quadrature.

To accurately represent cutouts in the plate domain, the plate is modeled with variable

thickness. Regions corresponding to the cutouts are assigned zero thickness and stiffness.

Additionally, boundary conditions and load potentials can be applied to any contour of

the plate. Gauss quadrature is used for numerical integration over these complex domains,

treating the plate as a variable stiffness system with zero stiffness in cutouts. In the rest

of the plate domain, the thickness remains constant, effectively nullifying the stiffness in

the cutout regions. For an orthotropic plate with cutouts, stiffness is a function of plate

coordinates x and y and becomes zero within the cutout areas:

Aij(x, y) = 0 for i, j = 1, 2, 6; 4, 5 (3.28)

Bij(x, y) = 0 for i, j = 1, 2, 6 (3.29)

Dij(x, y) = 0 for i, j = 1, 2, 6 (3.30)
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FIGURE 3.5 – Representative figure of the Discrete Ritz Method (DRM), proposed by (JING; DUAN,
2023), utilizing Gauss points to discretize any shaped plate with arbitrary cutouts. Green points indicate
zero stiffness and thickness to simulate cutouts, while gray points represent the plate domain. Source:
(JING; DUAN, 2023).

3.4 Hierarchical Polynomials

In this work, the admissible function used is based on hierarchical polynomials, consid-

ering various boundary conditions along the plate contour. A trial solution that satisfies

the boundary conditions of the problem and contains adjustable parameters is first as-

sumed. The method then seeks to determine the values of these parameters by taking

the first variation of a specific functional, often related to the potential or total energy

of the system under study. This functional is derived from the governing equations and

boundary conditions of the problem.

The shape functions used are the hierarchical polynomials proposed by (BARDELL,

1991). The first four cubic polynomials are conventionally used in FEM for bending

problems, as these polynomials define the boundary conditions (BARDELL, 1991). Only

the first four polynomials do not have zero rotation and displacement at their limits. For
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a free boundary condition, all polynomials are used. All higher degree polynomials (i > 4)

have both zero displacement and zero slope at each end of the element (ξ or η = -1; 1) and

are used to enrich the shape function. The set of functions used in this work is derived

from Rodrigues’ form of Legendre orthogonal polynomials and is given by:

χ1(ξ or η) =
1

2
− 3

4
(ξ or η) +

1

4
(ξ or η)3

χ2(ξ or η) =
1

8
− 1

8
(ξ or η)− 1

8
(ξ or η)2 +

1

8
(ξ or η)3

χ3(ξ or η) =
1

2
+

3

4
(ξ or η)− 1

4
(ξ or η)3

χ4(ξ or η) = −1

8
− 1

8
(ξ or η) +

1

8
(ξ or η)2 +

1

8
(ξ or η)3

χi(ξ or η) =

i/2∑
k=0

(−1)k

2kk!

(2i− 2k − 7)!!

(i− 2k − 1)!
(ξ or η)i−2k−1 i = 5, 6, 7, . . . (3.31)

where k!! = k(k − 2)(k − 4) . . . (2 or 1), 0!! = (−1)!! = 1, and i/2 denotes its own integer

part.

Mathematically, the behavior of the hierarchical polynomials which allows for them to

represent multiple boundary conditions can be summarized by:

χ1(−1) ̸= 0 and χi(−1) = 0 if i ̸= 1

χ′
2(−1) ̸= 0 and χ′

i(−1) = 0 if i ̸= 2

χ3(1) ̸= 0 and χi(1) = 0 if i ̸= 3

χ′
4(1) ̸= 0 and χ′

i(1) = 0 if i ̸= 4

Additionally, the procedure to satisfy the boundary conditions for a specific configu-

ration is shown in Table 3.1.

TABLE 3.1 – Procedure adopted to satisfy the boundary conditions for a given problem using the ξ
variable.

Restriction Location Adopted Procedure

Displacement Left edge χ1(ξ) = 0

Rotation Left edge χ2(ξ) = 0

Displacement Right edge χ3(ξ) = 0

Rotation Right edge χ4(ξ) = 0

The desired boundary conditions are achieved through the elimination all or some

of the first four functions χi(ξ) and χj(η). For a plate simply supported along its four

edges (SSSS), functions of w displacement, for example, χ1(ξ), χ3(ξ), χ1(η) and χ3(η) are

eliminated, since they are not null in ξ = ±1 and η ± 1. In this case, w will only have,

effectively (I − 2)(J − 2) terms.

In this approach, the displacements of the mid-surface of the plate shown in Figure
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3.4 along the u0, v0, w0, φu, and φv directions are expressed as a product of a row vector

of unknown coefficients and a column vector of the Ritz basis functions, as shown in

Equations 3.32, 3.33, 3.34, 3.35 and 3.36, respectively.

u0(ξ, η) =
I∑

i=1

J∑
j=1

cuijχ
u
i (ξ)χ

u
j (η) = cu

[
fu(ξ, η)

]T
cu =

[
cu11 · · · cu1J cu21 · · · cu2J · · · cuI1 · · · cuIJ

]
fu =

[
χu
1χ

u
1 · · · χu

1χ
u
J χu

2χ
u
1 · · · χu

2χ
u
J · · · χu

Iχ
u
1 · · · χu

Iχ
u
J

]
(3.32)

v0(ξ, η) =
I∑

i=1

J∑
j=1

cvijχ
v
i (ξ)χ

v
j (η) = cv

[
fv(ξ, η)

]T
cv =

[
cv11 · · · cv1J cv21 · · · cv2J · · · cvI1 · · · cvIJ

]
fv =

[
χv
1χ

v
1 · · · χv

1χ
v
J χv

2χ
v
1 · · · χv

2χ
v
J · · · χv

Iχ
v
1 · · · χv

Iχ
v
J

]
(3.33)

w0(ξ, η) =
I∑

i=1

J∑
j=1

cwijχ
w
i (ξ)χ

w
j (η) = cw

[
fw(ξ, η)

]T
cw =

[
cw11 · · · cw1J cw21 · · · cw2J · · · cwI1 · · · cwIJ

]
fw =

[
χw
1 χ

w
1 · · · χw

1 χ
w
J χw

2 χ
w
1 · · · χw

I χ
w
1 · · · χw

I χ
w
J

]
(3.34)

φu(ξ, η) =
I∑

i=1

J∑
j=1

cφu

ij χ
φu

i (ξ)χφu

j (η) = cφu

[
fφu(ξ, η)

]T
cφu =

[
cφu

11 · · · cφu

1J cφu

21 · · · cφu

2J · · · cφu

I1 · · · cφu

IJ

]
fφu =

[
χφu

1 χφu

1 · · · χφu

1 χφu

J χφu

2 χφu

1 · · · χφu

I χφu

1 · · · χφu

I χφu

J

]
(3.35)

φv(ξ, η) =
I∑

i=1

J∑
j=1

cφv

ij χ
φv

i (ξ)χφv

j (η) = cφv

[
fφv(ξ, η)

]T
cφv =

[
cφv

11 · · · cφv

1J cφv

21 · · · cφv

2J · · · cφv

I1 · · · cφv

IJ

]
fφv =

[
χφv

1 χφv

1 · · · χφv

1 χφv

J χφv

2 χφv

1 · · · χφv

I χφv

1 · · · χφv

I χφv

J

]
(3.36)

where cuij, c
v
ij, c

w
ij, c

φu

ij and cφv

ij are unknown coefficients to be determined, χi(ξ) and χj(η)

are the hierarchical polynomials. In Table 3.2, the behavior of the first ten hierarchical

polynomials is illustrated.



CHAPTER 3. BUCKLING PROBLEM FORMULATION 46

TABLE 3.2 – Behavior of the first ten hierarchical polynomials for the ξ variable. Adapted from
(BARDELL, 1991).

Polynomial Plot

χ1(ξ) =
1

2
− 3

4
ξ +

1

4
ξ3

−1 0 1
− 1

0

1

χ2(ξ) =
1

8
− 1

8
ξ − 1

8
ξ2 +

1

8
ξ3

−1 0 1
-0.1481

0.1481

χ3(ξ) =
1

2
+

3

4
ξ − 1

4
ξ3

−1 0 1
− 1

0

1

χ4(ξ) = −1

8
− 1

8
ξ +

1

8
ξ2 +

1

8
ξ3

−1 0 1
-0.1481

0.1481

χ5(ξ) =
1

8
− 1

4
ξ2 +

1

8
ξ4

−1 0 1
-0.1250

0

0.1250

χ6(ξ) =
1

8
ξ − 1

4
ξ3 +

1

8
ξ5

−1 0 1
-0.0358

0

0.0358

χ7(ξ) = − 1

48
+

3

16
ξ2 − 5

16
ξ4 +

7

48
ξ6

−1 0 1
-0.0208

0

0.0208

χ8(ξ) = − 3

48
ξ +

5

16
ξ3 − 7

16
ξ5 +

9

48
ξ7

−1 0 1
-0.0114

0

0.0114

χ9(ξ) = − 3

384
− 15

96
ξ2 +

35

64
ξ4 − 63

96
ξ6 +

99

384
ξ8

−1 0 1
-0.0078

0

0.0078

χ10(ξ) =
15

384
ξ − 35

96
ξ3 +

63

64
ξ5 − 99

96
ξ7 +

143

384
ξ9

−1 0 1
-0.0052

0

0.0052
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3.5 Gauss Quadrature Integration

This study employs Gauss quadrature for numerical integration, complemented by

symbolic differentiation of the trial shape functions in softwareMatlab®. Gauss quadra-

ture is capable of accurately integrating polynomials of degree 2n − 1 or lower using an

n-point quadrature rule (JING; DUAN, 2023). Legendre polynomials, defined by the num-

ber of terms I and J in the ξ and η directions respectively, ensure the required precision

through suitable integration points. Within the interval [−1, 1], Gauss quadrature is used

to evaluate the following integral:

∫ 1

−1

f(ξ)dξ ≈
n∑

i=1

w̄if(ξi) (3.37)

where ξi are the integration points, defined as the roots of the Legendre polynomials

Pn(ξ), which can be expressed by a compact formula for the Legendre polynomials given

by Rodrigues’ formula:

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n] (3.38)

and w̄i are the corresponding weights calculated by:

w̄i =
2

(1− ξ2i )[P
′
n(ξi)]

2
(3.39)

This equation is valid for the domain ξ ∈ [−1, 1] as the zeros of the Legendre polynomi-

als lie within this interval. For integration over different domains, a change of variables is

necessary, and appropriate adjustments must be made to the formula for two-dimensional

domains.

In the case of complex plate geometries, additional Gauss points are required, and a

convergence study should be conducted. According to (JING; DUAN, 2023), determining

the exact number of Gauss points in advance is challenging because the numerical inte-

gration of strain energy depends on the plate’s geometry and deformation, influenced by

its geometry, load, and boundary conditions.

3.5.1 Integrating in the Plate’s Area

To integrate over the plate’s area, the domain (x, y) ∈
[
−a

2
, a
2

]
×

[
− b

2
, b
2

]
must be

transformed into the domain (ξ, η) ∈ [−1, 1]2. This transformation is achieved using the

following equations:
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x(ξ) =
aξ

2
and y(η) =

bη

2
(3.40)

The Jacobian of the transformation is given by:

J1 =

∣∣∣∣∣∣∣
∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
a

2
0

0
b

2

∣∣∣∣∣∣ = ab

4
(3.41)

To integrate a function f(x, y) over the plate’s area Ωp, the integral is expressed as:

∫
Ωp

f(x, y) dΩp =

∫ a/2

−a/2

∫ b/2

−b/2

f(x, y) dx dy =
ab

4

∫ 1

−1

∫ 1

−1

f (ξ, η) dξ dη

≈ ab

4

num_intξ∑
p=1

num_intη∑
q=1

wpwqf (ξp, ηq) (3.42)

−1 0 1
−1

0

1

ξ

η

FIGURE 3.6 – Integration points along plate with num_intξ = num_intη = 50.

3.5.2 Integrating in the Plate with Circular Cutout Area

To integrate over a plate with a cutout area, the domain (x, y) ∈
[
−a

2
, a
2

]
×

[
− b

2
, b
2

]
must be transformed to the domain (ξ, η) ∈ [−1, 1]2. This transformation is achieved

using the following equations:

x(ξ) =
aξ

2
and y(η) =

bη

2
(3.43)

The Jacobian of this transformation is given by:



CHAPTER 3. BUCKLING PROBLEM FORMULATION 49

J1 =

∣∣∣∣∣∣∣
∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
a

2
0

0
b

2

∣∣∣∣∣∣ = ab

4
(3.44)

To integrate a function f(x, y) over the domain Ωc, which considers the effective area

of the plate, i.e., excluding the cutout area, the procedure follows Eq. 3.45. In this case,

the cutout is centered at the origin of the plate’s coordinate system (x, y) and has a radius

R. However, any type of restriction can be modeled for more complex cutouts. Note that

the only difference compared to the case of the plate is that the points were appropriately

selected within the domain Ωc, excluding the cutout area.

∫
Ωc

f(x, y) dΩc =
ab

4

∫ ∫
Ωc

f (ξ, η) dξ dη ≈


ab

4

∑num_intξ
p=1

∑num_intη
q=1 wpwqf (ξp, ηq)

subject to Ωc :
(

ξp
pd1

)2
+
(

ηq
pd2

)2
> 1

(3.45)

where pd1 =
2R
a

and pd2 =
2R
b
.

−1 0 1
−1

0

1

ξ

η

FIGURE 3.7 – Integration points for plate with a circular cutout with num_intξ = num_intη = 50.

3.5.3 Integrating along the Stiffeners

For the case involving two stiffeners along the y-axis, a strategy similar to that em-

ployed for plates with cutouts is adopted, but integration is performed in only one di-

mension, η. The variables are transformed from the domain y ∈
[
− b

2
, b
2

]
to the domain

η ∈ [−1, 1]. After this transformation, the integration points along the η-axis correspond-

ing to the locations of the stiffeners are conveniently selected in the domain Ω
′
st of the

stiffener.
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For example, to calculate the integral of a function f(x, y) along stiffeners located at

x = ±xs, ranging from y = −ys to y = ys, the transformations η = 2y
b
and ξ = 2x

a
must

be applied, leading to:

∫ b/2

−b/2

f(±xs, y) dy =
b

2

∫ 1

−1

f (±ξs, η) dη ≈ b

2

num_intη∑
q=1

wqf (±ξs, ηq) (3.46)

Selecting the points within the stiffener’s domain yields Eq. 3.47.

∫
Ω

′
st

f(±xs, y) dΩ
′

st ≈

 b
2

∑num_intη
q=1 wqf (±ξs, ηq)

subject to Ω
′
st :

−2ys
b

≤ ηq ≤ 2ys
b

(3.47)

−1−ξs 0 ξs 1
−1

−ηs

0

ηs

1

ξ

η

FIGURE 3.8 – Integration points along the stiffeners for num_intη = 50.

3.6 Prebuckling Analysis

To perform the prebuckling analysis, a procedure adopted by (NIMA; GANESAN, 2021)

and (JING; DUAN, 2023) was followed, in which the distribution of membrane forces is

solved using the Ritz method, a variational technique based on the principle of stationary

total potential energy. In order to provide an overview of the procedure adopted in this

analysis, a brief explanation of the procedure will be given, and throughout this section,

the procedure will be detailed.

The potential energy of the orthotropic plate, as determined by the in-plane external

forces, is given by:

Π1 = Um + U s
m − UF (3.48)
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where Um is the strain energy stored in the plate, U s
m represents the energy contributed

by the stiffeners due to axial strain and bending around the z-axis and UF is the potential

energy of the applied forces.

The strain energy of a plate is given by:

Um =
1

2

∫ ∫
Ωc

εT

[
A B

B D

]
εdxdy +

∫ ∫
Ωc

γTHγdxdy (3.49)

where Ωc is the domain corresponding to the effective area of the membrane.

As stated in (NIMA; GANESAN, 2021), when symmetrically stacked laminates are sub-

jected only to in-plane forces, out-of-plane deflections are not expected. Consequently,

the strain energies associated with bending and out-of-plane shearing become negligible,

allowing for the reduction of the strain energy expression to:

Um =
1

2

∫
Ωc

(ε0)TAε0dΩ (3.50)

The general form of the potential energy of boundary forces is:

UF =

∮
Ω′

−→
N · −→∆ dΩ

′
(3.51)

where
−→
N is the traction vector on the boundary,

−→
∆ is the displacement vector, and Ω

′
is

the boundary contour on which the forces are being applied.

The functional Π1 undergoes to first variation with respect to the unknown coefficients

{cuij, cvij}. The resulting conditions for the stationary value of the total potential energy

are represented as:

∂Π1

∂cuij
= 0,

∂Π1

∂cvij
= 0, i = 1, 2, . . . , I; j = 1, 2, . . . , J (3.52)

This derivation yields a system of linear equations. The coefficients cuij and cvij can be

determined through the solution of this matrix-formulated linear system. After this, the

values of u0 and v0 are obtained, and subsequently, the in-plane stresses N̄.
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3.6.1 Strain Energy for a Plate

x

y

a

2

b

2

a

2

b

2

FIGURE 3.9 – Plate.

The strain energy of the plate is given by:

Um =
1

2

∫ b/2

−b/2

∫ a/2

−a/2

(ε0)TAε0 dx dy (3.53)

To integrate over the plate’s area, the domain (x, y) ∈ [−a/2, a/2]× [−b/2, b/2] must

be transformed to the domain (ξ, η) ∈ [−1, 1]2. This transformation is achieved by the

following equations:

x(ξ) =
aξ

2
, y(η) =

bη

2
(3.54)

The Jacobian of the transformation is:

J1 =

∣∣∣∣∣∣∣
∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
a

2
0

0
b

2

∣∣∣∣∣∣ = ab

4
(3.55)

Thus, the strain energy Um in the transformed domain is:

Um =
1

2

∫ 1

−1

∫ 1

−1

(ε0)TAε0 |J1| dξ dη =
ab

8

∫ 1

−1

∫ 1

−1

(ε0)TAε0 dξ dη (3.56)



CHAPTER 3. BUCKLING PROBLEM FORMULATION 53

It is important to note the need for a variable change in the integrand, as described

in Eq. 3.57. Additionally, when dealing with a VAT laminate, a variable change would

also be necessary in the values of Aij(x, y).

(ε0)T =

[
∂u0

∂ξ

∂ξ

∂x

∂v0
∂η

∂η

∂y

(
∂u0

∂η

∂η

∂y
+

∂v0
∂ξ

∂ξ

∂x

)]
(3.57)

Moreover, algebraic manipulation of the values of Um was performed to isolate the

calculation of integrals involving only the multiplication of trial shape functions and their

derivatives in the formulations. Thus, with just a single set of integrations, Um can be

determined for other dimensions a× b and various values of Aij for i, j = 1, 2, 6.

This approach facilitates a broad range of simulations with reduced computational

cost, as the integral calculations constitute the most computationally demanding aspect

of the prebuckling and buckling analysis process. This strategy will be applied to all

subsequent potential energy calculations across all configurations, including the plate, the

plate with a cutout, and the stiffened plate with a cutout.

