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Resumo 
 

 

Os materiais compósitos constituídos de fibra de carbono de alto módulo e resina termo-fixa 

têm sido empregados em estruturas avançadas de engenharia, nos mais diversos setores, tais 

como exploração de petróleo, aeroespacial, energia eólica, dentre outros. Contudo, na 

fabricação destes materiais, durante o processo de cura responsável pela perfeita adesão entre 

os constituintes fibra mais matriz, ocorre o surgimento indesejado de pequenas deformações. 

Tais deformações resultam em tensões residuais, as quais provocam distorções geométricas na 

peça final, ou diminuem a resistência do material, característica essa tão buscada pelos 

projetistas ao se adotar os materiais compósitos. Essas tensões residuais são provenientes de 

efeitos de diferentes naturezas, como térmicos, químicos e até higroscópicos, que ocorrem nos 

constituintes do compósito devido aos gradientes térmicos e aos fenômenos do comportamento 

dos materiais sob condições de humidade e pressão, interação da peça com o molde e 

características de cada processo de fabricação.  O cômputo destas tensões pode ser encontrado 

na literatura aberta, porém, diversos autores, têm desenvolvido metodologias adaptadas 

especificamente para calcular e prever essas deformações e tensões. O presente trabalho buscou 

desenvolver e implementar uma ferramenta computacional eficaz na simulação dos efeitos das 

deformações e tensões residuais de natureza térmica.  A abordagem do problema utiliza do 

Princípio da Estacionariedade da Energia Potencial Total do sistema, permitindo tratar sistemas 

lineares ou não, considerando a energia interna de deformação e o potencial das forças aplicadas 

sobre o sistema. A busca da solução do equilíbrio deste sistema é feita através da minimização, 

via princípios variacionais do potencial total, utilizando o método de aproximação de Rayleigh-

Ritz para a determinação dos coeficientes generalizados das séries de funções das equações de 

equilíbrio, valendo-se das funções de Bardell para descrever as relações deformação-

deslocamento. A validação da metodologia é demonstrada pela comparação com casos em que 

existe solução fechada para os problemas de carregamento mecânico, solução exata para um 

problema de carregamento térmico, e com simulação via elementos finitos através do software 

comercial ABAQUS®, evidenciando a efetividade da abordagem adotada.  
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Abstract 
 

 

Composite materials made up of high modulus carbon fiber and thermoset resin have been used 

in advanced engineering structures across a range of sectors, such as oil exploration, aerospace, 

wind energy, among others. However, undesired small deformations occurs during the 

manufacturing of these materials, in the curing process responsible for perfect adhesion 

between the fiber and matrix constituents. These deformations result in residual stresses that 

can lead to geometric distortions in the final part or reduce the material's strength, a 

characteristic highly valued by designers when adopting composite materials. These residuals 

stresses originate from effects of different natures, such as thermal, chemical and even 

hygroscopic, which occur in the composite constituents due to thermal gradients and material 

characteristics under the conditions of humidity and pressure, interaction of the part with the 

mold, characteristics of each manufacturing process. The analysis and calculation of these 

stresses can be found in specialized literature; however, several authors, have developed 

adapted methodologies to calculate and predict deformations and stresses. The purpose of this 

study was to develop and implement a computational tool to simulate the effects of thermal 

residual deformations and stresses. The adopted approach is based on the Principle of Stationary 

of the Total Potential Energy of the system, allowing the analysis of linear or non-linear 

systems, considering the internal deformation energy and the potential of the forces applied to 

the system. The solution to the equilibrium of the system is to minimize the total potential 

energy, using the Rayleigh-Ritz approximation method to determine the generalized 

coefficients of the series of functions in the equilibrium equations, using Bardell functions to 

describe strain-displacement relations. The validation of the methodology is demonstrated 

through comparison with cases where closed solutions exist for mechanical loading problems, 

the exact solution for a thermal loading problem, and finite element simulations using the 

ABAQUS® commercial software, demonstrating the effectiveness of the adopted approach.  
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1 Introduction 
 

During the manufacturing process of carbon fiber composite, internal stresses may arise 

from temperature variations in the cure cycle, and the laminate may warp upon tool removal, 

leading to undesired geometric distortions. These internal stresses induce distortions in 

laminates and are attributed to many factors such as different cure cycles and the different 

thermal expansion coefficients of the composite constituents, including fibers, matrix, and 

metals in hybrid layup schemes. This challenge is frequently encountered in industries such as 

aerospace, wind turbine, and automotive, which demand complex geometries.  