3.6.2 Strain Energy for a Plate with Circular Cutout

x

y

a

2

b

2

a

2

b

2

R

FIGURE 3.10 – Plate with circular cutout.

The strain energy for a plate with a circular cutout is given by Eq. 3.58. To calculate

the integral of the strain energy for a plate with a circular cutout, the same integration

limits as for the plate are used. However, the integration condition is applied only to the

region outside the circular cutout.
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Um =
1

2

∫ ∫
Ωc

(ε0)TAε0|J1|dξdη =


ab
8

∫ 1

−1

∫ 1

−1
(ε0)TAε0dξdη

subject to Ωc :
(

ξ
pd1

)2

+
(

η
pd2

)2

> 1
(3.58)

where pd1 =
2R
a

and pd2 =
2R
b
.

3.6.3 Strain Energy for a Plate with Circular Cutout and Stiffeners

In the case illustrated in Figure 3.11, the stiffener is not directly affected by any

external force; instead, the plate is the sole component subjected to loading. Consequently,

the stiffener’s contribution to the rigidity of the panel is solely through its elastic strain

energy. For simplification, the flanges are modeled as beam elements along the midplane,

employing the kinematics formulation of the Euler-Bernoulli Beam Theory as utilized in

(YOO; LEE, 2011) and (SILVA, 2021). These beam elements share the same displacements

as the plate element. The current formulation of the stiffener’s strain energy accounts for

energy due to axial strain, bending around the x and z axes, and torsion (SILVA, 2021).

x

y

a

2

b

2

a

2

b

2

R

xsxs

ys

ys

bs

FIGURE 3.11 – Plate with circular cutout and two stiffeners parallel to the y direction.

For stiffeners positioned parallel to the y-axis, along the lines x = ±xs, ranging from

−ys to ys (i.e., with length ls = 2ys), in the prebuckling analysis, the potential energy of

each stiffener accounts for energy due to axial strain and bending around the z-axis. In

accordance with (YOO; LEE, 2011) and (SILVA, 2021), for each stiffener located at ±xs:
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Uaxial
m

(s)
=

1

2

∫ ys

−ys

Es
yAst

(
∂v0(±xs, y)

∂y

)2

dy (3.59)

Ubending z
m

(s)
=

1

2

∫ ys

−ys

Es
yIzz

(
∂2u0(±xs, y)

∂y2

)2

dy (3.60)

where Ast is the cross-sectional area of the stiffener in the x-z plane, Es
y is the effective

elasticity modulus of the stiffener positioned in the y-axis direction, and Izz is the moment

of inertia about the z-axis.

x

z

xsxs

ds

bs
a

FIGURE 3.12 – Plate with circular cutout and two stiffeners parallel to the y direction (xz view).

Performing the change of variables, for each stiffener located at ±ξs:

Uaxial
m

(s)
=

Es
yAst

b

∫ 2ys
b

− 2ys
b

(
∂v0(±ξs, η)

∂η

)2

dη (3.61)

Ubending z
m

(s)
=

4Es
yIzz

b3

∫ 2ys
b

− 2ys
b

(
∂2u0(±ξs, η)

∂η2

)2

dη (3.62)

Considering two stiffeners arranged along the y-axis, the potential energy related to

axial forces and bending around the z-axis is given by the following equation.

U s
m = Uaxial

m

(s1)
+ Uaxial

m

(s2)
+ Ubending z

m

(s1)
+ Ubending z

m

(s2)
(3.63)

Furthermore, in Appendix A (Stiffeners’ Parameters), the methodology used to obtain

the parameters Es
y, Izz, and Ast can be verified.
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3.6.4 Potential of the External Loads

The general form of the potential energy of boundary forces is:

UF =

∮
Ω′

−→
N · −→∆ dΩ

′
(3.64)

For the special case of a rectangular plate of dimensions a× b under biaxial and shear

distributed loading, Eq. 3.64 is applied to the plate geometry and can be represented by

Eq. 3.65.

UF =

∫ b/2

−b/2
{Nxu(x=a/2) −Nxu(x=−a/2)}dy +

∫ a/2

−a/2
{Nyv(y=b/2) −Nyv(y=−b/2)}dx

+

∫ a/2

−a/2
{Nxyu(y=b/2) −Nxyu(y=−b/2)}dx+

∫ b/2

−b/2
{Nxyv(x=a/2) −Nxyv(x=−a/2)}dy (3.65)

The domain (x, y) ∈
[
−a

2
, a
2

]
×
[
− b

2
, b
2

]
must be changed to the domain (ξ, η) ∈ [−1, 1]2.

This is achieved by making the following transformation:

UF =
b

2

∫ 1

−1

{Nxu(ξ=1) −Nxu(ξ=−1)}dη +
a

2

∫ 1

−1

{Nyv(η=1) −Nyv(η=−1)}dξ

+
a

2

∫ 1

−1

{Nxyu(η=1) −Nxyu(η=−1)}dξ +
b

2

∫ 1

−1

{Nxyv(ξ=1) −Nxyv(ξ=−1)}dη (3.66)

3.6.5 Stationary Value of the Total Potential Energy for the Prebuckling

Problem

To obtain the stationary value of total potential energy and without loss of generality,

an illustrative example will be presented for a stiffened plate with a circular cutout. This

example represents the general case and is described by the energy functional in Eq. 3.67.

Π1 = Um + U s
m − UF (3.67)

Upon substituting the displacement terms u0 and v0, represented by their trial function

shapes into Eqs. 3.58, 3.63, and 3.66, which correspond to the calculations of Um, U
s
m,

and UF respectively, and further integrating the outcomes into Eq. 3.67, the functional

Π1 undergoes to first variation with respect to the unknown coefficients {cuij, cvij}. The

resulting conditions for the stationary value of the total potential energy are represented

as:
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∂Π1

∂cuij
= 0,

∂Π1

∂cvij
= 0, i = 1, 2, . . . , I; j = 1, 2, . . . , J (3.68)

This derivation yields a system of linear equations. The coefficients cuij and cvij can be

determined through the solution of this matrix-formulated linear system, elucidated as

follows:

[
cuij

cvij

]
= (Km +Ks

m)
−1W, i = 1, 2, . . . , I; j = 1, 2, . . . , J (3.69)

where Km represents the membrane stiffness matrix derived from Eq. 3.58, Ks
m represents

the energy contributed by the stiffeners due to axial strain and bending around the z-axis,

as derived from Eq. 3.63, and W is a vector determined by the load potential energy from

Eq. 3.66.

The matrix Km is represented by Eq. 3.70.

Km =

[
Kuu Kuv

KT
uv Kvv

]
(3.70)

The elements of Km are computed as follows:

Kuu =

{
A11I

1010

(
b

a

)
+ A66I

0101
(a
b

)
+ A16

(
I0110 + I1001

)}
uu

(3.71)

Kuv =

{
A16I

1010

(
b

a

)
+ A26I

0101
(a
b

)
+ A66I

0110 + A12I
1001

}
uv

(3.72)

Kvv =

{
A66I

1010

(
b

a

)
+ A22I

0101
(a
b

)
+ A26

(
I0110 + I1001

)}
vv

(3.73)

where

Idefgrs =

∫∫
Ωc

∂d+e[f r(ξ, η)]T

∂ξd∂ηe
· ∂

f+gf s(ξ, η)

∂ξf∂ηg
dξ dη {r, s} ∈ {u, v, w, φu, φv} (3.74)

The elements of Ks
m for the two stiffeners along the η axis are computed as follows:

Ks
m =

[
Ks

uu Ks
uv

(Ks
uv)

T Ks
vv

]
(3.75)

where



CHAPTER 3. BUCKLING PROBLEM FORMULATION 58

Ks
uu =

8Es
yIzz

b3

∫ 2ys
b

− 2ys
b

[
fu,ηη(−ξs, η)

]T [
fu,ηη(−ξs, η)

]
dη+ (3.76)

+
8Es

yIzz

b3

∫ 2ys
b

− 2ys
b

[
fu,ηη(ξs, η)

]T [
fu,ηη(ξs, η)

]
dη (3.77)

Ks
uv = 0 (3.78)

Ks
vv =

2Es
yAst

b

∫ 2ys
b

− 2ys
b

[
fv,η(−ξs, η)

]T [
fv,η(−ξs, η)

]
dη+ (3.79)

+
2Es

yAst

b

∫ 2ys
b

− 2ys
b

[
fv,η(ξs, η)

]T [
fv,η(ξs, η)

]
dη (3.80)

where fp,ϖ represents the first-order partial derivative of fp with respect to ϖ and fp,ϖϱ

represents the second-order partial derivative with respect to the variables ϖ and ϱ.

The matrix W depends on the loading condition. Therefore, in the case of pure shear

Nxy, for example:

UF =
a

2

∫ 1

−1

{Nxyu(η=1) −Nxyu(η=−1)}dξ +
b

2

∫ 1

−1

{Nxyv(ξ=1) −Nxyv(ξ=−1)}dη

UF =

(
Nxya

2
cu
)∫ 1

−1

(
[fu(ξ, 1)]T − [fu(ξ,−1)]T

)
dξ+

+

(
Nxyb

2
cv
)∫ 1

−1

(
[fv(1, η)]T − [fv(−1, η)]T

)
dη (3.81)

Taking the first variation of UF with respect to cuij and cvij, the matrix W is obtained.

W =

[
Wu

Wv

]
(3.82)

Wu has dimension of I × J terms:

Wu =
a

2

∫ 1

−1


χu
1(ξ)χ

u
1(η)|η=1 − χu

1(ξ)χ
u
1(η)|η=−1

χu
1(ξ)χ

u
2(η)|η=1 − χu

1(ξ)χ
u
2(η)|η=−1

. . .

χu
I (ξ)χ

u
J(η)|=1 − χu

I (ξ)χ
u
J(η)|η=−1

 dξ (3.83)
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Wv also has dimension of I × J terms:

Wv =
b

2

∫ 1

−1


χv
1(ξ)χ

v
1(η)|ξ=1 − χv

1(ξ)χ
v
1(η)|ξ=−1

χv
1(ξ)χ

v
2(η)|ξ=1 − χv

1(ξ)χ
v
2(η)|ξ=−1

...

χv
I(ξ)χ

v
J(η)|ξ=1 − χv

I(ξ)χ
v
J(η)|ξ=−1

 dη (3.84)

Following the methodology employed in (JING; DUAN, 2023), the in-plane displace-

ments u0 and v0 are derived by substituting cuij and cvij into Equations 3.32 and 3.33.

Subsequently, u0 and v0 are utilized to determine the in-plane strain ε0, discarding the

effects of curvatures κ and von Kármán strains ε̃.

By substituting ε0 into Eq. 3.85 and disregarding the matrices B, D, and H, the

in-plane stress resultants N = {Nx, Ny, Nxy}T are identified, as shown in Eq. 3.86.


N

M

S

 =

A B 0

B D 0

0 0 H



ε0

κ

γ

 (3.85)

Nx = 2 [A16E
u
01/b+ A12E

v
01/b+ A11E

u
10/a+ A16E

v
10/a]

Ny = 2 [A26E
u
01/b+ A22E

v
01/b+ A12E

u
10/a+ A26E

v
10/a]

Nxy = 2 [A66E
u
01/b+ A26E

v
01/b+ A16E

u
10/a+ A66E

v
10/a] (3.86)

where

Eu
pq(ξ, η) =

∂p+qu0(ξ, η)

∂ξp∂ηq
, Ev

pq(ξ, η) =
∂p+qv0(ξ, η)

∂ξp∂ηq
, {p, q} ∈ {0, 1} (3.87)

As illustrated, N =
{
Nx, Ny, Nxy

}T

emerges as a function of coordinates ξ and

η, determined by the in-plane stiffness Aij (i, j = 1, 2, 6), boundary conditions, and

the applied in-plane loads. Furthermore, the diagram of the implementation used in

prebuckling analysis can be verified, as shown in Figure 3.13.
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FIGURE 3.13 – Diagram of the implementation used in prebuckling analysis.

3.7 Buckling Analysis

Following the methodology adopted by (JING; DUAN, 2023), the buckling analysis of

orthotropic plates is driven by in-plane stress resultants N identified during the prebuck-

ling phase. This analysis integrates the stress stiffening energy into the total potential

energy. Additionally, the functional Π2 must incorporate the contributions from the out-

of-plane energy of the stiffeners and the bending energy of the plate. This relationship is

expressed as:

Π2 = Ub + U s
b − UN (3.88)

where Ub represents the out-of-plane bending energy of the plate, U s
b denotes the out-

of-plane bending and torsion energy of the stiffeners, and UN corresponds to the stress

stiffening energy derived from the prebuckling analysis. The detailed calculations of these

contributions will be presented later in this section.
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3.7.1 Stress Stiffening Energy

The stress stiffening energy, UN , associated with the von Kármán strains, ε̃, and N,

derived from the in-plane stresses obtained during the prebuckling analysis, is expressed

by the following equation:

UN =

∫ ∫
Ωc

N
T
ε̃|J1| dξ dη =

ab

4

∫ ∫
Ωc

N
T
ε̃ dξ dη (3.89)

where N = {Nx, Ny, Nxy}T represents the in-plane stress resultants and ε̃ represents the

von Kármán strains and they are identified by the following equations.

Nx = 2 [A16E
u
01/b+ A12E

v
01/b+ A11E

u
10/a+ A16E

v
10/a] (3.90)

Ny = 2 [A26E
u
01/b+ A22E

v
01/b+ A12E

u
10/a+ A26E

v
10/a] (3.91)

Nxy = 2 [A66E
u
01/b+ A26E

v
01/b+ A16E

u
10/a+ A66E

v
10/a] (3.92)

where

Eu
pq(ξ, η) =

∂p+qu0(ξ, η)

∂ξp∂ηq
, Ev

pq(ξ, η) =
∂p+qv0(ξ, η)

∂ξp∂ηq
, {p, q} ∈ {0, 1} (3.93)

and

ε̃T =
[
ε̃x ε̃y γ̃xy

]
=

[
1
2

(
∂w0

∂ξ
∂ξ
∂x

)2
1
2

(
∂w0

∂η
∂η
∂y

)2
∂w0

∂ξ
∂ξ
∂x

∂w0

∂η
∂η
∂y

]
(3.94)

Furthermore, the integral is defined over the effective area of the plate within the

domain Ωc. That is, if there are any cutouts present in the plate, the area represented

by the cutouts is not included in the calculation. Note also that the buckling analysis is

interconnected with the prebuckling analysis through this equation.

3.7.2 The Out-of-Plane Bending Energy for a Plate

The out-of-plane bending energy Ub stored within the orthotropic plate is quantified

by:

Ub =
1

2

∫ 1

−1

∫ 1

−1

κTDκ|J1| dξ dη +
1

2

∫ 1

−1

∫ 1

−1

γTHγ|J1| dξ dη (3.95)
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For instance, for a plate with dimensions a× b:

Ub =
ab

8

∫ 1

−1

∫ 1

−1

κTDκ dξ dη +
ab

8

∫ 1

−1

∫ 1

−1

γTHγ dξ dη (3.96)

where

κT =

[
∂φu

∂ξ

∂ξ

∂x

∂φv

∂η

∂η

∂y

(
∂φu

∂η

∂η

∂y
+

∂φv

∂ξ

∂ξ

∂x

)]
(3.97)

and

γT =
[(

φv +
∂w0

∂η
∂η
∂y

) (
φu +

∂w0

∂ξ
∂ξ
∂x

)]
(3.98)

3.7.3 The Out-of-Plane Bending Energy for a Plate with a Circular

Cutout

Similar to the plate, the out-of-plane bending energy Ub stored within the orthotropic

plate with a circular cutout is quantified in its domain Ωc by:

Ub =
1

2

∫ ∫
Ωc

κTDκ|J1| dξ dη +
1

2

∫ ∫
Ωc

γTHγ|J1| dξ dη (3.99)

For instance, for a plate with dimensions a× b, containing a cutout:

Ub =
ab

8

∫ ∫
Ωc

κTDκ dξ dη +
ab

8

∫ ∫
Ωc

γTHγ dξ dη (3.100)

Thus, a conditional integration is performed, as explained earlier, according to Eqs.

3.101 and 3.102.

ab

8

∫ ∫
Ωc

κTDκ dξ dη =


ab
8

∫ 1

−1

∫ 1

−1
κTDκ dξ dη

subject to Ωc :
(

ξ
pd1

)2

+
(

η
pd2

)2

> 1
(3.101)

ab

8

∫ ∫
Ωc

γTHγ dξ dη =


ab
8

∫ 1

−1

∫ 1

−1
γTHγ dξ dη

subject to Ωc :
(

ξ
pd1

)2

+
(

η
pd2

)2

> 1
(3.102)

where pd1 =
2R
a

and pd2 =
2R
b
.
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3.7.4 The Out-of-Plane Bending and Torsion Energy for a Stiffened

Plate with a Circular Cutout

x

y

a

2

b

2

a

2

b

2

R

xsxs

ys

ys

bs

FIGURE 3.14 – Plate with circular cutout and two stiffeners parallel to the y direction.

According to (YOO; LEE, 2011), the strain energy stored in a beam consists of the

following components, while neglecting the minor contributions of the bending shear strain

energy and the warping shear strain energy: the energies due to bending in the x- and

z-directions; the energy due to Saint-Venant shear stress; and the energy due to warping

torsion.

In the prebuckling analysis, the energies related to axial loading and bending in the

z-direction due to the stiffeners were calculated. Now, in the buckling analysis, the out-of-

plane bending and torsion energy originating from the stiffeners will be considered, which

can be represented by the following equations:

Ubending x
b

(s)
=

1

2

∫ ys

−ys

Es
yIxx

(
∂2w0(±xs, y)

∂y2

)2

dy (3.103)

Uvenant
b

(s)
=

1

2

∫ ys

−ys

Gs
xzJ

(
∂β

∂y

)2

dy (3.104)

Uwarping
b

(s)
=

1

2

∫ ys

−ys

Es
yΓ

(
∂2β

∂y2

)2

dy (3.105)
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where β is the rotation angle due to twisting in the x− z plane around the shear center,

as shown in Figure 3.15, Ixx is the moment of inertia about the x-axis, Es
y is the effective

elasticity modulus of the stiffener in the y-axis direction, Gs
xz is the effective shear modulus

in the x−z plane of the stiffener, J is the Saint-Venant torsional constant of the stiffener,

and Γ is the warping torsional constant of the stiffener.

FIGURE 3.15 – Representative figure of the flexural-torsional buckling deformation acting on the stiff-
eners, modeled as beam elements. Source: Adapted from (YOO; LEE, 2011).

Assuming small rotations, the following simplification is made, as adopted by (SILVA,

2021).

β ≈
(
∂w0

∂x

)
(3.106)

Thus, the equations related to Saint-Venant shear stress and the energy due to warping

torsion were simplified as shown in the equations below.