Epoxy resins constitute one of the most critical classes of thermosetting polymers, 

applied as matrix for fiber-based composites (MAGDALENA, 2011). Temperature effects and 

conversion to the glassy state significantly influence their performance. Therefore, important 

mechanisms such as thermal expansion, resin shrinkage, and frozen-in strains developed during 

curing cycles (MAKINDE, 2018) need to be explored and better understood through analytical 

methodologies, numerical simulations and/or experimental investigations.  

The mechanisms leading to the buildup of residual stresses primarily arise from several 

factors: the mismatch in thermal-mechanical properties between the fiber and matrix 

constituents, volume shrinkage of the matrix resulting from the crosslinking process during 

cure, and the tool-part interaction. The latter occurs when there is a relative motion between the 

laminate and the mold, as result of the different thermal expansion coefficients between the 

laminate and the mold (CHEN; ZHANG, 2018). 

Consequently, during the manufacturing of fiber-reinforced polymer matrix composites, 

we often encounter mismatches in geometric dimension between design tolerances and the final 

part. Such mechanisms should be considered as a complement to the Classical Lamination 

Theory (CLT), a widely used approach that usually overestimates certain results and overlooks 

mechanisms, such as micromechanics and the tool-part interaction.  

 

1.1 Motivation 
 

Motivated by the aforementioned issues that may arise during the manufacturing process 

of thermosetting composites, the present work aimed to analyze, in addition to CLT, the thermal 

effects after cure process. It addresses a semi-analytical model to simulate the residual strain 

and stresses in a computation environment, to evaluate the problems encountered after 
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composite manufacturing process, like warpage in the final part and residual stresses that reduce 

the strengths of laminate composites (NIELSEN, 2013; WISNOM et al., 2006). The purpose 

of the investigation is to understand the phenomena involved during the composite curing 

process and compute the residual strains and stresses to enhance the design step. This 

understanding allows for the prevention of time and material losses due to geometric distortions 

and residual stresses in the final part. Furthermore, the research seeks to develop a useful tool 

for quickly analyzing common problems in structural mechanics. By addressing these issues, 

the tool can provide significant insights and solutions. This will improve the efficiency and 

reliability of composite structures. 

With this tool, it should be possible to compute the residual strain and stresses in some 

structural thin parts, like plates, plate-like beams, with a given boundary condition under 

mechanical and thermal loads or a combination of them. In addition, it is expected that the 

proposed model can be useful and further extended for other analysis, like panels with curved 

geometries and cylinders, which can be made by changing the strain-displacement 

relationships, while maintaining the continuity requirements. 

 

1.2 Objectives 
 

The objectives of this work are: 

• To computationally predict residual strains and stresses in thin structural parts, 

such as plates and plate-like beams to some boundary conditions, under thermal 

and mechanical loads. 

• To evaluate post-fabrication issues, such as warpage and residual thermal 

stresses. 

• To develop a useful computational tool to enhance the design process to prevent 

geometric distortions and residual stresses in laminates.  

 

1.3 Dissertation Layout 
 

Chapter 2 presents a literature review on the topic, aimed at understanding the main 

factors involved in residual stresses in thermosetting polymers composite and warpage behavior 

at flat geometries, as well as briefly explaining the driving mechanisms of the composite 

constituents. 
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All the mathematical formulation and key concepts essential for understanding the 

proposed model are explained in Chapter 3, elucidating their meaning and contribution to the 

development of this work. The variational method was adopted to obtain the set of equilibrium 

equations that simulate thermoelastic effects and accounted for the constituent’s behavior. 