Uvenant
b

(s)
=

1

2

∫ ys

−ys

Gs
xzJ

(
∂2w0(±xs, y)

∂x∂y

)2

dy (3.107)

Uwarping
b

(s)
=

1

2

∫ ys

−ys

Es
yΓ

(
∂3w0(±xs, y)

∂y2∂x

)2

dy (3.108)

Performing the change of coordinates and substitution of partial derivatives:
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Ubending x
b

(s)
=

4Es
yIxx

b3

∫ 2ys
b

− 2ys
b

(
∂2w0(±ξs, η)

∂η2

)2

dη (3.109)

Uvenant
b

(s)
=

4Gs
xzJ

a2b

∫ 2ys
b

− 2ys
b

(
∂2w0(±ξs, η)

∂ξ∂η

)2

dη (3.110)

Uwarping
b

(s)
=

16Es
yΓ

b3a2

∫ 2ys
b

− 2ys
b

(
∂3w0(±ξs, η)

∂η2∂ξ

)2

dη (3.111)

U s
b =Ubending x

b

(s1)
+ Uwarping

b

(s1)
+ Uvenant

b
(s1)+

+ Ubending x
b

(s2)
+ Uwarping

b

(s1)
+ Uvenant

b
(s2) (3.112)

Furthermore, in Appendix A (Stiffeners’ Parameters), the methodology used to obtain

the parameters Es
y, G

s
xz, J , Γ and Izz can be verified.

3.7.5 Stationary Value of the Total Potential Energy for the Buckling

Problem

Taking the first variation of the total potential energy Π2 = Ub+U s
b −UN with respect

to the unknown coefficients cwij, c
φu

ij , and cφv

ij results in:

∂Π2

∂cwij
= 0,

∂Π2

∂cφu

ij

= 0,
∂Π2

∂cφv

ij

= 0, i = 1, 2, . . . , I; j = 1, 2, . . . , J (3.113)

This leads to a linear buckling eigenvalue problem, articulated as:

{Kb +Ks
b − λKg}{c} = 0 (3.114)

where {c} = {cw, acφu

2
, bc

φv

2
}T , is the vector of unknown coefficients. Each component cp,

p ∈ {w,φu, φv} is a vector with I × J terms.

The bending stiffness matrix Kb is structured as follows:

Kb =

Kww Kwφu Kwφv

KT
wφu

Kφuφu Kφuφv

KT
wφv

KT
φuφv

Kφvφv

 (3.115)

where
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Kww =

{
A44I

1010 b

a
+ A55I

0101a

b
+ A45(I

0110 + I1001)

}
ww

(3.116)

Kwφu =

{
A44I

1000 b

a
+ A45I

0100

}
wφu

(3.117)

Kwφv =
{
A55I

0100a

b
+ A45I

1000
}

wφv

(3.118)

Kφuφu =

{
A44I

0000 b

a
+ 4D11I

1010 b

a3
+

4D16(I
0110 + I1001)

a2
+

4D66I
0101

ab

}
φuφu

(3.119)

Kφuφv =

{
A45I

0000 +
4D26I

0101

b2
+

4(D66I
0110 +D12I

1001)

ab
+

4D16I
1010

a2

}
φuφv

(3.120)

Kφvφv =

{
A55I

0000a

b
+

4D22I
0101a

b3
+

4D26(I
0110 + I1001)

b2
+

4D66I
1010

ab

}
φvφv

(3.121)

where

Idefgrs =

∫∫
Ωc

∂d+e[f r(ξ, η)]T

∂ξd∂ηe
· ∂

f+gf s(ξ, η)

∂ξf∂ηg
dξ dη {r, s} ∈ {u, v, w, φu, φv} (3.122)

The out-of-plane bending and torsion stiffness matrix Ks
b due to the inclusion of stiff-

eners is structured as follows:

Ks
b =

K
s
bb 0 0

0 0 0

0 0 0

 (3.123)

where

Ks
bb =

8Es
yIxx

b3

∫ 2ys
b

− 2ys
b

[
fw,ηη(±ξs, η)

]T [
fw,ηη(±ξs, η)

]
dη+ (3.124)

+
8Gs

xzJ

a2b

∫ 2ys
b

− 2ys
b

[
fw,ξη(±ξs, η)

]T [
fw,ξη(±ξs, η)

]
dη+ (3.125)

+
32Es

yΓ

b3a2

∫ 2ys
b

− 2ys
b

[
fw,ηηξ(±ξs, η)

]T [
fw,ηηξ(±ξs, η)

]
dη (3.126)

The geometrical matrix Kg associated with the von Kármán strains ε̃, and N, de-

rived from the in-plane stresses obtained during the prebuckling analysis, is structured as

follows:
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Kg =

Kgg 0 0

0 0 0

0 0 0

 (3.127)

where

Kgg = 2

{
A16E

u
10I

0110

a
+

A16E
u
10I

1001

a
+

A16E
u
01I

1010

a
+

A66E
v
10I

0110

a
+

A66E
v
10I

1001

a

+
A12E

v
01I

1010

a
+

A12E
u
10I

0101

b
+

A66E
u
01I

0110

b
+

A66E
u
01I

1001

b
+

A26E
v
10I

0101

b

+
A26E

v
01I

0110

b
+

A26E
v
01I

1001

b
+

A26E
u
01I

0101a

b2
+

A11E
u
10I

1010b

a2
+

A22E
v
01I

0101a

b2

+
A16E

v
10I

1010b

a2

}
ww

(3.128)

where

Eϑ
pqI

defg
ww =

∫∫
Ωc

Eϑ
pq(ξ, η) ·

∂d+e[fw(ξ, η)]T

∂ξd∂ηe
· ∂

f+gfw(ξ, η)

∂ξf∂ηg
dξ dη

{i, j} ∈ {1, 2, 6}; {p, q} ∈ {0, 1}; {ϑ} ∈ {u, v}; {d, e, f, g} ∈ {0, 1} (3.129)

with

Eu
pq(ξ, η) =

∂p+qu0(ξ, η)

∂ξp∂ηq
, Ev

pq(ξ, η) =
∂p+qv0(ξ, η)

∂ξp∂ηq
, {p, q} ∈ {0, 1} (3.130)

The dimensions of each matrices are (3 × I × J) × (3 × I × J). The solution of Eq.

3.114 determines the buckling loads and mode shapes of the orthotropic plates, with the

critical buckling load denoted by λcr. Furthermore, the diagram of the implementation

used in buckling analysis can be visualized in Figure 3.16.
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-
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FIGURE 3.16 – Diagram of the implementation used in buckling analysis.



4 Numerical Improvement on the

Simulation Performance of the Model

A methodology has been developed to enhance the efficiency of integral calculations

by utilizing hierarchical polynomials. This strategy offers significant advantages by elim-

inating the need to modify trial shape functions, ensuring both speed and simplicity in

various simulations.

Considering that each of the four edges of the plate can have three possible boundary

conditions (clamped, simply supported, or free), this would typically result in 34 − 1

integration sets to cover all scenarios. However, in the implementation presented in this

study, only one integration set is necessary.

Initially, the integrals derived from the first four hierarchical polynomials are calculated

for all simulations in the directions of ξ and η, along with subsequent polynomials for

I > 4 and J > 4, which will enrich the solution. Based on the results obtained from

these integrals, and depending on the adopted boundary condition, certain polynomials

are then excluded through a computational method. This involves the exclusion of rows

and columns associated with χ1, χ2, χ3, and χ4 only in the final phase of prebuckling and

buckling calculations.

For example, if a clamped condition on all edges needs to be simulated, it is sufficient

to subsequently nullify the contributions from the polynomials as indicated in Table 4.1

after calculating all integrals that include contributions from all polynomials.

TABLE 4.1 – Table showing the procedure adopted to obtain the CCCC solution. The polynomials
indicated with a value of zero will not be used in the solution.

Variable
ξ η

χ1 χ2 χ3 χ4 χ1 χ2 χ3 χ4

u 1 1 1 1 1 1 1 1

v 1 1 1 1 1 1 1 1

w 0 1 0 1 0 1 0 1

φu 0 1 0 1 0 1 0 1
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Variable
ξ η

χ1 χ2 χ3 χ4 χ1 χ2 χ3 χ4

φv 0 1 0 1 0 1 0 1

However, if another simulation with a different boundary condition, such as SSSS,

is desired, it would be enough to select the appropriate polynomials without needing to

perform another set of integrations. This demonstrates the efficiency of using hierarchical

polynomials in solving the Discrete Ritz Method problem for various boundary conditions

with only one set of integrations, employing the First-Order Shear Deformation Theory

(FSDT).

Additionally, a methodology was developed, as will be shown later, to ensure that from

a single integration set with I and J , all data for such that I ′ ≤ I and J ′ ≤ J are also

collected. This approach significantly reduces the computational cost, thereby facilitating

the study of convergence. For example, in a simulation where I = J = 30, all values for

I ′ = J ′ ≤ 30 will be collected.

It is possible to calculate the Kuu, Kuv, Kvv, Kww, Kwφu , Kwφv , Kφuφu , Kφuφv and

Kφvφv for I and J terms and obtain the result for I ′ ≤ I and J ′ ≤ J terms simply by

removing unwanted lines and columns from the aforementioned matrices. In an analogous

manner, any desired boundary condition can be satisfied without the need of recalculating

the integrals used in those matrices.

To illustrate the logic behind this method, it is convenient to first examine the structure

of the vector of trial functions in Eq. 4.1.

f(ξ, η) =



χ1(ξ)χ1(η)

χ1(ξ)χ2(η)
...

χ1(ξ)χJ(η)

χ2(ξ)χ1(η)

χ2(ξ)χ2(η)
...
...

χI(ξ)χ1(η)

χI(ξ)χ2(η)
...

χI(ξ)χJ(η)



T

(4.1)

The function χI′(ξ) shows up in the columns with indexes (I ′ − 1)J + 1, (I ′ − 1)J +
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2, . . . , I ′J , and the function χJ ′(η) shows up in the columns with indexes J ′, J ′ + J, J ′ +

2J, . . . , J ′+(I−1)J . For a desired number of terms I ′ ≤ I in the ξ functions, the elements

with χI′+1(ξ), χI′+2(ξ),. . . ,χI(ξ) must be removed from f(ξ, η). The variable ιξ(I
′) denotes

the set with the indexes of the columns of f(ξ, η) to be eliminated and is given by:

ιξ(I
′) =

I⋃
i=I′+1

{(i− 1)J + 1, (i− 1)J + 2, . . . , iJ} =
I⋃

i=I′+1

[(i− 1)J + 1, iJ ] (4.2)

Similarly, to obtain the solution for J ′ ≤ J terms in the η functions, the elements with

χJ ′+1(η), χJ ′+2(η), . . . , χJ(η) must be removed from f(ξ, η). The variable ιη(J
′) denotes

the set with the indexes of the columns of f(ξ, η) to be eliminated and is given by:

ιη(J
′) =

I⋃
i=1

{J ′ + (i− 1)J + 1, J ′ + (i− 1)J + 2, . . . , iJ} =

I⋃
i=1

[J ′ + (i− 1)J + 1, iJ ] (4.3)

Therefore, to solve the buckling problem for I ′ terms in ξ and J ′ terms in η, the

columns with indices in ιξ(I
′) ∪ ιη(J

′) must be eliminated from f(ξ, η). Consequently, for

the matrices obtained by integrating the product
[
f(ξ, η)

]T
f(ξ, η), the rows and columns

within that set must be removed.

For example, suppose all the desired matrices have already been calculated for I =

J = 6 terms. Then, it is possible to analyze the results for any number of I ′ ≤ 6 and

J ′ ≤ 6 terms without the need of recalculating the matrices. If I ′ = J ′ = 4, according

to Eqs. 4.2 and 4.3, ιξ(4) = [25, 30] ∪ [31, 36] = [25, 36] and ιη(4) = [5, 6] ∪ [11, 12] ∪
[17, 18]∪ [23, 24]∪ [29, 30]∪ [35, 36]. This means that the columns in the set ιξ(4)∪ ιη(4) =

{5, 6, 11, 12, 17, 18, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36} must be removed from

f(ξ, η). Consequently, the rows and columns in the same set have to be eliminated from

the matrices Kuu, Kuv, Kvv, Kww, Kwφu , Kwφv , Kφuφu , Kφuφv and Kφvφv . The terms

that will be excluded in the given example are contained in Table 4.2, with I = J = 6

terms and I ′ = J ′ = 4.

TABLE 4.2 – Table containing the terms that will be excluded in the given example, with I = J = 6
terms and I ′ = J ′ = 4.

1 2 3 4 5 6 7 8 9 10 11 12

χ1(ξ)χ1(η) χ1(ξ)χ2(η) χ1(ξ)χ3(η) χ1(ξ)χ4(η) ������χ1(ξ)χ5(η) ������χ1(ξ)χ6(η) χ2(ξ)χ1(η) χ2(ξ)χ2(η) χ2(ξ)χ3(η) χ2(ξ)χ4(η) ������χ2(ξ)χ5(η) ������χ2(ξ)χ6(η)

13 14 15 16 17 18 19 20 21 22 23 24

χ3(ξ)χ1(η) χ3(ξ)χ2(η) χ3(ξ)χ3(η) χ3(ξ)χ4(η) ������χ3(ξ)χ5(η) ������χ3(ξ)χ6(η) χ4(ξ)χ1(η) χ4(ξ)χ2(η) χ4(ξ)χ3(η) χ4(ξ)χ4(η) ������χ4(ξ)χ5(η) ������χ4(ξ)χ6(η)

25 26 27 28 29 30 31 32 33 34 35 36

������χ5(ξ)χ1(η) ������χ5(ξ)χ2(η) ������χ5(ξ)χ3(η) ������χ5(ξ)χ4(η) ������χ5(ξ)χ5(η) ������χ5(ξ)χ6(η) ������χ6(ξ)χ1(η) ������χ6(ξ)χ2(η) ������χ6(ξ)χ3(η) ������χ6(ξ)χ4(η) ������χ6(ξ)χ5(η) ������χ6(ξ)χ6(η)

Another removal must be performed to satisfy the boundary conditions. Since the
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proposed implementation uses hierarchical polynomials as trial functions, the boundary

conditions can be satisfied by setting some of the first four polynomials in ξ and η equal

to zero. Each one of these polynomials is associated to a removal set, which is a set

containing the indexes of the columns of f(ξ, η) where it appears. All the eight removal

sets (four in ξ and four in η) are listed in Table 4.3.

TABLE 4.3 – Columns of f(ξ, η) where the first four hierarchical polynomials appear for a total of I ′

terms in ξ and J ′ terms in η.

Function Plot Removal set

χ1(ξ) {1, 2, . . . , J ′} = [1, J ′]

χ2(ξ) {J ′ + 1, J ′ + 2, . . . , 2J ′} = [J ′ + 1, 2J ′]

χ3(ξ) {2J ′ + 1, 2J ′ + 2, . . . , 3J ′} = [2J ′ + 1, 3J ′]

χ4(ξ) {3J ′ + 1, 3J ′ + 2, . . . , 4J ′} = [3J ′ + 1, 4J ′]

χ1(η) {1, J ′ + 1, 2J ′ + 1, . . . , (I ′ − 1)J ′ + 1}
χ2(η) {2, J ′ + 2, 2J ′ + 2, . . . , (I ′ − 1)J ′ + 2}
χ3(η) {3, J ′ + 3, 2J ′ + 3, . . . , (I ′ − 1)J ′ + 3}
χ4(η) {4, J ′ + 4, 2J ′ + 4, . . . , (I ′ − 1)J ′ + 4}

The integrals and matrices are initially calculated considering all terms (as if all the

plate’s edges were free to move), and the appropriate rows and columns are subsequently

removed from the matrices to reflect the boundary conditions at the plate’s edges. For

each constrained edge, a convenient removal set is obtained for the functions w0, φu and

φv. For every one of these functions a resulting removal set is obtained from the union of

the removal sets of the four edges. The way the removal sets are obtained is summarized

in Table 4.4, and the resulting removal set for each function is the union of the removal

sets obtained at the edges.
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TABLE 4.4 – Removal sets for w0, φu and φv at the plate’s edges.

Edge at ξ = 1 (i.e., x = a/2)

Simply supported

w0(1, η) = 0

Clamped

w0(1, η) = φu(1, η) = φv(1, η) = 0

w0 removal set χ3(ξ) removal set χ3(ξ) removal set

φu removal set ∅ χ3(ξ) removal set

φv removal set ∅ χ3(ξ) removal set

Edge at η = 1 (i.e., y = b/2)

Simply supported

w0(ξ, 1) = 0

Clamped

w0(ξ, 1) = φu(ξ, 1) = φv(ξ, 1) = 0

w0 removal set χ3(η) removal set χ3(η) removal set

φu removal set ∅ χ3(η) removal set

φv removal set ∅ χ3(η) removal set

Edge at ξ = −1 (i.e., x = −a/2)

Simply supported

w0(−1, η) = 0

Clamped

w0(−1, η) = φu(−1, η) = φv(−1, η) = 0

w0 removal set χ1(ξ) removal set χ1(ξ) removal set

φu removal set ∅ χ1(ξ) removal set

φv removal set ∅ χ1(ξ) removal set

Edge at η = −1 (i.e., y = −b/2)

Simply supported

w0(ξ,−1) = 0

Clamped

w0(ξ,−1) = φu(ξ,−1) = φv(ξ,−1) = 0

w0 removal set χ1(η) removal set χ1(η) removal set

φu removal set ∅ χ1(η) removal set

φv removal set ∅ χ1(η) removal set

For example, if I ′ = J ′ = 6 terms are used to analyze the buckling modes of a plate,

the following shape function removal sets can be used:

χ1(ξ) removal set = {1, 2, 3, 4, 5, 6}
χ3(ξ) removal set = {13, 14, 15, 16, 17, 18}
χ1(η) removal set = {1, 7, 13, 19, 25, 31}
χ3(η) removal set = {3, 9, 15, 21, 27, 33}

To ensure greater clarity, Table 4.5 contains all terms and their order for verification
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of the results.

TABLE 4.5 – Table containing all terms for I ′ = J ′ = 6.

1 2 3 4 5 6 7 8 9 10 11 12

χ1(ξ)χ1(η) χ1(ξ)χ2(η) χ1(ξ)χ3(η) χ1(ξ)χ4(η) χ1(ξ)χ5(η) χ1(ξ)χ6(η) χ2(ξ)χ1(η) χ2(ξ)χ2(η) χ2(ξ)χ3(η) χ2(ξ)χ4(η) χ2(ξ)χ5(η) χ2(ξ)χ6(η)

13 14 15 16 17 18 19 20 21 22 23 24

χ3(ξ)χ1(η) χ3(ξ)χ2(η) χ3(ξ)χ3(η) χ3(ξ)χ4(η) χ3(ξ)χ5(η) χ3(ξ)χ6(η) χ4(ξ)χ1(η) χ4(ξ)χ2(η) χ4(ξ)χ3(η) χ4(ξ)χ4(η) χ4(ξ)χ5(η) χ4(ξ)χ6(η)

25 26 27 28 29 30 31 32 33 34 35 36

χ5(ξ)χ1(η) χ5(ξ)χ2(η) χ5(ξ)χ3(η) χ5(ξ)χ4(η) χ5(ξ)χ5(η) χ5(ξ)χ6(η) χ6(ξ)χ1(η) χ6(ξ)χ2(η) χ6(ξ)χ3(η) χ6(ξ)χ4(η) χ6(ξ)χ5(η) χ6(ξ)χ6(η)

The resulting removal set for w0, φu and φv is obtained from the union of the respective

removal sets at each edge.

Thus, the rows with indexes in the resulting w0 removal set must be eliminated from

Kww, Kwφu and Kwφv . Additionally, the same procedure must be performed for the

columns of Kww.

The columns with indexes in the resulting φu removal set must be eliminated from

Kwφu and Kφuφu . For Kφuφv the procedure must be performed for the rows, while as for

Kφuφu it must be done for the rows and columns.

The columns with indexes in the resulting φv removal set must be eliminated from

Kwφv , Kφuφv and Kφvφv . Additionally, the same procedure must be performed for the

columns of Kφvφv .

Finally, considering that the first four hierarchical polynomials are always initially inte-

grated, an additional numerical improvement on the simulation performance was achieved

by verifying the symmetry of the resulting matrices derived from the multiplication of par-

tial derivatives in both the prebuckling and buckling analysis, as follows:

I0000(i, j) = I0000(j, i) i = 1, 2, . . . , I; j = 1, 2, . . . , J (4.4)

I1010(i, j) = I1010(j, i) i = 1, 2, . . . , I; j = 1, 2, . . . , J (4.5)

I0101(i, j) = I0101(j, i) i = 1, 2, . . . , I; j = 1, 2, . . . , J (4.6)

where

Idefgrs =

∫ ∫
Ωc

∂d+e[f r(ξ, η)]T

∂ξd∂ηe
· ∂

f+gf s(ξ, η)

∂ξf∂ηg
dξ dη {r, s} ∈ {u, v, w, φu, φv} (4.7)

Furthermore, in the buckling analysis, it was also verified that the following matrices

possess the following symmetry, due to the fact that the values of Eϑ
pq, obtained through

the prebuckling analysis, are scalars. Thus, at each integration point:
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Eu
10I

1010(i, j) = Eu
10I

1010(j, i) i = 1, 2, . . . , I; j = 1, 2, . . . , J (4.8)

Eu
10I

0101(i, j) = Eu
10I

0101(j, i) i = 1, 2, . . . , I; j = 1, 2, . . . , J (4.9)

Eu
01I

1010(i, j) = Eu
01I

1010(j, i) i = 1, 2, . . . , I; j = 1, 2, . . . , J (4.10)

Eu
01I

0101(i, j) = Eu
01I

0101(j, i) i = 1, 2, . . . , I; j = 1, 2, . . . , J (4.11)

Ev
10I

1010(i, j) = Ev
10I

1010(j, i) i = 1, 2, . . . , I; j = 1, 2, . . . , J (4.12)

Ev
10I

0101(i, j) = Ev
10I

0101(j, i) i = 1, 2, . . . , I; j = 1, 2, . . . , J (4.13)

Ev
01I

1010(i, j) = Ev
01I

1010(j, i) i = 1, 2, . . . , I; j = 1, 2, . . . , J (4.14)

Ev
01I

0101(i, j) = Ev
01I

0101(j, i) i = 1, 2, . . . , I; j = 1, 2, . . . , J (4.15)

where

Idefgrs =

∫ ∫
Ωc

∂d+e[f r(ξ, η)]T

∂ξd∂ηe
· ∂

f+gf s(ξ, η)

∂ξf∂ηg
dξ dη {r, s} ∈ {u, v, w, φu, φv} (4.16)

with

Eu
pq(ξ, η) =

∂p+qu0(ξ, η)

∂ξp∂ηq
, Ev

pq(ξ, η) =
∂p+qv0(ξ, η)

∂ξp∂ηq
, {p, q} ∈ {0, 1} (4.17)

This reduces the computational effort by half when calculating the integrals contained

in these matrices, making the implementation not only robust but also faster, allowing

simulations with lower indices and various boundary conditions.

In Figure 4.1, the representative diagram of the numerical improvements on the sim-

ulation performance of the model using hierarchical polynomials is shown. Note that

the proposed methodology allows for adaptability in handling numerical simulations that

initially did not converge by simulating them with lower indices of hierarchical poly-

nomials. It also enables robust convergence analysis and facilitates a large number of

simulations involving various boundary conditions from just one set of numerical inte-

grations. Furthermore, considering that each integration point is independent, parallel

computing was utilized through the Parallel Computing ToolboxTM in Matlab®, where

many calculations or processes are carried out simultaneously. This strategy can acceler-

ate the simulation process, depending on the number of cores available in a computer’s

processor.
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No

FIGURE 4.1 – Representative diagram of the numerical improvement on the simulation performance of
the model using hierarchical polynomials.



5 Model Verification

5.1 Initial Considerations

Throughout this work, the boundary conditions of a plate will be represented in a

counterclockwise direction by four letters in the form 1234, as shown in Figure 5.1.

FIGURE 5.1 – Representative figure of the orientation adopted to characterize the boundary conditions
1234, represented in a counterclockwise direction.

The four letters can assume the following boundary conditions:

• C: Clamped;

• S: Simply Supported;

• F: Free.
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Furthermore, the behavior of the mode shapes will be characterized by normalized

absolute out-of-plane displacements and will use the “jet” color scale in Matlab®, as

shown in Figure 5.2.

FIGURE 5.2 – Representative figure of the “jet” color scale used to characterize the normalized absolute
out-of-plane displacements.

Regarding the illustration of stress fields throughout this work, the same “jet” color

scale will be used; however, the values will not be absolute nor normalized.

5.2 Plate

To verify the adopted model, which employs the Discrete Ritz Method using hierar-

chical polynomials as trial shape functions, simulations were conducted using Matlab®

software. These simulations were compared with the results obtained by (NARITA, 1990)

for a composite plate with the properties specified in Table 5.1, under the boundary

condition of being simply supported on all sides, as well as with a FEM.

TABLE 5.1 – Table containing the layer material properties for the composite plate studied, as provided
in (NARITA, 1990).

Material E1 [GPa] E2 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 E1/E2

Graphite/Epoxy 138 8.96 7.1 7.1 7.1 0.3 15.4

As shown in Table 5.2, the appropriate hierarchical polynomials were selected for this

configuration.

TABLE 5.2 – Table showing the procedure adopted to obtain the SSSS solution. The polynomials
indicated with a value of zero will not be used in the solution.

Variable
ξ η

χ1 χ2 χ3 χ4 χ1 χ2 χ3 χ4

u 1 1 1 1 1 1 1 1

v 1 1 1 1 1 1 1 1

w 0 1 0 1 0 1 0 1

φu 1 1 1 1 1 1 1 1

φv 1 1 1 1 1 1 1 1

In these simulations, the critical buckling results under positive pure shear loading,

Nxy, were compared. This loading configuration was chosen in light of it being the setup
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used in experiments that will be detailed subsequently. Furthermore, a finite element

model was developed in Abaqus® software. The simulated geometric conditions used

to verify the mathematical modeling in (NARITA, 1990) were arbitrarily selected and are

shown in Table 5.3.

TABLE 5.3 – Table containing the simulated geometric conditions used to verify the mathematical mod-
eling with (NARITA, 1990).

Stacking a× a [mm] t [mm] h [mm]

[0, 0, 0] 425× 425 1 3

[15, -15, 15] 425× 425 1 3

[30, -30, 30] 425× 425 1 3

[45, -45, 45] 425× 425 1 3

Furthermore, the results from (NARITA, 1990) are dimensionless, as outlined in Eq.

5.1:

λPS =
Nxya

2

D0

(5.1)

where

D0 =
E1h

3

12(1− ν12ν21)
ν21 = ν12

(
E2

E1

)
(5.2)

where a represents the dimension of one side of the square plate, t denotes the thickness

of each lamina, and h is the total thickness of the laminate.

To improve the verification reliability of the model, a Finite Element Model (FEM)

was also developed using Abaqus® software, incorporating 7,225 mesh elements.

A comparison was conducted between the outcomes predicted by the model used

in this study, the expected outcomes in (NARITA, 1990), and a model developed using

Finite Element Analysis (FEA) with Abaqus® software. The semi-analytical approach

employed I = J = 20 terms, with 100 integration points. The normalized critical buckling

load results across four stacking configurations, including a comparative analysis between

the methodology utilized in this study, the findings documented in (NARITA, 1990), and

the Finite Element Method (FEM) analysis conducted with Abaqus®, can be verified in

Table 5.4.
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TABLE 5.4 – Normalized critical buckling load results λcr = Nxya
2/D0 across four stacking con-

figurations, including comparative analysis between the methodology utilized in this study, findings
documented in (NARITA, 1990), and through Finite Element Method (FEM) analysis conducted with
Abaqus®. The error calculated with respect to the results obtained through FEM is given by:
Error = (λcr − λFEM )/λFEM .

Stacking (NARITA, 1990)
Error [%]

(NARITA, 1990)
Present

Error [%]

(Present)
FEM

[0, 0, 0] 25.71 0.04 25.64 -0.23 25.70

[15, -15, 15] 17.24 1.11 17.01 -0.23 17.05

[30, -30, 30] 14.64 4.42 13.99 -0.21 14.02

[45, -45, 45] 14.62 6.56 13.70 -0.15 13.72

Upon examining Table 5.4, it is observed that there was good agreement between

the results presented by (NARITA, 1990) and those obtained through FEM, with an error

ranging from 0.04% to 6.56%. It is noteworthy that as the ply angle increased, so did the

error, reaching its maximum in the stacking configuration of [45,-45,45].

Furthermore, the semi-analytical model adopted, utilizing hierarchical polynomials,

exhibited a deviation ranging from 0.15% to 0.23% in relation to FEM. The results ob-

tained demonstrated an excellent correlation with both the finite element model and

(NARITA, 1990).

Based on these results, the verification of the buckling analysis in a plate was con-

sidered satisfactory, given that the results obtained for four stacking configurations were

consistent with those predicted in the literature and with those obtained through FEM.

Following this verification, the buckling analysis for plates with circular cutouts was con-

ducted, which will be presented in the next section.

Furthermore, the behavior of the first modes simulated across four stacking config-

urations, including their comparison with the findings documented in (NARITA, 1990)

and FEM analysis, can be verified in Figures 5.3, 5.4, 5.5, and 5.6, which represent the

normalized absolute out-of-plane displacements obtained.
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(a) λ = 25.71 (b) λ = 25.70 (c) λ = 25.64

FIGURE 5.3 – Normalized absolute out-of-plane displacements for the 1◦ mode, SSSS boundary condition,
under pure shear loading, with a stacking configuration of [0,0,0]. (a) (NARITA, 1990). (b) FEM. (c)
Present.

(a) λ = 17.24 (b) λ = 17.05 (c) λ = 17.01

FIGURE 5.4 – Normalized absolute out-of-plane displacements for the 1◦ mode, SSSS boundary condition,
under pure shear loading, with a stacking configuration of [15,-15,15]. (a) (NARITA, 1990). (b) FEM. (c)
Present.

(a) λ = 14.64 (b) λ = 14.02 (c) λ = 13.99

FIGURE 5.5 – Normalized absolute out-of-plane displacements for the 1◦ mode, SSSS boundary condition,
under pure shear loading, with a stacking configuration of [30,-30,30]. (a) (NARITA, 1990). (b) FEM. (c)
Present.
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(a) λ = 14.62 (b) λ = 13.72 (c) λ = 13.70

FIGURE 5.6 – Normalized absolute out-of-plane displacements for the 1◦ mode, SSSS boundary condition,
under pure shear loading, with a stacking configuration of [45,-45,45]. (a) (NARITA, 1990). (b) FEM. (c)
Present.

5.3 Plate with a Circular Cutout

To verify the model incorporating cutouts, a comparison was conducted with the

results from (JING; DUAN, 2023), (ABOLGHASEMI et al., 2019), and a FEM analysis for

an isotropic square plate with a circular cutout. The material properties are detailed in

Table 5.5. The plate thickness is specified as h/a = 0.01, and the radius of the circular

cutout is represented by R.

TABLE 5.5 – Material properties of the isotropic square plates with a circular cutout as specified in
(JING; DUAN, 2023).

E [GPa] ν12 a [mm] b [mm] h [mm] h/a R/a

200 0.3 100 100 1 0.01 0.3

Furthermore, although the chosen material is not a composite, it was selected primarily

to verify the methodology itself. Additionally, data for this material were available from

two literature sources. The application of this methodology to composite materials will be

validated using experimentally simulated materials, as will be demonstrated throughout

this work. Moreover, for isotropic material, the flexural rigidity of the plate is defined as:

D1 =
Eh3

12(1− ν2
12)

(5.3)

Initially, a comparison of in-plane loadings obtained through prebuckling calculations

for a uniaxial loading Nx was conducted. Note that for this calculation, the first four

hierarchical polynomials of u and v are always used, regardless of the simulated boundary

condition. Additionally, since the integrals containing the trial shape functions are the
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same for both u and v, it is only necessary to calculate the integrals for u, for instance.

Utilizing I = J = 30 terms in the admissible function and 292× 292 Gauss points for

numerical integration, the in-plane stress resultants N̄ of a square plate with a circular

cutout (R/a = 0.3) under uniaxial loading Nx, with an SSSS boundary condition, were

compared with the results from (JING; DUAN, 2023) and obtained via FEM (Abaqus®), as

observed in Figures 5.7, 5.8, and 5.9. In this case, the in-plane stress resultants obtained

using this method exhibit good agreement with both FEM and the results from the

literature. It is important to note that this characterization highlights the behavior of the

stress fields N̄x, N̄y, and N̄xy when subjected to a unit value of Nx. Therefore, these values

do not have specific units of measurement but are instead reference values relative to Nx.

It is noteworthy that the presence of a circular cutout induces a stress concentration when

subjected to uniaxial loading Nx, resulting in N̄x, N̄y, and N̄xy exhibiting non-uniform

stress distributions.
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plate shape. Contrary to this, the proposed new formulation jumps out of 
the outer shape of the plate and controls its shape using combinations of 
extended interval integral [65], Gauss quadrature, and variable stiffness 

properties within a square domain on the basis of the fact that Gauss 
numerical integration can be performed piecewise in the range [−1, 1] 
to approximate any curve or shape. Thereby, the discrete Ritz method is 
promoted as a general numerical method that can solve complex geo-
metric problems encountered in the traditional Ritz method. 

The formulation presented in this section is consistent and standard 
for perforated plates of arbitrary geometries. As a consequence, the 
modeling process for DRM is standard. As a first step, a rectangle is 
constructed to cover the geometric domain of the plate, with the rect-
angle’s length and width being taken as the maximum dimensions of the 
plate geometry domain in the x and y directions. Following this, the 
rectangle and the geometry of the plate are mapped into a standard 
square domain. After that, Gauss points are generated, and the stiffness 
matrices are calculated and assigned zero within cutouts determined by 
the plate’s contours. As a final step, energy functionals are constructed 
in the square domain with variable stiffness, and eigenvalues and mode 
shapes can be extracted via Ritz evaluation procedure. 

In DRM, the admissible function is constructed from Legendre 
polynomials involving boundary conditions that are applied to the edges 
of differently geometric contours. Then, a Gauss quadrature is used to 
perform numerical integration over complex geometric domain by 
considering the plate to be a variable stiffness system with zero stiffness 
in the cutouts. The number of Gauss points has a significant impact on 
both the precision and computation expense of DRM. In the presence of 
sufficient terms of Legendre polynomials and number of Gauss points, 
the buckling eigenvalues will converge. A flowchart of the DRM is 
presented in Fig. 4. 

3. Numerical applications and discussions 

To demonstrate the capability of the proposed DRM, isotropic and 
orthotropic plates with or without cutouts, under various boundary 
conditions and loading cases, are investigated. Matlab 2018b is used for 
computation with an i9–10900KF CPU and a 128 G RAM. For isotropic 
material, the flexural rigidity of the plate is defined as D = Eh3/[12(1- 
ν2)]. Results are compared with previous studies. 
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Fig. 7. Model for an isotropic square plate with a circular cutout: (a) Geometry 
and loading; (b) Discretization using 80×80 Gauss points. 

Fig. 8. Comparison of inplane stress resultants (N̄x, N̄y, N̄xy) of DRM and 
FEM (Abaqus). 

Table 2 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under uniaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 3.986 3.984 3.989 9.914 10.068 9.964 0.960 0.952 0.950 3.911 3.916 3.896 4.373 4.368 4.340 
0.2 3.571 3.515 3.508 8.958 8.804 8.682 0.865 0.853 0.846 3.607 3.577 3.547 4.108 4.007 3.969 
0.4 3.023 3.011 3.019 8.381 8.426 8.286 0.649 0.641 0.640 3.085 3.022 3.009 3.459 3.325 3.299 
0.6 2.818 2.790 2.782 7.099 7.395 7.176 0.442 0.427 0.428 2.287 2.214 2.199 2.464 2.271 2.248  

Table 3 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under biaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 1.993 1.992 1.994 5.234 5.301 5.258 0.941 0.931 0.929 2.755 2.734 2.687 2.864 2.858 2.803 
0.2 1.794 1.766 1.764 5.019 4.893 4.863 0.853 0.841 0.833 2.718 2.665 2.616 2.797 2.727 2.669 
0.4 1.568 1.562 1.569 6.128 6.246 6.177 0.648 0.639 0.637 2.420 2.367 2.330 2.441 2.383 2.344 
0.6 1.586 1.580 1.587 8.529 8.466 8.084 0.440 0.431 0.431 1.867 1.807 1.787 1.859 1.807 1.787  

Table 4 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a 
circular cutout under pure shear loading.  

d/a CCCC SSSS 
Ref. [58] Present FEM Ref. [58] Present FEM 

0 14.37 14.63 14.36 9.235 9.291 9.240 
0.2 10.79 10.90 10.69 7.054 7.027 6.948 
0.4 6.853 6.856 6.701 4.089 4.066 4.051 
0.6 4.059 4.418 4.264 2.185 2.192 2.162  

Z. Jing and L. Duan                                                                                                                                                                                                                            
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plate shape. Contrary to this, the proposed new formulation jumps out of 
the outer shape of the plate and controls its shape using combinations of 
extended interval integral [65], Gauss quadrature, and variable stiffness 

properties within a square domain on the basis of the fact that Gauss 
numerical integration can be performed piecewise in the range [−1, 1] 
to approximate any curve or shape. Thereby, the discrete Ritz method is 
promoted as a general numerical method that can solve complex geo-
metric problems encountered in the traditional Ritz method. 