Chapter 4 presents the results obtained using the proposed semi-analytical model for 

different loading and boundary conditions, comparing the model predictions with closed-form 

solutions available in the open literature. Moreover, several verification cases are compared to 

numerical simulations using the software ABAQUS®. 

 Finally, Chapter 5 draws conclusions and provides future work recommendations.  
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2 Literature Review 
 

 

In advanced fiber reinforced composite structures, strategic alignment of high-strength 

fibers, either in preferred orientations or in hybrid configurations with other materials like 

metals, yields materials with orthotropic properties (SINKE et al., 2013). Besides, during 

laminate composite fabrication, internal stresses may arise from temperature variations during 

the cure cycle, leading to residual strains and stresses and undesired geometric distortions upon 

tool removal. These challenges are often encountered in industries such as aerospace, wind 

turbine, and automotive, which demand complex geometries.  

The induced distortions in laminates are attributed to factors such as different cure 

cycles and thermal expansion coefficients of the composite constituents, including fibers, 

matrix, and metals in hybrid layup schemes. These factors result in residual intralaminar 

stresses and nonhomogeneous distributions of fibers in the matrix, and residual interlaminar 

stresses leading to delamination and, sometimes, weak joints between successive plies. 

Although accurately modelling microscale behaviors of composite materials can sometimes be 

challenging to assess and require computationally costly analysis, there are other analytical 

approaches like variational-based methods, which can be easily applied to simulate thermal 

loads and compute residual stresses at a macroscale, saving computational time and yielding 

good results. These methods provide accurate predictions of strains and stresses using material 

parameters, derived from experimental characterization, facilitating the comprehension of such 

phenomena, and improving residual strains prediction at low computation cost.  

 

2.1 Driving Mechanisms for Shape Distortions 
 

Several studies have investigated the main factors that influence shape distortions due 

to residual strains and stresses, aiming to enhance the design of composite structures. As an 

understanding basis, the changing in physical properties of matrix during cure reaction can be 

mentioned as a main discussion topic. 

Lawrence (LAWRENCE, 1969) presented some valuable conclusion about the 

characteristics of these properties, which may vary due to its dependence on cross-linking 

effects and glass transition temperature, for thermoset polymers. In his work, it was noted that 

the cross-linking in polymers significantly affects specific volume and on the thermal 
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coefficient of expansion, reducing them by decreased mobility of the polymer chains as they 

become more tightly interconnected. On the other hand, other properties like Elastic Modulus 

and Creep Resistance increases due to the formation of a more rigid network structure within 

the polymer. Additionally, the stress-strain properties for rubbers and polymers decreases by 

reduced chain mobility. 

The critical factor for chain-mobility and cross-linking effects is the glass transition 

temperature (𝑇𝑇𝑔𝑔), that is the temperature at which an amorphous polymer changes from a hard, 

glassy material, to a soft, rubbery state, delimiting when material undergoes significant changes 

in its mechanical and thermal properties.  

Some theoretical models are used to describe the relationship between 𝑇𝑇𝑔𝑔 and cross-link 

density in thermosetting polymers. A widely used relation to model the curing reaction in 

thermosetting polymers is the DiBenedetto´s Equation that takes into account the chemical 

composition and segmental mobility, revealing the shift of the glass transition temperature to 

degree of cross-linking. This relation allows computing the viscoelastic material behavior and 

identifying all phase transitions since liquid, passing by rubbery and finally achieving the glassy 

state of resin during this process of cross-linking formation. Figure 2.1 below shows a schematic 

of the phase transition during the polymer cure, as the glass transition temperature evolves. 