The formulation presented in this section is consistent and standard 
for perforated plates of arbitrary geometries. As a consequence, the 
modeling process for DRM is standard. As a first step, a rectangle is 
constructed to cover the geometric domain of the plate, with the rect-
angle’s length and width being taken as the maximum dimensions of the 
plate geometry domain in the x and y directions. Following this, the 
rectangle and the geometry of the plate are mapped into a standard 
square domain. After that, Gauss points are generated, and the stiffness 
matrices are calculated and assigned zero within cutouts determined by 
the plate’s contours. As a final step, energy functionals are constructed 
in the square domain with variable stiffness, and eigenvalues and mode 
shapes can be extracted via Ritz evaluation procedure. 

In DRM, the admissible function is constructed from Legendre 
polynomials involving boundary conditions that are applied to the edges 
of differently geometric contours. Then, a Gauss quadrature is used to 
perform numerical integration over complex geometric domain by 
considering the plate to be a variable stiffness system with zero stiffness 
in the cutouts. The number of Gauss points has a significant impact on 
both the precision and computation expense of DRM. In the presence of 
sufficient terms of Legendre polynomials and number of Gauss points, 
the buckling eigenvalues will converge. A flowchart of the DRM is 
presented in Fig. 4. 

3. Numerical applications and discussions 

To demonstrate the capability of the proposed DRM, isotropic and 
orthotropic plates with or without cutouts, under various boundary 
conditions and loading cases, are investigated. Matlab 2018b is used for 
computation with an i9–10900KF CPU and a 128 G RAM. For isotropic 
material, the flexural rigidity of the plate is defined as D = Eh3/[12(1- 
ν2)]. Results are compared with previous studies. 
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Fig. 7. Model for an isotropic square plate with a circular cutout: (a) Geometry 
and loading; (b) Discretization using 80×80 Gauss points. 

Fig. 8. Comparison of inplane stress resultants (N̄x, N̄y, N̄xy) of DRM and 
FEM (Abaqus). 

Table 2 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under uniaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 3.986 3.984 3.989 9.914 10.068 9.964 0.960 0.952 0.950 3.911 3.916 3.896 4.373 4.368 4.340 
0.2 3.571 3.515 3.508 8.958 8.804 8.682 0.865 0.853 0.846 3.607 3.577 3.547 4.108 4.007 3.969 
0.4 3.023 3.011 3.019 8.381 8.426 8.286 0.649 0.641 0.640 3.085 3.022 3.009 3.459 3.325 3.299 
0.6 2.818 2.790 2.782 7.099 7.395 7.176 0.442 0.427 0.428 2.287 2.214 2.199 2.464 2.271 2.248  

Table 3 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under biaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 1.993 1.992 1.994 5.234 5.301 5.258 0.941 0.931 0.929 2.755 2.734 2.687 2.864 2.858 2.803 
0.2 1.794 1.766 1.764 5.019 4.893 4.863 0.853 0.841 0.833 2.718 2.665 2.616 2.797 2.727 2.669 
0.4 1.568 1.562 1.569 6.128 6.246 6.177 0.648 0.639 0.637 2.420 2.367 2.330 2.441 2.383 2.344 
0.6 1.586 1.580 1.587 8.529 8.466 8.084 0.440 0.431 0.431 1.867 1.807 1.787 1.859 1.807 1.787  

Table 4 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a 
circular cutout under pure shear loading.  

d/a CCCC SSSS 
Ref. [58] Present FEM Ref. [58] Present FEM 

0 14.37 14.63 14.36 9.235 9.291 9.240 
0.2 10.79 10.90 10.69 7.054 7.027 6.948 
0.4 6.853 6.856 6.701 4.089 4.066 4.051 
0.6 4.059 4.418 4.264 2.185 2.192 2.162  

Z. Jing and L. Duan                                                                                                                                                                                                                            

(b) (c)

FIGURE 5.7 – Representative figure of the N̄x stress field under uniaxial loading Nx, R/a = 0.3: (a)
(JING; DUAN, 2023). (b) FEM. (c) Present. These values do not have specific units of measurement but
are instead reference values relative to Nx.
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plate shape. Contrary to this, the proposed new formulation jumps out of 
the outer shape of the plate and controls its shape using combinations of 
extended interval integral [65], Gauss quadrature, and variable stiffness 

properties within a square domain on the basis of the fact that Gauss 
numerical integration can be performed piecewise in the range [−1, 1] 
to approximate any curve or shape. Thereby, the discrete Ritz method is 
promoted as a general numerical method that can solve complex geo-
metric problems encountered in the traditional Ritz method. 

The formulation presented in this section is consistent and standard 
for perforated plates of arbitrary geometries. As a consequence, the 
modeling process for DRM is standard. As a first step, a rectangle is 
constructed to cover the geometric domain of the plate, with the rect-
angle’s length and width being taken as the maximum dimensions of the 
plate geometry domain in the x and y directions. Following this, the 
rectangle and the geometry of the plate are mapped into a standard 
square domain. After that, Gauss points are generated, and the stiffness 
matrices are calculated and assigned zero within cutouts determined by 
the plate’s contours. As a final step, energy functionals are constructed 
in the square domain with variable stiffness, and eigenvalues and mode 
shapes can be extracted via Ritz evaluation procedure. 

In DRM, the admissible function is constructed from Legendre 
polynomials involving boundary conditions that are applied to the edges 
of differently geometric contours. Then, a Gauss quadrature is used to 
perform numerical integration over complex geometric domain by 
considering the plate to be a variable stiffness system with zero stiffness 
in the cutouts. The number of Gauss points has a significant impact on 
both the precision and computation expense of DRM. In the presence of 
sufficient terms of Legendre polynomials and number of Gauss points, 
the buckling eigenvalues will converge. A flowchart of the DRM is 
presented in Fig. 4. 

3. Numerical applications and discussions 

To demonstrate the capability of the proposed DRM, isotropic and 
orthotropic plates with or without cutouts, under various boundary 
conditions and loading cases, are investigated. Matlab 2018b is used for 
computation with an i9–10900KF CPU and a 128 G RAM. For isotropic 
material, the flexural rigidity of the plate is defined as D = Eh3/[12(1- 
ν2)]. Results are compared with previous studies. 
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Fig. 7. Model for an isotropic square plate with a circular cutout: (a) Geometry 
and loading; (b) Discretization using 80×80 Gauss points. 

Fig. 8. Comparison of inplane stress resultants (N̄x, N̄y, N̄xy) of DRM and 
FEM (Abaqus). 

Table 2 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under uniaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 3.986 3.984 3.989 9.914 10.068 9.964 0.960 0.952 0.950 3.911 3.916 3.896 4.373 4.368 4.340 
0.2 3.571 3.515 3.508 8.958 8.804 8.682 0.865 0.853 0.846 3.607 3.577 3.547 4.108 4.007 3.969 
0.4 3.023 3.011 3.019 8.381 8.426 8.286 0.649 0.641 0.640 3.085 3.022 3.009 3.459 3.325 3.299 
0.6 2.818 2.790 2.782 7.099 7.395 7.176 0.442 0.427 0.428 2.287 2.214 2.199 2.464 2.271 2.248  

Table 3 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under biaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 1.993 1.992 1.994 5.234 5.301 5.258 0.941 0.931 0.929 2.755 2.734 2.687 2.864 2.858 2.803 
0.2 1.794 1.766 1.764 5.019 4.893 4.863 0.853 0.841 0.833 2.718 2.665 2.616 2.797 2.727 2.669 
0.4 1.568 1.562 1.569 6.128 6.246 6.177 0.648 0.639 0.637 2.420 2.367 2.330 2.441 2.383 2.344 
0.6 1.586 1.580 1.587 8.529 8.466 8.084 0.440 0.431 0.431 1.867 1.807 1.787 1.859 1.807 1.787  

Table 4 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a 
circular cutout under pure shear loading.  

d/a CCCC SSSS 
Ref. [58] Present FEM Ref. [58] Present FEM 

0 14.37 14.63 14.36 9.235 9.291 9.240 
0.2 10.79 10.90 10.69 7.054 7.027 6.948 
0.4 6.853 6.856 6.701 4.089 4.066 4.051 
0.6 4.059 4.418 4.264 2.185 2.192 2.162  

Z. Jing and L. Duan                                                                                                                                                                                                                            

(a)

Thin-Walled Structures 193 (2023) 111294

9

plate shape. Contrary to this, the proposed new formulation jumps out of 
the outer shape of the plate and controls its shape using combinations of 
extended interval integral [65], Gauss quadrature, and variable stiffness 

properties within a square domain on the basis of the fact that Gauss 
numerical integration can be performed piecewise in the range [−1, 1] 
to approximate any curve or shape. Thereby, the discrete Ritz method is 
promoted as a general numerical method that can solve complex geo-
metric problems encountered in the traditional Ritz method. 

The formulation presented in this section is consistent and standard 
for perforated plates of arbitrary geometries. As a consequence, the 
modeling process for DRM is standard. As a first step, a rectangle is 
constructed to cover the geometric domain of the plate, with the rect-
angle’s length and width being taken as the maximum dimensions of the 
plate geometry domain in the x and y directions. Following this, the 
rectangle and the geometry of the plate are mapped into a standard 
square domain. After that, Gauss points are generated, and the stiffness 
matrices are calculated and assigned zero within cutouts determined by 
the plate’s contours. As a final step, energy functionals are constructed 
in the square domain with variable stiffness, and eigenvalues and mode 
shapes can be extracted via Ritz evaluation procedure. 

In DRM, the admissible function is constructed from Legendre 
polynomials involving boundary conditions that are applied to the edges 
of differently geometric contours. Then, a Gauss quadrature is used to 
perform numerical integration over complex geometric domain by 
considering the plate to be a variable stiffness system with zero stiffness 
in the cutouts. The number of Gauss points has a significant impact on 
both the precision and computation expense of DRM. In the presence of 
sufficient terms of Legendre polynomials and number of Gauss points, 
the buckling eigenvalues will converge. A flowchart of the DRM is 
presented in Fig. 4. 

3. Numerical applications and discussions 

To demonstrate the capability of the proposed DRM, isotropic and 
orthotropic plates with or without cutouts, under various boundary 
conditions and loading cases, are investigated. Matlab 2018b is used for 
computation with an i9–10900KF CPU and a 128 G RAM. For isotropic 
material, the flexural rigidity of the plate is defined as D = Eh3/[12(1- 
ν2)]. Results are compared with previous studies. 
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Fig. 7. Model for an isotropic square plate with a circular cutout: (a) Geometry 
and loading; (b) Discretization using 80×80 Gauss points. 

Fig. 8. Comparison of inplane stress resultants (N̄x, N̄y, N̄xy) of DRM and 
FEM (Abaqus). 

Table 2 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under uniaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 3.986 3.984 3.989 9.914 10.068 9.964 0.960 0.952 0.950 3.911 3.916 3.896 4.373 4.368 4.340 
0.2 3.571 3.515 3.508 8.958 8.804 8.682 0.865 0.853 0.846 3.607 3.577 3.547 4.108 4.007 3.969 
0.4 3.023 3.011 3.019 8.381 8.426 8.286 0.649 0.641 0.640 3.085 3.022 3.009 3.459 3.325 3.299 
0.6 2.818 2.790 2.782 7.099 7.395 7.176 0.442 0.427 0.428 2.287 2.214 2.199 2.464 2.271 2.248  

Table 3 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under biaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 1.993 1.992 1.994 5.234 5.301 5.258 0.941 0.931 0.929 2.755 2.734 2.687 2.864 2.858 2.803 
0.2 1.794 1.766 1.764 5.019 4.893 4.863 0.853 0.841 0.833 2.718 2.665 2.616 2.797 2.727 2.669 
0.4 1.568 1.562 1.569 6.128 6.246 6.177 0.648 0.639 0.637 2.420 2.367 2.330 2.441 2.383 2.344 
0.6 1.586 1.580 1.587 8.529 8.466 8.084 0.440 0.431 0.431 1.867 1.807 1.787 1.859 1.807 1.787  

Table 4 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a 
circular cutout under pure shear loading.  

d/a CCCC SSSS 
Ref. [58] Present FEM Ref. [58] Present FEM 

0 14.37 14.63 14.36 9.235 9.291 9.240 
0.2 10.79 10.90 10.69 7.054 7.027 6.948 
0.4 6.853 6.856 6.701 4.089 4.066 4.051 
0.6 4.059 4.418 4.264 2.185 2.192 2.162  

Z. Jing and L. Duan                                                                                                                                                                                                                            

(b) (c)

FIGURE 5.8 – Representative figure of the N̄y stress field under uniaxial loading Nx, R/a = 0.3: (a)
(JING; DUAN, 2023). (b) FEM. (c) Present. These values do not have specific units of measurement but
are instead reference values relative to Nx.
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plate shape. Contrary to this, the proposed new formulation jumps out of 
the outer shape of the plate and controls its shape using combinations of 
extended interval integral [65], Gauss quadrature, and variable stiffness 

properties within a square domain on the basis of the fact that Gauss 
numerical integration can be performed piecewise in the range [−1, 1] 
to approximate any curve or shape. Thereby, the discrete Ritz method is 
promoted as a general numerical method that can solve complex geo-
metric problems encountered in the traditional Ritz method. 

The formulation presented in this section is consistent and standard 
for perforated plates of arbitrary geometries. As a consequence, the 
modeling process for DRM is standard. As a first step, a rectangle is 
constructed to cover the geometric domain of the plate, with the rect-
angle’s length and width being taken as the maximum dimensions of the 
plate geometry domain in the x and y directions. Following this, the 
rectangle and the geometry of the plate are mapped into a standard 
square domain. After that, Gauss points are generated, and the stiffness 
matrices are calculated and assigned zero within cutouts determined by 
the plate’s contours. As a final step, energy functionals are constructed 
in the square domain with variable stiffness, and eigenvalues and mode 
shapes can be extracted via Ritz evaluation procedure. 

In DRM, the admissible function is constructed from Legendre 
polynomials involving boundary conditions that are applied to the edges 
of differently geometric contours. Then, a Gauss quadrature is used to 
perform numerical integration over complex geometric domain by 
considering the plate to be a variable stiffness system with zero stiffness 
in the cutouts. The number of Gauss points has a significant impact on 
both the precision and computation expense of DRM. In the presence of 
sufficient terms of Legendre polynomials and number of Gauss points, 
the buckling eigenvalues will converge. A flowchart of the DRM is 
presented in Fig. 4. 

3. Numerical applications and discussions 

To demonstrate the capability of the proposed DRM, isotropic and 
orthotropic plates with or without cutouts, under various boundary 
conditions and loading cases, are investigated. Matlab 2018b is used for 
computation with an i9–10900KF CPU and a 128 G RAM. For isotropic 
material, the flexural rigidity of the plate is defined as D = Eh3/[12(1- 
ν2)]. Results are compared with previous studies. 
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Fig. 7. Model for an isotropic square plate with a circular cutout: (a) Geometry 
and loading; (b) Discretization using 80×80 Gauss points. 

Fig. 8. Comparison of inplane stress resultants (N̄x, N̄y, N̄xy) of DRM and 
FEM (Abaqus). 

Table 2 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under uniaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 3.986 3.984 3.989 9.914 10.068 9.964 0.960 0.952 0.950 3.911 3.916 3.896 4.373 4.368 4.340 
0.2 3.571 3.515 3.508 8.958 8.804 8.682 0.865 0.853 0.846 3.607 3.577 3.547 4.108 4.007 3.969 
0.4 3.023 3.011 3.019 8.381 8.426 8.286 0.649 0.641 0.640 3.085 3.022 3.009 3.459 3.325 3.299 
0.6 2.818 2.790 2.782 7.099 7.395 7.176 0.442 0.427 0.428 2.287 2.214 2.199 2.464 2.271 2.248  

Table 3 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under biaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 1.993 1.992 1.994 5.234 5.301 5.258 0.941 0.931 0.929 2.755 2.734 2.687 2.864 2.858 2.803 
0.2 1.794 1.766 1.764 5.019 4.893 4.863 0.853 0.841 0.833 2.718 2.665 2.616 2.797 2.727 2.669 
0.4 1.568 1.562 1.569 6.128 6.246 6.177 0.648 0.639 0.637 2.420 2.367 2.330 2.441 2.383 2.344 
0.6 1.586 1.580 1.587 8.529 8.466 8.084 0.440 0.431 0.431 1.867 1.807 1.787 1.859 1.807 1.787  

Table 4 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a 
circular cutout under pure shear loading.  

d/a CCCC SSSS 
Ref. [58] Present FEM Ref. [58] Present FEM 

0 14.37 14.63 14.36 9.235 9.291 9.240 
0.2 10.79 10.90 10.69 7.054 7.027 6.948 
0.4 6.853 6.856 6.701 4.089 4.066 4.051 
0.6 4.059 4.418 4.264 2.185 2.192 2.162  

Z. Jing and L. Duan                                                                                                                                                                                                                            
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plate shape. Contrary to this, the proposed new formulation jumps out of 
the outer shape of the plate and controls its shape using combinations of 
extended interval integral [65], Gauss quadrature, and variable stiffness 

properties within a square domain on the basis of the fact that Gauss 
numerical integration can be performed piecewise in the range [−1, 1] 
to approximate any curve or shape. Thereby, the discrete Ritz method is 
promoted as a general numerical method that can solve complex geo-
metric problems encountered in the traditional Ritz method. 

The formulation presented in this section is consistent and standard 
for perforated plates of arbitrary geometries. As a consequence, the 
modeling process for DRM is standard. As a first step, a rectangle is 
constructed to cover the geometric domain of the plate, with the rect-
angle’s length and width being taken as the maximum dimensions of the 
plate geometry domain in the x and y directions. Following this, the 
rectangle and the geometry of the plate are mapped into a standard 
square domain. After that, Gauss points are generated, and the stiffness 
matrices are calculated and assigned zero within cutouts determined by 
the plate’s contours. As a final step, energy functionals are constructed 
in the square domain with variable stiffness, and eigenvalues and mode 
shapes can be extracted via Ritz evaluation procedure. 

In DRM, the admissible function is constructed from Legendre 
polynomials involving boundary conditions that are applied to the edges 
of differently geometric contours. Then, a Gauss quadrature is used to 
perform numerical integration over complex geometric domain by 
considering the plate to be a variable stiffness system with zero stiffness 
in the cutouts. The number of Gauss points has a significant impact on 
both the precision and computation expense of DRM. In the presence of 
sufficient terms of Legendre polynomials and number of Gauss points, 
the buckling eigenvalues will converge. A flowchart of the DRM is 
presented in Fig. 4. 

3. Numerical applications and discussions 

To demonstrate the capability of the proposed DRM, isotropic and 
orthotropic plates with or without cutouts, under various boundary 
conditions and loading cases, are investigated. Matlab 2018b is used for 
computation with an i9–10900KF CPU and a 128 G RAM. For isotropic 
material, the flexural rigidity of the plate is defined as D = Eh3/[12(1- 
ν2)]. Results are compared with previous studies. 
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Fig. 7. Model for an isotropic square plate with a circular cutout: (a) Geometry 
and loading; (b) Discretization using 80×80 Gauss points. 

Fig. 8. Comparison of inplane stress resultants (N̄x, N̄y, N̄xy) of DRM and 
FEM (Abaqus). 

Table 2 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under uniaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 3.986 3.984 3.989 9.914 10.068 9.964 0.960 0.952 0.950 3.911 3.916 3.896 4.373 4.368 4.340 
0.2 3.571 3.515 3.508 8.958 8.804 8.682 0.865 0.853 0.846 3.607 3.577 3.547 4.108 4.007 3.969 
0.4 3.023 3.011 3.019 8.381 8.426 8.286 0.649 0.641 0.640 3.085 3.022 3.009 3.459 3.325 3.299 
0.6 2.818 2.790 2.782 7.099 7.395 7.176 0.442 0.427 0.428 2.287 2.214 2.199 2.464 2.271 2.248  

Table 3 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a circular cutout under biaxial compression.  

d/a SSSS CCCC SFSF CFCF CFCS 
Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM Ref. [58] Present FEM 

0 1.993 1.992 1.994 5.234 5.301 5.258 0.941 0.931 0.929 2.755 2.734 2.687 2.864 2.858 2.803 
0.2 1.794 1.766 1.764 5.019 4.893 4.863 0.853 0.841 0.833 2.718 2.665 2.616 2.797 2.727 2.669 
0.4 1.568 1.562 1.569 6.128 6.246 6.177 0.648 0.639 0.637 2.420 2.367 2.330 2.441 2.383 2.344 
0.6 1.586 1.580 1.587 8.529 8.466 8.084 0.440 0.431 0.431 1.867 1.807 1.787 1.859 1.807 1.787  

Table 4 
Normalized critical buckling load λcr = Ncra2/(Dπ2) of a square plate with a 
circular cutout under pure shear loading.  

d/a CCCC SSSS 
Ref. [58] Present FEM Ref. [58] Present FEM 

0 14.37 14.63 14.36 9.235 9.291 9.240 
0.2 10.79 10.90 10.69 7.054 7.027 6.948 
0.4 6.853 6.856 6.701 4.089 4.066 4.051 
0.6 4.059 4.418 4.264 2.185 2.192 2.162  

Z. Jing and L. Duan                                                                                                                                                                                                                            

(b) (c)

FIGURE 5.9 – Representative figure of the N̄xy stress field under uniaxial loading Nx, R/a = 0.3: (a)
(JING; DUAN, 2023). (b) FEM. (c) Present. These values do not have specific units of measurement but
are instead reference values relative to Nx.

Simulations were conducted for various loading conditions, including uniaxial (in the

x-axis direction), biaxial, and pure shear loading. Three boundary conditions—SSSS,

CCCC, and CFCF—were applied to the plate’s four edges 1234 (1-left, 2-down, 3-right,

4-up) in a counterclockwise direction. In these simulations, I = J = 30 terms were

used in the admissible function and 292 × 292 Gauss points for numerical integration

in the calculation of the integrals that compose the prebuckling and buckling analyses.

The normalized critical buckling load results for the simulated boundary conditions and

loading modes, with R/a = 0.3, as well as comparisons with data from the literature in

(JING; DUAN, 2023) and (ABOLGHASEMI et al., 2019) and by FEM, can be verified in Table

5.6.

TABLE 5.6 – Normalized critical buckling load results λcr = Ncra
2/(D1π

2) for the plate under uniaxial,
biaxial, and pure shear loading. The error calculated with respect to the results obtained through FEM
is given by: Error = (λcr − λFEM)/λFEM.

Boundary

condition

Loading

mode
R/a Present

Error [%]

(Present)
(JING; DUAN, 2023)

Error [%]

(JING; DUAN, 2023)
(ABOLGHASEMI et al., 2019)

Error [%]

(ABOLGHASEMI et al., 2019)
FEM

SSSS uniaxial Nx 0.3 2.771 0.362 2.790 1.050 2.818 2.064 2.761

CCCC uniaxial Nx 0.3 7.526 0.226 7.395 -1.518 7.099 -5.460 7.509

CFCF biaxial 0.3 1.807 -0.055 1.807 -0.055 1.867 3.263 1.808

CCCC pure shear 0.3 4.408 0.045 4.418 0.272 4.059 -7.876 4.406

As observed in Table 5.6, errors starting from 0.045% were obtained for the case with

CCCC boundary condition and pure shear loading, and up to 0.362% for the case with

SSSS boundary condition and uniaxial loading of Nx in relation to the finite element

analysis. Additionally, the results were consistent with those predicted in the literature.

The normalized critical buckling load results for the simulated boundary conditions

and loading modes considering the first four modes, withR/a = 0.3, as well as comparisons

with data from the literature in (JING; DUAN, 2023) and by FEM, can be verified in Tables

5.7, 5.8, 5.9, and 5.10.



CHAPTER 5. MODEL VERIFICATION 85

TABLE 5.7 – Normalized critical buckling load results λcr = Ncra
2/(D1π

2) for a SSSS plate under
uniaxial loading Nx with R/a = 0.3. The error calculated with respect to the results obtained through
FEM is given by: Error = (λcr − λFEM)/λFEM.

Mode Present
Error [%]

(Present)
(JING; DUAN, 2023)

Error [%]

(JING; DUAN, 2023)
FEM

1 2.771 0.362 2.790 1.050 2.761

2 3.905 0.670 3.935 1.444 3.879

3 4.164 0.653 4.175 0.919 4.137

4 5.640 0.913 5.665 1.360 5.589

TABLE 5.8 – Normalized critical buckling load results λcr = Ncra
2/(D1π

2) for a CCCC plate under
uniaxial loading Nx with R/a = 0.3. The error calculated with respect to the results obtained through
FEM is given by: Error = (λcr − λFEM)/λFEM.

Mode Present
Error [%]

(Present)
(JING; DUAN, 2023)

Error [%]

(JING; DUAN, 2023)
FEM

1 7.526 0.226 7.395 -1.518 7.509

2 7.647 0.091 7.693 0.694 7.640

3 7.673 0.092 7.842 2.296 7.666

4 7.778 0.232 8.352 7.629 7.760

TABLE 5.9 – Normalized critical buckling load results λcr = Ncra
2/(D1π

2) for a CFCF plate under
biaxial loading with R/a = 0.3. The error calculated with respect to the results obtained through FEM
is given by: Error = (λcr − λFEM)/λFEM.

Mode Present
Error [%]

(Present)
(JING; DUAN, 2023)

Error [%]

(JING; DUAN, 2023)
FEM

1 1.807 -0.055 1.807 -0.055 1.808

2 1.808 -0.055 1.808 -0.055 1.809

3 3.881 0.052 3.918 1.005 3.879

4 3.962 0.051 4.010 1.263 3.960

TABLE 5.10 – Normalized critical buckling load results λcr = Ncra
2/(D1π

2) for a CCCC plate under
pure shear loading with R/a = 0.3. The error calculated with respect to the results obtained through
FEM is given by: Error = (λcr − λFEM)/λFEM.

Mode Present
Error [%]

(Present)
(JING; DUAN, 2023)

Error [%]

(JING; DUAN, 2023)
FEM

1 4.408 0.045 4.418 0.272 4.406

2 4.419 0.023 4.440 0.498 4.418

3 6.227 0.032 6.258 0.530 6.225

4 6.311 0.048 6.369 0.967 6.308
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It is significant to note that these modes align well with those predicted in the literature

(JING; DUAN, 2023) and (ABOLGHASEMI et al., 2019), as well as by the FEM for various

loading and boundary conditions. This consistency of results is achieved despite the

limitations of a semi-analytical model, which implements a meshfree method of solution

based on the Discrete Ritz Method. Consequently, the verification of a plate with a cutout

was considered satisfactory in this work.

Furthermore, for the case containing stiffeners, the model will be validated according

to finite element analysis and experimental tests, considering specific geometric charac-

teristics of the stiffeners and their arrangement along the plate.

The normalized absolute out-of-plane displacements for the first four modes for the

simulated boundary conditions and loading modes, with R/a = 0.3, as well as comparisons

with FEM, can be verified in Figures 5.10, 5.11, 5.12, and 5.13. Note that the behavior of

the out-of-plane displacements showed good correlation between those obtained through

the implemented model and those obtained through finite element analysis.

(a) λ = 2.771.

Printed using Abaqus/CAE on: Sat Jun 08 08:49:42 E. South America Standard Time 2024

(b) λ = 2.761. (c) λ = 3.905.

Printed using Abaqus/CAE on: Sat Jun 08 08:49:56 E. South America Standard Time 2024

(d) λ = 3.879.

(e) λ = 4.164.

Printed using Abaqus/CAE on: Sat Jun 08 08:50:19 E. South America Standard Time 2024

(f) λ = 4.137. (g) λ = 5.640.

Printed using Abaqus/CAE on: Sat Jun 08 08:50:33 E. South America Standard Time 2024

(h) λ = 5.589.

FIGURE 5.10 – Normalized absolute out-of-plane displacements for the uniaxial loading Nx, SSSS, R/a =
0.3. (a) 1o mode (Present). (b) 1o mode (FEM).(c) 2o mode (Present). (d) 2o mode (FEM). (e) 3o mode
(Present). (f) 3o mode (FEM). (g) 4o mode (Present). (h) 4o mode (FEM).
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(a) λ = 7.526.

Printed using Abaqus/CAE on: Sat Jun 08 08:27:09 E. South America Standard Time 2024

(b) λ = 7.509. (c) λ = 7.647.

Printed using Abaqus/CAE on: Sat Jun 08 08:29:01 E. South America Standard Time 2024

(d) λ = 7.640.

(e) λ = 7.673.

Printed using Abaqus/CAE on: Sat Jun 08 08:29:18 E. South America Standard Time 2024

(f) λ = 7.666. (g) λ = 7.778.

Printed using Abaqus/CAE on: Sat Jun 08 08:29:36 E. South America Standard Time 2024

(h) λ = 7.760.

FIGURE 5.11 – Normalized absolute out-of-plane displacements for the uniaxial loading Nx, CCCC,
R/a = 0.3. (a) 1o mode (Present). (b) 1o mode (FEM).(c) 2o mode (Present). (d) 2o mode (FEM). (e)
3o mode (Present). (f) 3o mode (FEM). (g) 4o mode (Present). (h) 4o mode (FEM).

(a) λ = 1.807.

Printed using Abaqus/CAE on: Sat Jun 08 08:48:12 E. South America Standard Time 2024

(b) λ = 1.808. (c) λ = 1.808.

Printed using Abaqus/CAE on: Sat Jun 08 08:48:26 E. South America Standard Time 2024

(d) λ = 1.809.

(e) λ = 3.881.

Printed using Abaqus/CAE on: Sat Jun 08 08:48:40 E. South America Standard Time 2024

(f) λ = 3.879. (g) λ = 3.962.

Printed using Abaqus/CAE on: Sat Jun 08 08:48:52 E. South America Standard Time 2024

(h) λ = 3.960.

FIGURE 5.12 – Normalized absolute out-of-plane displacements for the biaxial loading, CFCF, R/a = 0.3.
(a) 1o mode (Present). (b) 1o mode (FEM).(c) 2o mode (Present). (d) 2o mode (FEM). (e) 3o mode
(Present). (f) 3o mode (FEM). (g) 4o mode (Present). (h) 4o mode (FEM).
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(a) λ = 4.408.

Printed using Abaqus/CAE on: Sat Jun 08 08:59:32 E. South America Standard Time 2024

(b) λ = 4.406. (c) λ = 4.419.

Printed using Abaqus/CAE on: Sat Jun 08 09:00:16 E. South America Standard Time 2024

(d) λ = 4.418.

(e) λ = 6.227.

Printed using Abaqus/CAE on: Sat Jun 08 09:00:28 E. South America Standard Time 2024

(f) λ = 6.225. (g) λ = 6.311.

Printed using Abaqus/CAE on: Sat Jun 08 09:00:39 E. South America Standard Time 2024

(h) λ = 6.308.

FIGURE 5.13 – Normalized absolute out-of-plane displacements for the pure shear loading, CCCC,
R/a = 0.3. (a) 1o mode (Present). (b) 1o mode (FEM).(c) 2o mode (Present). (d) 2o mode (FEM). (e)
3o mode (Present). (f) 3o mode (FEM). (g) 4o mode (Present). (h) 4o mode (FEM).

An interesting fact is that the case with the SSSS boundary condition did not converge

for I = J = 30 with 292 × 292 Gauss points. The procedure adopted in this case was

to remove rows and columns from the stiffness matrices associated with the problem to

I ′ = J ′ = 20 in order to achieve convergence for 292 × 292 Gauss points. Despite this,

the case with SSSS produced excellent results, presenting an error of 0.362% in its critical

buckling load compared to FEM. It is noteworthy that the methodology of reducing the

solution of problems to I ′ < I and J ′ < J , in addition to playing an important role

in the study of convergence, can also provide insights into the relationship between the

convergence of I, J and the number of Gauss points, without the need to perform multiple

integration sets for smaller values of I ′ and J ′ for a given number of Gauss points.

In addition, the simulation for the boundary condition CFCF did not converge with

I = J = 30 and 292 × 292 Gauss points. However, the computational strategy of cal-

culating results for I ′ < I and J ′ < J was employed, achieving excellent results for

I ′ = J ′ = 29 and 292 × 292 points, with only a few additional seconds required. This,

indeed, provides a significant advantage in convergence analysis while maximizing the use

of limited computational resources.



6 Experimental Test Setup

The experimental test presented in this master’s dissertation was conducted at the

Instituto Tecnológico de Aeronáutica (ITA), specifically in the Laboratory of Aerospace

Structures. Within this framework, as will be shown later, a series of experiments were

undertaken, each involving distinct configurations of a square plate under pure shear

loading, using a picture frame testing jig:

• Configuration I: A square plate under diagonal tensile loading.

• Configuration II: A square plate with a circular cutout, also under diagonal tensile

loading.

• Configuration III: A square plate with a circular cutout and reinforced with two

stiffeners, under diagonal tensile loading.

Visual representations of the experimental setups for these configurations are provided

in Figures 6.1 and 6.2.

(a) (b) (c)

FIGURE 6.1 – Representative figure of the three experiments conducted in the structural laboratory of
ITA. (a) Plate. (b) Plate with a circular cutout. (c) Plate with a circular cutout and two stiffeners.
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(a) (b) (c)

FIGURE 6.2 – Photographs taken from the three experiments conducted in the structural laboratory of
ITA. (a) Plate. (b) Plate with a circular cutout. (c) Plate with a circular cutout and two stiffeners.
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FIGURE 6.3 – Representative figure of the geometric characteristics of the three experiments conducted
in the structural laboratory of ITA. (a) Plate. (b) Plate with a circular cutout. (c) Plate with a circular
cutout and two stiffeners.

The properties of the thermoplastic composite material used in the plate and stiffeners

were assessed through the FINEP SPIRIT FLY Project, an industry-led R&D collabora-

tion between Brazil (ALLTEC) and The Netherlands (TORAY Advanced Composites).

This project aims to develop a thermoplastic-based demonstrator component that meets

Embraer’s functional, technical, production, and financial requirements. These measure-

ments were conducted in the Laboratory of Aerospace Structures at Instituto Tecnológico

de Aeronáutica (ITA) and can be found in Table 6.1. Furthermore, the stacking configu-

ration and geometric characteristics are shown in Table 6.2. Additionally, the geometric

characteristics of the stiffeners were modeled mathematically as shown in Figure 6.4.
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TABLE 6.1 – Material properties of the plate and stiffeners utilized in the tests.

Material E1 [GPa] E2 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12

TC 1225/ Carbon T300JB 3K 5HS 55.549 55.549 3.773 3.773 3.773 0.052

TABLE 6.2 – Table containing the geometric characteristics of the panels modeled in the three experi-
ments, along with the stacking configuration of the plate and stiffeners.

Stacking a [mm] b [mm] t [mm] h [mm] R [mm] xs [mm] ys [mm] ds [mm] bs [mm]

[(0,90)/(+45,-45)]2s (8 plies) 425 425 0.31 2.48 40 112.5 70 27.5 25

FIGURE 6.4 – Representative figure of the actual geometric characteristics of the stiffeners on the left,
alongside their idealization used in the implemented model on the right, as well as the geometric charac-
teristics of the stiffened panel with a circular cutout.

A 3D Digital Image Correlation (DIC) system provided by Dantec Dynamics was em-

ployed, offering imagery of the out-of-plane displacement field. This technique captures a

sequence of images detailing the surface deformation of the test specimen. Typically, the

surface is marked with a stochastic speckle pattern, enhancing the capability to monitor

distinct points across successive images. Through the comparative analysis of images pre

and post-deformation, the DIC software is capable of generating comprehensive maps of

displacement and strain across the surface. Utilizing two or more cameras, the 3D DIC
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method captures the specimen’s surface from varied perspectives, facilitating the genera-

tion of three-dimensional reconstructions of displacement and strain fields. This advanced

methodological approach enables precise measurement and analysis of the mechanical be-

haviors of materials and structures when subjected to specific loading conditions, thus

yielding critical insights into their characteristics and performance. Moreover, the stack-

ing sequence configuration of the plate and the stiffeners is visually represented in Figure

6.5.

z

h

2

h

2

t (−45◦, 45◦)

(0◦, 90◦)

(−45◦, 45◦)

(0◦, 90◦)

(−45◦, 45◦)

(0◦, 90◦)

(−45◦, 45◦)

(0◦, 90◦)

FIGURE 6.5 – Representative figure of the quasi-isotropic stacking sequence configuration of the plate
and the stiffeners.

The apparatus used with a 3D Digital Image Correlation setup by Dantec Dynamics

during the tests, as well as the assembly of the panel and picture frame on the testing

apparatus during the tests, are presented in the photographs taken in the structural

laboratory of ITA, as shown in Figures 6.6 and 6.7, respectively.



CHAPTER 6. EXPERIMENTAL TEST SETUP 93

FIGURE 6.6 – Figure obtained from a photograph taken in the structural laboratory of ITA, showcasing
the apparatus used with a 3D Digital Image Correlation setup by Dantec Dynamics during the tests.

FIGURE 6.7 – Figure obtained from a photograph captured in the structural laboratory of ITA, showcas-
ing the setup apparatus, including the assembly of the panel and picture frame on the testing apparatus
during the tests.
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The experimental setups were instrumented by affixing strain gauges to both surfaces

of the plates, a configuration depicted in Figures 6.8 and 6.9. Specifically, 45o back-to-back

strain gauges were positioned 70 mm from the center, utilizing the Micro Measurement

CEA 06 125UW 350 model with a gauge factor of 2.175. Data acquisition occurred in

real-time at a frequency of 10 Hz.