 

 

FIGURE 2.1 – A fictitious cure cycle example, showing cure degree, glass transition 

temperature and resin viscosity development as a function of temperature and time (Adapted 

from (NIELSEN, 2013)). 
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To elucidate the main driving mechanisms related to this changing in physical properties 

and their influence on process-induced distortions in composite structures, several studies can 

be mentioned. Fernlund (FERNLUND et al., 2003), Wisnom (WISNOM et al., 2006), and 

Kappel (KAPPEL et al., 2015) have extensively researched and classified these mechanisms, 

detailing their contributions to stress development during the curing process.  

By reviewing open literature, the driving mechanisms can be divided between the 

intrinsic and extrinsic factors. To understand the extent of influence from these inherent 

material effects, whether large, medium, or small, one can refer to Nielsen (NIELSEN, 2013) 

and Makinde (MAKINDE, 2018).  

Intrinsic factors can be related to both Intralaminar and Interlaminar stresses. The 

Intralaminar stresses is based on the micromechanical characteristics as thermal expansion 

mismatch between fiber and matrix, resin cure shrinkage, void content, and presence of 

moisture in mixture. Additionally, the Interlaminar stresses emerge from the interaction 

between successive laminas, which exhibit differences in thermal expansion of each ply as a 

consequence of the laminate layup.  

Furthermore, the Extrinsic factors occur mainly due to external influences, including the 

cure schedule and difference between Coefficient of Thermal Expansion (CTE) of tool and 

laminate, which has large contribution to residual stresses and shape distortions in thick 

laminates.  

In summary, Table 2.1 presents the driving mechanisms and their residual stress effects. 

It is noteworthy to mention that such undesirable issues can often be mitigated by modifying 

the manufacturing process (CHEN; ZHANG, 2018).  

 

TABLE 2.1 – Driving mechanisms and its main residual stress effects. 

Factor Driving Mechanism Stress Effect 

Intrinsic 
Micro-mechanical characteristics Intralaminar residual stress 

Macromechanical interaction Interlaminar in-plane stress 

Extrinsic External influences 
Tool-Part interaction 

generating shear stresses 

 

The following sections will provide a more detailed explanation of each specific 

driving mechanism. 
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2.1.1 Intralaminar Stresses from Micromechanics Influence 

 

As aforementioned, the Intralaminar stresses within composite materials are 

significantly influenced by micromechanical interactions between their constituents, 

particularly noticeable during the curing process.  

At the microscale level, residual stresses develop due to several factors, including 

thermal expansion mismatches between fibers and matrix, in which the Coefficient of Thermal 

Expansion (CTE) of matrix. Typically, the CTE of the matrix is significantly higher than that 

of the reinforcement fibers. This leads to fibers and matrix materials expanding and contracting 

at different rates under temperature changes (NIELSEN, 2013). This discrepancy can induce 

residual stresses that may compromise the structural integrity of the composite if the material 

is not properly selected. 

Similarly, as the resin cures, linear polymer chains are cross-linked to a denser three-

dimensional molecular structure as it transforms from a viscous state to a solid, shrinking in the 

process and therefore also shrinks composite component (SVANBERG et al., 2005), adding 

internal stresses through this shrinkage process.  

Additionally, voids and moisture within the composite can modify the distribution and 

magnitude of these stresses, further complicating their prediction and management.  

Each one of these factors contributes uniquely to the internal stress profile of a 

composite, affecting the stress–strain behavior and failures modes, impacting its mechanical 

performance and reliability under operational conditions. This intricate relationship between 

micromechanical properties and intralaminar stresses underscores the complexity of predicting 

and managing residual stresses in composite materials.  

Figures 2.2 and 2.3 illustrates the changes of engineering properties, specifically, CTE 

and Chemical Shrinkage Coefficient over time in the longitudinal and transverse directions for 

Carbon/Epoxy laminates. These changes, based on its micromechanical behavior, are briefly 

explained in Appendix A, following the fiber and matrix mixture rule.   