Instituto Tecnológico de Aeronáutica

Power by: Laboratory of Aerospace Structures 9

Test Specimen

• Instrumentation using strain gages

1 3

7 5

4 2

6 8

(a)

Instituto Tecnológico de Aeronáutica

Power by: Laboratory of Aerospace Structures 9

Test Specimen

• Instrumentation using strain gages

1 3

7 5

4 2

6 8

(b)

FIGURE 6.8 – Representative figure showing the positioning of strain gauges on both sides of the plate
during all testing cases.

FIGURE 6.9 – Representative figure showing the positioning of strain gauges on the plate during all
testing cases.



CHAPTER 6. EXPERIMENTAL TEST SETUP 95

6.1 Procedure to Obtain the Critical Buckling

In the buckling test, deformation versus load values were obtained for the three ex-

periments conducted using strain gauges, as shown in Figures 6.10, 6.11 and 6.12. With

these data, the calculation of membrane deformation (MD) and bending curvature (BC)

was conducted for each pair of strain gauges arranged oppositely on the plate, according

to:

MDij =
SGi + SGj

2
BCij =

SGi − SGj

2
(i, j) = (1, 2); (3, 4); (5, 6); (7, 8) (6.1)
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FIGURE 6.10 – Representative figure of the deformations obtained through strain gauges when subjected
to a load in the experiment involving the plate.
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FIGURE 6.11 – Representative figure of the deformations obtained through strain gauges when subjected
to a load in the experiment involving the plate with a circular cutout.



CHAPTER 6. EXPERIMENTAL TEST SETUP 96

0 10 20 30 40 50 60 70 80

−500

0

500

1,000

1(2)

3(4)

5(6)

7(8)

Load [kN]

S
tr
a
in
[µ
m
/
m
]

SG01 SG05 SG02 SG06

SG03 SG07 SG04 SG08

FIGURE 6.12 – Representative figure of the deformations obtained through strain gauges when subjected
to a load in the experiment involving the stiffened plate with a circular cutout.

The results obtained through the calculation of membrane deformation and bending

curvature from the deformation data derived from the strain gauges, in the experiment

involving the plate, the plate with a circular cutout, and the stiffened plate with a circular

cutout, are represented in Figures 6.13, 6.14, and 6.15, respectively.
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FIGURE 6.13 – Figure obtained through the calculation of membrane deformation and bending curvature
from the deformation data derived from the strain gauges in the experiment involving the plate.
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FIGURE 6.14 – Figure obtained through the calculation of membrane deformation and bending curvature
from the deformation data derived from the strain gauges in the experiment involving the plate with a
circular cutout.
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FIGURE 6.15 – Figure obtained through the calculation of membrane deformation and bending curvature
from the deformation data derived from the strain gauges, in the experiment involving the stiffened plate
with a circular cutout.

As noted by (SINGER et al., 1998), accurately determining the critical stress in plate
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buckling can be challenging due to the stable post-buckling behavior of plates. Conse-

quently, various methods have been employed to define buckling stress or load, as docu-

mented in the literature.

In this study, the inflection point method, as proposed by (SINGER et al., 1998), was

selected to determine the critical load in all three experiments. This method identifies the

least slope on the load-deflection curve, which closely aligns with the theoretical buckling

load. For perfectly flat plates, this slope is zero at buckling. However, for imperfect

plates, the method yields a slightly higher buckling load than the top-of-the-knee method

and relies less on individual judgment (SINGER et al., 1998). According to (SINGER et al.,

1998), the inflection point method produces satisfactory results if the initial imperfection

is not excessive. Additionally, it can be applied to load versus strain difference (ε1 − ε2)

curves. The procedure used in these experiments is illustrated in Figure 6.16.

FIGURE 6.16 – Representative figure of the Inflection Point method. Source: (SINGER et al., 1998).

The illustration of the inflection point method applied to bending curvature, in the

experiments involving the plate, the plate with a circular cutout, and the stiffened plate

with a circular cutout, can be verified in Figures 6.17, 6.18, and 6.19, respectively. The

figures below demonstrate that critical buckling occurs through the bending curvature

measured by strain gauges S03/S04 and S07/S08. For the plate, buckling was detected

only by strain gauges SG03/SG04, which was confirmed by DIC vertical displacement

data, showing characteristic buckling behavior at a load of 23.54 kN.

For the plate with cutout and stiffened plate with cutout cases, critical buckling values

were obtained from the bending curvature of strain gauges SG03/SG04 and SG07/SG08.

The final value was taken as the average of these measurements, considering their prox-

imity.
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FIGURE 6.17 – Illustration of the inflection point method applied to bending curvature, concerning strain
gauges SG03/SG04, in the experiment involving the plate.
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FIGURE 6.18 – Illustration of the inflection point method applied to bending curvature, concerning strain
gauges SG03/SG04 and SG07/SG08, in the experiment involving the plate with a circular cutout.
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FIGURE 6.19 – Illustration of the inflection point method applied to bending curvature, concerning
strain gauges SG03/SG04 and SG07/SG08, in the experiment involving the stiffened plate with a circular
cutout.

The panel is subjected to shear loading Nxy, which correlates with Pcr according to

Eq. 6.2 (SILVA, 2021). The experimental critical buckling values are shown in Table 6.3.

Nxy = Pcr
cos(45◦)

a
=

Pcr

a
√
2

(6.2)

TABLE 6.3 – Results of critical buckling, obtained from the conducted experiments.

Experiment Pcr SG-03/SG-04 [kN] Pcr SG-07/SG-08 [kN] Pcr [kN] Nxy [kN/m]

Plate 23.54 - 23.54 39.17

Plate with circular cutout 18.85 18.25 18.55 30.86

Stiffened plate with circular cutout 22.62 22.65 22.64 37.67

Notably, the critical buckling load for the stiffened plate with a cutout was 22.64 kN,

which is lower than the 23.54 kN for the plate. This suggests that the stiffener did not

adequately compensate for the cutout’s effect on the critical buckling load. Comparisons

and observations related to FEM, the implemented model, and the experiment will be

discussed in Chapter 7 (Results and Discussions).



7 Results and Discussions

7.1 Boundary Conditions for All Scenarios

Computational simulations of the semi-analytical model were conducted based on the

idealization of a composite panel using a picture frame testing jig under pure shear loading,

with all edges of the plates clamped (CCCC). These simulations correspond to the three

configurations tested experimentally, as described in Chapter 6: the plate, the plate with

a circular cutout, and the stiffened plate with a circular cutout. These simulations utilized

the adopted semi-analytical model implemented in Matlab®, with I = J = 30 terms

and 292× 292 Gauss points. Additionally, the simulations were implemented using FEM

(Abaqus®). Subsequently, the results were compared, as will be presented throughout

this chapter. The hierarchical polynomials used in these simulations are shown in Table

7.1.

TABLE 7.1 – Table showing the procedure adopted to obtain the CCCC solution. The polynomials
indicated with a value of zero will not be used in the solution.

Variable
ξ η

χ1 χ2 χ3 χ4 χ1 χ2 χ3 χ4

u 1 1 1 1 1 1 1 1

v 1 1 1 1 1 1 1 1

w 0 1 0 1 0 1 0 1

φu 0 1 0 1 0 1 0 1

φv 0 1 0 1 0 1 0 1

7.2 Plate

For the plate, a convergence study of the first four modes was conducted, as shown in

Figure 7.1 and Table 7.2, and compared with the critical buckling load calculated using a

finite element model, as shown in Figure 7.1. It is noted that for I = J = 20, the values
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of the buckling modes stabilize.
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FIGURE 7.1 – Representative figure of the convergence analysis for the plate, using the obtained finite
element model values as a reference.

TABLE 7.2 – Buckling loads for the first four modes, in kN/m for the plate as the number of Ritz terms
increases.

I = J Mode 1 Mode 2 Mode 3 Mode 4

6 54.5585 79.0902 10401.2963 10774.7727

7 44.4896 53.7530 788.6907 931.5081

8 43.8619 51.3430 126.7262 139.2986

9 43.6746 50.8896 104.9725 111.9621

10 43.6438 50.7764 99.7968 105.8761

11 43.6428 50.7697 98.1187 103.7155

12 43.6424 50.7692 97.7886 103.2491

13 43.6423 50.7691 97.7504 103.1873

14 43.6421 50.7690 97.7439 103.1776

15 43.6421 50.7690 97.7432 103.1764

16 43.6420 50.7690 97.7429 103.1760

17 43.6420 50.7689 97.7429 103.1760

18 43.6419 50.7689 97.7427 103.1758

19 43.6419 50.7689 97.7427 103.1757
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I = J Mode 1 Mode 2 Mode 3 Mode 4

20 43.6419 50.7689 97.7426 103.1756

21 43.6419 50.7689 97.7426 103.1756

22 43.6419 50.7688 97.7425 103.1755

23 43.6419 50.7688 97.7425 103.1755

24 43.6419 50.7688 97.7425 103.1755

25 43.6419 50.7688 97.7425 103.1755

26 43.6418 50.7688 97.7424 103.1754

27 43.6418 50.7688 97.7424 103.1754

28 43.6418 50.7688 97.7424 103.1754

29 43.6418 50.7688 97.7424 103.1754

30 43.6418 50.7688 97.7424 103.1754

Furthermore, a FEM analysis containing 20,164 elements was developed. To perform

the convergence study, the first four buckling modes were analyzed, as shown in Table

7.3.

TABLE 7.3 – Table containing the convergence analysis of the Finite Element Model (FEM), implemented
in the Abaqus® software, showing the buckling loads for the first four modes, in kN/m, for the plate
configuration.

Mesh Number of elements Mode I Mode II Mode III Mode IV

1 441 45.21 53.10 107.08 113.43

2 1849 43.98 51.28 99.73 105.36

3 7225 43.70 50.86 98.13 103.60

4 11236 43.67 50.81 97.94 103.39

5 20164 43.60 50.72 97.54 102.95

The obtained results are presented in Table 7.4. As shown in Table 7.4, the first

four modes obtained through the implemented model showed good agreement with those

obtained via FEM, with an error of 0.09% for the first mode and 0.22% for the fourth mode.

It is also observed that the error increases for higher modes, as expected. Additionally,

both the FEM results and those from the implemented model exhibited errors of 11.31%

and 11.41% from the experimental results, respectively.
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TABLE 7.4 – Results for the present model with I = J = 30 terms and 292 × 292 Gauss points, and
comparisons between the implemented model, FEM and experimental test of the first four buckling modes
for the plate. The error with respect to FEM is calculated as ErrorFEM = (λcr − λFEM )/λFEM . The
error with respect to experimental result is calculated as Errorexp = (λcr − λexp)/λexp.

Mode
Present

[kN/m]

FEM

[kN/m]

ErrorFEM [%]

(Present)

Experimental

[kN/m]

Errorexp [%]

(Present)

Errorexp [%]

(FEM)

1 43.64 43.60 0.09 39.17 11.41 11.31

2 50.77 50.72 0.10 - - -

3 97.74 97.54 0.21 - - -

4 103.18 102.95 0.22 - - -

In Figure 7.2, the behavior of the normalized vertical displacement can be observed,

showcasing results from the implemented model, FEM, and the experimental data col-

lected through Digital Image Correlation (DIC). As can be seen, there is an asymmetry

in the experimental vertical displacement curve, which may have been caused by an im-

perfection in the plate, related to the panel assembly or load level imbalances.
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FIGURE 7.2 – Normalized vertical displacement along the diagonal of the plate.

In Figure 7.3, a graphical comparison of the modes obtained through the three adopted

methodologies can be observed. The buckling mode exhibits a consistent half-wave be-

havior, which could already be readily evidenced through DIC.

It is noteworthy that, despite the differences in critical buckling values obtained from

the experimental test compared to FEM and the implemented model, the results from
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normalized vertical displacements showed good agreement. Furthermore, the DIC tech-

nique provides valuable information on critical buckling. Based on the characteristics

of the vertical displacement curve, the buckling mode can be promptly estimated. Ad-

ditionally, DIC offers valuable insights into the post-buckling behavior, displaying the

vertical displacement behavior for various load levels, which provides richer information

and, consequently, a more accurate analysis.

Printed using Abaqus/CAE on: Fri May 03 21:33:10 E. South America Standard Time 2024

(a) FEM (Abaqus®). (b) Present. (c) Experimental test.

FIGURE 7.3 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. First mode (plate).

Furthermore, the behavior of the second, third, and fourth buckling modes are repre-

sented in Figures 7.4, 7.5, and 7.6. Once again, there was an excellent correlation in the

number of half-waves between the implemented model and the FEM.

Printed using Abaqus/CAE on: Fri May 03 21:33:28 E. South America Standard Time 2024

(a) FEM (Abaqus®). (b) Present.

FIGURE 7.4 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. Second mode (plate).
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Printed using Abaqus/CAE on: Fri May 03 21:33:41 E. South America Standard Time 2024

(a) FEM (Abaqus®). (b) Present.

FIGURE 7.5 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. Third mode (plate).

Printed using Abaqus/CAE on: Fri May 03 21:33:55 E. South America Standard Time 2024

(a) FEM (Abaqus®). (b) Present.

FIGURE 7.6 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. Fourth mode (plate).

7.3 Plate with a Circular Cutout

For the case of the plate with a cutout, a convergence study for the first four modes

was conducted, similar to the previous case, as shown in Table 7.5 and Figure 7.7. It is

noted that for I = J = 30, the values of the buckling modes stabilize.
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TABLE 7.5 – Loads for the first four modes, in kN/m for the plate with cutout as the number of Ritz
terms increases.

I = J Mode 1 Mode 2 Mode 3 Mode 4

6 46.6898 106.0528 6821.4360 11852.6588

7 38.4113 56.3856 383.0877 829.9133

8 37.0016 54.4018 112.7545 139.9772

9 36.4156 53.1147 95.3524 111.5508

10 35.9249 52.6898 86.1859 105.9910

11 35.5780 52.3991 83.4217 101.3151

12 35.3314 52.1469 81.0042 98.6154

13 34.9824 51.9629 80.4121 97.7457

14 34.8133 51.8294 79.2458 97.1291

15 34.4911 51.6595 79.0291 96.8329

16 34.3674 51.5168 78.0452 96.5952

17 34.1070 51.3533 77.9274 96.4047

18 34.0095 51.1564 76.8790 96.2689

19 33.8217 50.9936 76.7825 96.1004

20 33.7408 50.7396 75.5962 96.0019

21 33.6154 50.5833 75.4939 95.8376

22 33.5443 50.2946 74.1878 95.7525

23 33.4643 50.1468 74.0703 95.5787

24 33.3990 49.8583 72.7390 95.4927

25 33.3484 49.7311 72.6133 95.3039

26 33.2837 49.4798 71.3679 95.2147

27 33.2505 49.3841 71.2493 95.0179

28 33.1814 49.1908 70.1748 94.9479

29 33.1588 49.1248 70.0809 94.7517

30 33.0880 48.9865 69.2308 94.7077
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FIGURE 7.7 – Representative figure of the convergence analysis for the plate with a cutout, using the
obtained finite element model values as a reference.

According to (JING; DUAN, 2023), when the cutout size is relatively small, more terms

are required in the DRM to achieve convergence. Specifically, it was observed that for

a cutout dimension of R/a = 40/425 ≈ 0.0941, more terms were necessary compared

to larger R/a ratios in a model containing the same stacking configuration, material

properties, and type of loading. This is because a finer discretization of the plate is

needed to accurately represent the cutout. Additionally, as the number of terms increases,

the number of integration points required also increases. Higher mode shapes generally

demand more terms for convergence due to the increased complexity of deformation.

Moreover, there is a minimum number of integration points required for a given I = J

for the numerical integrals to converge, which in this work was found to be variable,

depending on the cutout size as well as the complexity of the laminate configuration,

boundary condition, and loading configuration.

Additionally, a finite element model was developed and its convergence study was

conducted, as shown in Table 7.6.
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TABLE 7.6 – Table containing the convergence analysis of the Finite Element Model (FEM), implemented
in the Abaqus© software, showing the buckling loads for the first four modes, in kN/m, for the plate
with a circular cutout configuration.

Mesh Number of elements Mode I Mode II Mode III Mode IV

1 9265 32.94 48.50 66.45 92.76

2 15838 32.93 48.46 66.38 92.60

3 34273 32.93 48.44 66.33 92.49

Similar to the previous case involving the plate, the vertical displacements were ob-

tained through the implemented methodology, FEM, and experimentally, as shown in

Figure 7.8.
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FIGURE 7.8 – Normalized vertical displacement along the diagonal of the plate with a cutout.

The obtained results are presented in Table 7.7. As shown in Table 7.7, the imple-

mented model presented deviations ranging from 0.49% in the first mode to 4.37% in

the third mode relative to the finite element model. Additionally, the adopted methodol-

ogy and the FEM showed deviations of 7.23% and 6.71% relative to the experimentally

obtained buckling value. There was excellent agreement between the results obtained

through the implemented model and the FEM. It is worth noting that, in this case, the

deviation from the experimental results was smaller than that for the plate. As can be

observed, although the deviation in critical buckling between the experimental results

and the others was smaller compared to the plate case, the agreement in terms of vertical

displacement was not as good, yet it still showed a satisfactory correlation.
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TABLE 7.7 – Results for the present model with I = J = 30 terms and 292 × 292 Gauss points, and
comparisons between the implemented model, FEM and experimental test of the first four buckling modes
for the plate with a circular cutout. The error with respect to FEM is calculated as ErrorFEM = (λcr −
λFEM )/λFEM . The error with respect to experimental result is calculated as Errorexp = (λcr−λexp)/λexp.

Mode
Present

[kN/m]

FEM

[kN/m]

ErrorFEM [%]

(Present)

Experimental

[kN/m]

Errorexp [%]

(Present)

Errorexp [%]

(FEM)

1 33.09 32.93 0.49 30.86 7.23 6.71

2 48.99 48.44 1.14 - - -

3 69.23 66.33 4.37 - - -

4 94.71 92.49 2.40 - - -

Regarding the behavior of out-of-plane displacements related to the critical buckling

mode, they exhibited consistent patterns, as shown in Figure 7.9.

(a) FEM (Abaqus©). (b) Present. (c) Experimental test.

FIGURE 7.9 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. First mode (plate with cutout).

The behavior of the modes obtained in the second, third, and fourth modes, as well as

their comparison with FEM, are represented in Figures 7.10, 7.11, and 7.12. By examining

Figures 7.11 and 7.12, related to the third and fourth modes, it can be observed that these

mode shapes have changed compared to the plate case. When attempting to obtain these

modes without conducting a prebuckling analysis, they exhibited the same behavior as

the plate but with a lower buckling load due to the presence of the cutout.
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(a) FEM (Abaqus©). (b) Present.

FIGURE 7.10 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. Second mode (plate with cutout).

(a) FEM (Abaqus©). (b) Present.

FIGURE 7.11 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. Third mode (plate with cutout).
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(a) FEM (Abaqus©). (b) Present.

FIGURE 7.12 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. Fourth mode (plate with cutout).

7.4 Stiffened Plate with a Circular Cutout

For the case of the stiffened plate with a circular cutout, similar procedures to those

used for the plate with only a circular cutout were adopted, with the addition of two

longitudinal stiffeners along the plate. This increased the complexity of the finite element

analysis, as it became necessary to simulate the interaction between the stiffeners and

the plate. A convergence study for the first four modes was carried out, similar to the

previous case, as shown in Tab. 7.8 and Fig. 7.13. It was noted that for I = J = 30, the

values of the buckling modes stabilized.

TABLE 7.8 – Loads for the first four modes, in kN/m for the stiffened plate with cutout as the number
of Ritz terms increases.

I = J Mode 1 Mode 2 Mode 3 Mode 4

6 334.5657 502.6223 7425.0018 12273.7496

7 125.0830 145.0477 996.3069 1359.6358

8 54.3636 107.7544 176.2125 242.0077

9 50.6923 98.7794 139.9283 167.8439

10 47.3402 88.4539 115.4712 135.1420

11 45.6413 79.9930 111.4413 124.8801

12 43.4741 77.5296 105.6246 120.4318
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I = J Mode 1 Mode 2 Mode 3 Mode 4

13 42.8123 74.1909 103.3334 117.1432

14 41.1928 73.1298 101.4650 115.4011

15 40.8470 72.5480 100.4920 114.2794

16 40.3137 71.7715 98.4882 112.8654

17 39.8435 70.1833 97.8513 112.1248

18 39.7155 69.8126 95.9637 111.7363

19 39.3505 68.5031 95.1711 111.2681

20 38.9049 67.9418 93.6511 110.7055

21 38.7235 67.6401 93.1413 110.4762

22 38.2651 66.8823 91.7154 109.5445

23 38.1102 66.5196 91.3728 109.3229

24 37.9272 65.8400 89.9742 108.6488

25 37.7681 65.0747 89.4125 108.4313

26 37.6540 64.5322 87.9512 107.9405

27 37.5594 63.9850 87.4018 107.7663

28 37.3158 63.5545 85.9711 107.0987

29 37.2790 63.4249 85.7169 106.9228

30 37.0583 63.1056 84.6254 106.2876
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FIGURE 7.13 – Representative figure of the error analysis for the stiffened plate with cutout, using the
obtained finite element model values as a reference.

As previously mentioned, more elements were required in this case compared to the



CHAPTER 7. RESULTS AND DISCUSSIONS 114

previous ones in the FEM, resulting in the use of 94,391 elements. The FEM results can

be seen in Table 7.9.

TABLE 7.9 – Table containing the convergence analysis of the Finite Element Model (FEM), implemented
in the Abaqus© software, showing the buckling loads for the first four modes, in kN/m, for the stiffened
plate with a circular cutout.

Mesh Number of elements Mode I Mode II Mode III Mode IV

1 13039 36.61 60.30 80.46 104.39

2 23311 36.56 60.17 80.25 104.16

3 52733 36.52 60.08 80.07 103.98

4 94391 36.50 60.03 79.99 103.91

The behavior of the vertical displacement using three methodologies is illustrated in

Figure 7.14. The DIC results showed consistency with the other methodologies, despite

some deviations. These deviations may be attributed to experimental conditions, such

as variations in manufacturing, including temperature and pressure during fabrication,

which result in different microstructures of the composite material. Additionally, the

torque applied to the bolts could cause discrepancies in the theoretical model of the

clamped boundary condition.
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FIGURE 7.14 – Normalized vertical displacement along the diagonal of the stiffened plate with cutout.

Additionally, the final results were compared between the values obtained from the

implemented model, FEM, and the experiment, as shown in Table 7.10. As can be seen in

Table 7.10, the implemented model presented an error of 1.53% for the first mode and up
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to 5.80% for the third mode relative to the FEM. Furthermore, the experimental results

showed excellent correlation with the implemented model and FEM, with errors of 1.62%

and 3.11%, respectively.

TABLE 7.10 – Results for the present model with I = J = 30 terms and 292 × 292 Gauss points, and
comparisons between the implemented model, FEM and experimental test of the first four buckling modes
for the stiffened plate with circular cutout. The error with respect to FEM is calculated as ErrorFEM =
(λcr − λFEM )/λFEM . The error with respect to experimental result is calculated as Errorexp = (λcr −
λexp)/λexp.

Mode
Present

[kN/m]

FEM

[kN/m]

ErrorFEM [%]

(Present)

Experimental

[kN/m]

Errorexp [%]

(Present)

Errorexp [%]

(FEM)

1 37.06 36.50 1.53 37.67 -1.62 -3.11

2 63.11 60.03 5.13 - - -

3 84.63 79.99 5.80 - - -

4 106.29 103.91 2.29 - - -

Moreover, as can be seen in Figure 7.15, consistent out-of-plane displacements behavior

was obtained between the FEM, the implemented model, as well as the experimental

results, demonstrating the reliability of the proposed model.Printed using Abaqus/CAE on: Fri May 03 20:03:40 E. South America Standard Time 2024

(a) FEM (Abaqus©). (b) Present. (c) Experimental test.

FIGURE 7.15 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. First mode (stiffened plate with cutout).

By examining Figures 7.16, 7.17, and 7.18, related to the second, third, and fourth

buckling modes, respectively, it can be observed that these modes were more influenced by

the presence of the stiffeners compared to the case of the plate with a circular cutout. In

the second and third modes, the inclusion of the stiffeners resulted in more sinuous shapes.

The fourth mode, however, exhibited a more significant change compared to the others.

It is also worth noting that, despite the complexity of the fourth mode’s behavior, the
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adopted semi-analytical model produced results consistent with those simulated through

FEM.

Printed using Abaqus/CAE on: Fri May 03 20:06:21 E. South America Standard Time 2024

(a) FEM (Abaqus©). (b) Present.

FIGURE 7.16 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. Second mode (stiffened plate with cutout).Printed using Abaqus/CAE on: Fri May 03 20:06:52 E. South America Standard Time 2024

(a) FEM (Abaqus©). (b) Present.

FIGURE 7.17 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. Third mode (stiffened plate with cutout).



CHAPTER 7. RESULTS AND DISCUSSIONS 117
Printed using Abaqus/CAE on: Fri May 03 20:07:12 E. South America Standard Time 2024

(a) FEM (Abaqus©). (b) Present.

FIGURE 7.18 – Normalized absolute out-of-plane displacements, CCCC boundary condition, under pure
shear loading. Fourth mode (stiffened plate with cutout).



8 Conclusions

Throughout this theoretical and experimental research, the following key conclusions

were drawn:

A semi-analytical model was developed using the Discrete Ritz Method (DRM) and

the principle of stationary total potential energy to analyze the prebuckling behavior and

determine the critical buckling load of plates with circular cutouts and stiffeners under

various loading conditions. The research effectively implemented the DRM along with

hierarchical polynomials as trial shape functions.

The semi-analytical model was rigorously verified against existing literature and finite

element analysis (FEA). The results for the plates exhibited a deviation ranging from

0.15% to 0.23% in relation to FEM, in addition to presenting results consistent with those

predicted in (NARITA, 1990). For the case of plates with cutouts, the model showed an

error of 0.045% to 0.362% in relation to FEM, and also consistent results with those

predicted in the literature in (NIMA; GANESAN, 2021) and (JING; DUAN, 2023).

The developed method demonstrated superior computational efficiency compared to

traditional approaches. The utilization of hierarchical polynomials and numerical inte-

gration via Gauss-Legendre quadrature significantly reduced the computational time and

effort required. Specifically, the methodology maximized the use of limited computational

resources by allowing the calculation of critical buckling for lower indices of hierarchical

polynomials with the same number of integration points, eliminating the need for addi-

tional sets of integration. This approach not only enhanced computational efficiency but

also facilitated a reliable convergence study by verifying the convergence trend.

An improvement on the simulation performance was developed to minimize the number

of simulations required for various edge boundary conditions. This improvement on the

simulation performance resulted in reduced computational effort while maintaining high

accuracy in the buckling load predictions. Similarly, by reducing the necessary sets of

integration for lower indices of hierarchical polynomials, this methodology allows for the

execution of 34 − 1 simulations with various boundary conditions using only a single set

of integration for a given loading mode. Furthermore, considering that initially all the

first four hierarchical polynomials are always integrated, an additional improvement was
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performed by verifying the symmetry of certain matrices derived from the multiplication

of partial derivatives in both the prebuckling and buckling analyses, resulting in faster

simulations.

Experimental tests were conducted involving three idealized configurations of a typical

horizontal stabilizer rib: in the case considering only the plate, the semi-analytical model

presented an error of 0.09% in relation to FEM, as well as an error of 11.41% in relation

to the experimentally obtained value. In the case of the plate with a circular cutout,

an error of 0.49% was obtained in relation to FEM, as well as 7.23% in relation to the

experimental result. Finally, considering a stiffened plate with a cutout, an error of 1.53%

was obtained in relation to FEM and 1.62% in relation to the experimental result.

The differences between the experimental and numerical results obtained using the

proposed semi-analytical model could be attributed to limitations in the semi-analytical

model, as well as variations in the experimental setup, such as the modeling of clamping

conditions, since the torque applied to the bolts may cause differences. Additionally,

these discrepancies may be related to manufacturing differences, including temperature

and pressure conditions during fabrication, and possible geometric imperfections of the

plates.

The semi-analytical model successfully identified the change in behavior of the out-

of-plane displacements in the third and fourth modes with the inclusion of the cutout, as

well as the interaction between the cutout and the stiffener, exhibiting behavior similar

to that predicted by FEM.

Ultimately, both experimentally and numerically, the stiffened plate with a cutout

presented a lower critical buckling load compared to the plate. The plate exhibited a crit-

ical buckling load of 43.64 kN/m (implemented model) and 39.17 kN/m (experimentally),

while the stiffened panel showed a critical buckling load of 37.06 kN/m (implemented

model) and 37.67 kN/m (experimentally). This indicates that the stiffeners were not

sufficient to compensate for the inclusion of the cutout and maintain the same critical

buckling load.

8.1 Future Works

Building upon the findings of this research, several areas warrant further investigation

to enhance the semi-analytical model and expand its applicability:

First, it is crucial to investigate the model’s performance under more complex loading

scenarios, such as combined shear and compression, cyclic loading, and dynamic loading

conditions. This will help assess the robustness of the model in real-world applications.
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Second, expanding the study to include various cutout shapes (e.g., elliptical, square)

and different stiffener configurations is necessary. This would demonstrate the model’s

versatility and provide insights into optimal design strategies for different applications.

Third, integrating the effects of temperature changes and environmental conditions

(e.g., humidity, corrosion) on the buckling behavior is particularly relevant for aerospace

and marine applications where such factors are critical.

Fourth, exploring the integration of machine learning algorithms to predict buckling

loads and optimize design parameters could enhance the model’s predictive capabilities

and streamline the design process.

Fifth, conducting extensive experimental validation using a wider range of materials,

including advanced composites and smart materials, will help verify the model’s accuracy

and adaptability across different material systems.

Sixth, integrating optimization algorithms to identify the most effective stiffener con-

figurations and cutout shapes that maximize buckling resistance while minimizing weight

and material usage is essential.

Finally, investigating the model’s sensitivity to manufacturing imperfections such as

misalignments, residual stresses, and material defects will enhance its reliability for prac-

tical engineering applications.

Addressing these areas will significantly contribute to the advancement of semi-analytical

modeling techniques and their application in engineering practice, ensuring more robust

and versatile solutions for future challenges.
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MORENO-GARCÍA, P.; SANTOS, J. V. D.; LOPES, H. A review and study on Ritz
method admissible functions with emphasis on buckling and free vibration of isotropic
and anisotropic beams and plates. Archives of Computational Methods in Engineering,
v. 25, 03 2017.

NARITA, A. W. L. Y. Buckling studies for simply supported symmetrically laminated
rectangular plates. International Journal of Mechanical Sciences, v. 32, n. 11, p.
909–924, 1990.

NI, Q.-Q.; XIE, J.; IWAMOTO, M. Buckling analysis of laminated composite plates
with arbitrary edge supports. Composite Structures, v. 69, n. 2, p. 209–217, 2005. ISSN
0263-8223. Available at:
https://www.sciencedirect.com/science/article/pii/S026382230400220X.

NIMA, S. J.; GANESAN, R. Buckling analysis of symmetrically laminated composite
plates including the effect of variable pre-stress field using the Ritz method. European
Journal of Mechanics - A/Solids, v. 90, 2021. ISSN 0997-7538. Available at:
https://www.sciencedirect.com/science/article/pii/S0997753821000954.

REDDY, J. N. Mechanics of Laminated Composite Plates and Shells: Theory and
Analysis. 2. ed. CRC Press, 2003. (Applied and Computational Mechanics). ISBN
9780203502808. Available at: https://books.google.com.br/books?id=eeUr AJiGRcC.

SHOJAEE, T.; MOHAMMADI, B.; MADOLIAT, R. Experimental and numerical
investigation of stiffener effects on buckling strength of composite laminates with
circular cutout. Journal of Composite Materials, v. 54, 09 2019.

SILVA, D. A semi-analytical model for shear buckling analysis of stiffened composite
panel with debonding defect. 97 p. Dissertation (Mestrado) — Instituto Tecnológico de
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Appendix A - Stiffeners’ parameters

A.1 Calculating the Stiffeners’ Parameters

In this section, the methodology employed to determine the associated energies related

to a stiffener will be presented, including the calculation of its geometric and stiffness pa-

rameters. Figure A.1 provides an xz view of the setup, depicting the stiffeners’ dimensions

and the total thickness of the plate. For clarity, these dimensions are exaggerated com-

pared to those in the actual tested scenario.

x

z

h

ds

bs

hs

hs

xsxs

a

FIGURE A.1 – Representative figure of the geometric parameters related to the stiffeners in the imple-
mented model.

The stiffeners feature an L-shaped cross-section with area Ast = dshs+bshs−h2
s, which

can be divided into two rectangles: one with dimensions (bs − hs)× hs, shown in blue in

Figure A.1, and another with dimensions hs × ds, shown in green in Figure A.1. Each

area has a black dot indicating its centroid.

The moments of inertia of each area with respect to the laminate’s mid-plane are

calculated as follows:
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(A.4)

Thus, the moments of inertia of the whole cross section are:

Ixx = Ibluexx + Igreenxx (A.5)

Izz = Ibluezz + Igreenzz (A.6)

As described by (CISC, 2002), the Saint-Venant torsional constant, J , is a geometric

characteristic of the cross section that quantifies a structural member’s resistance to pure

or uniform torsion. This constant is essential for determining the buckling moment resis-

tance of beams without lateral support and for assessing the torsional-flexural buckling

of compression members, as outlined in CSA Standard S16.1-94 (CSA, 1994).

Similarly, the warping torsional constant, Γ, represents the resistance to nonuniform

or warping torsion. It is also crucial for calculating the buckling moment resistance of

laterally unsupported beams and the torsional-flexural buckling of compression members,

according to CSA Standard S16.1-94 (CSA, 1994). The values for J and Γ are provided

by (CISC, 2002):

J =
(d′s + b′s)h

3
s

3
(A.7)

Γ =
(d′3s + b′3s )h

3
s

36
(A.8)

where

d′s = ds −
hs

2
and b′s = bs −

hs

2
(A.9)

To calculate the parameters Es
y and Gs

xz for each stiffener, it is necessary to calculate

the stiffness matrices of their flanges and perform their weighted averages. For the pa-

rameter Es
y, it was chosen to weight by the moment of inertia, Ixx. In the case of Gs

xz, it
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was weighted by the Saint-Venant torsional constant, J . Since both flanges of the stiffener

have stacking oriented with a difference of 90◦ in relation to the skin laminate, their 0◦

stacking reference was rotated to match the same reference axis as the skin, as shown in

Fig. A.2.

FIGURE A.2 – Representative figure showing the change in reference axes for the quasi-isotropic stacking
sequence configuration of the stiffeners.

The constitutive relationship for laminated composite in each flange is:


N

M

S

 =

As Bs 0

Bs Ds 0

0 0 Hs



ε0

κ

γ

 (A.10)

One way to obtain the stiffness parameters of each flange is by considering a tensile

test with M = 0. Thus, by applying this methodology, the previous equation can be

described as:


N

0

S

 =

As Bs 0

Bs Ds 0

0 0 Hs



ε0

κ

γ

 (A.11)

From Equation A.11, it is obtained that:

(Bs)ε
0 +Dsκ = 0 ⇒ κ = −(Ds)

−1(Bs)ε
0 (A.12)
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By applying Equation A.12 to Equation A.11, it is obtained that:

N = Asε
0 −Bs(Ds)

−1(Bs)ε
0 = [As −Bs(Ds)

−1(Bs)]ε
0 (A.13)

The value of σ can be obtained from Equation A.13, as shown in the Equation below:

σ =
N

hs

=
1

hs

[As −Bs(Ds)
−1(Bs)]ε

0 (A.14)

Thus, the stiffness tensor C can be obtained as shown in the equation below:

σ = Cε0 ⇒ C =
1

hs

[As −Bs(Ds)
−1(Bs)] (A.15)

For a symmetric laminate, it is found that Bs = 0. Thus, the stiffness tensor C can

be represented by the following equation:

C =
1

hs

As (A.16)

Therefore, the compliance tensor S can be represented as shown in the equation below.

ε = Sσ (A.17)

where S = (C)−1.

The stress-strain relationships in terms of engineering constants under plane stress can

be represented by the equation below:
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 (A.18)

where

Ex =
1

S11

(A.19)

Ey =
1

S22

(A.20)

Gxy =
1

S66

(A.21)

To characterize the transverse shear forces, the following constitutive relation is ap-



APPENDIX A. STIFFENERS’ PARAMETERS 129

plied:

{
τyz

τxz
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γyz

γxz

}
(A.22)

Therefore, the stiffness tensorCt, related to transverse shear forces, can be represented

by the following equation:

Ct =
1

hs

Hs (A.23)

Thus, the compliance tensor St, related to transverse shear forces, can be represented

as shown in the equation below:

γ = Stτ (A.24)

where St = (Ct)
−1.

The stress-strain relationships for transverse shear forces, expressed in terms of engi-

neering constants, can be represented by the equation below:
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γxz

}
=

[
1

Gyz

ηyzxz
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ηxzyz
Gyz

1
Gxz

]{
τyz

τxz
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(A.25)

where

Gyz =
1

St44

(A.26)

Gxz =
1

St55

(A.27)

(A.28)

The effective elastic properties of each stiffener are defined as follows:

Es
y =

∑Nflange

i=1 (EyIxx)
flangei∑Nflange

i=1 (Ixx)flangei
(A.29)

Gs
xz =

∑Nflange

i=1 (GxzJ)
flangei∑Nflange

i=1 (J)flangei
(A.30)
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Painéis; Placas reforçadas; Materiais compósitos; Flambagem; Método de Rayleigh-Ritz; Método de elementos
finitos; Ensaios de materiais; Engenharia de materiais; Engenharia estrutural.
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Mecânica. Área de Projeto Aeronáutico, Estruturas e Sistemas Aeroespaciais. Orientador: Prof. Dr. Mauŕıcio
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