 



25 
 
 

 
FIGURE 2.2 – (a) Longitudinal, Transverse and Shear Modulus changes and (b) Poisson´s 

coefficient changes, observed for the Carbon/Epoxy laminate during cure process – Source 

Author. 

 

 
FIGURE 2.3 – Longitudinal and Transverse (a) Coefficient of Thermal Expansion (CTE) and 

(b) Chemical Shrinkage changes, observed of Carbon/Epoxy laminae over time during the 

cure process – Source Author. 

 
It is possible to observe the physical properties variation over time during the cure 

schedule and understand their relation to the stress built-up behavior material, which occurs due 

to polymer-chain mobility during the three phases illustrated in Figure 1. The equations used to 

compute those properties can be found in the micromechanics section of Jones (JONES, 1999), 

employing the fiber and matrix mixture rule, and the input values from Svanberg (SVANBERG; 

HOLMBERG, 2004b) and Daniel (DANIEL; ISHAI, 2006), resulting in a composite consisting 

of Carbon Fabric and Araldite LY5052/Hardener HY5052. The steps to compute those 

properties are described in Appendix A.   
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2.1.2 Interlaminar Stresses - A Macroscale Point of View 

 

The Interlaminar factors represent another inherent challenge in composite materials, 

influencing the built-up stresses, which are related to mismatch characteristics in successive 

plies. Some of these factors have significant influence, such as differences in thermal expansion 

across laminate layups, and thermal gradients in composite parts for thick laminates.  The non-

uniform fiber content distribution and gradients in chemical cure within composite can also be 

a nucleation of residual stresses, but with a moderate effect.   

The interlaminar stresses arise from difference of the ply CTEs in the longitudinal and 

transverse directions interaction between successive laminas, i.e., is a consequence of the 

stacking sequence adopted.   

 

2.1.3 Tool-Part Interaction and Mold Effects 

 

The other main driving factor behind built-up residual stress are the differential strains 

between the mold and part, because of different thermal expansion coefficients.  

The effects of residual stresses and shape distortions in laminates are attributed to 

significant non-uniform distributions of in-plane shear stresses, which arise from constraints 

imposed by the tool/part interface (NIELSEN, 2013). 

In a thermal expansion during cure in patamars above glass transition temperature, the 

expected stresses behavior between successive plies are higher in plies closed to the tool 

interface than other away. During the process, as resin is not fully cured, successive plies may 

slide, generating a through-thickness gradients in the ply stress, which will locked-in upon 

curing. Upon laminate tool-removal the stress equilibrium no longer exists and all these stresses 

relieved will convey a warpage aspect to a laminate. The Figure 2.4 illustrates the process 

sequence described. 

It is noteworthy to mention that the stacking sequence plays a significant role in warpage 

behavior due to the different thermal expansion coefficients between successive plies.  
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(a) 

 

 

(b) 

 

 

(c) 
 

FIGURE 2.4 – Tool-part interaction effect in a VARTM process (a) Laminate stretched 

counter stiffer toll, (b) Interply-Slippage and (c) warpage resulting from demolding (Adapted 

from (NIELSEN, 2013)). 

 

2.1.4 Other Factors 

 

With less influence than the mechanisms previously described, it is worth to mention 

the cure cycle design, the composite thickness, the fiber volume fraction, void contents, and 

swelling caused by moisture. These elements must not be neglected when the objective is a high 

strength composite, like primary structures in aircraft.  

Due to the viscoelastic nature of thermosets, for processes conducted at elevated 

temperatures, it is essential to employ a smart cure cycle that allows thermal expansion and 

shrinkage strains during curing to cancel each other out, thus effectively maintaining the matrix 

material volume somewhat constant, which helps reduce cure-induced strains (NIELSEN, 

2013).  

The composite thickness especially affects thermal gradients along thickness, 

significantly constraining cooling cure schedules due to the low thermal conductivity of thick 

composite sections.  

Poor manufacturing control and wrong fiber volume fraction can lead to inhomogeneous 

distribution of fiber and matrix within a part. This significantly affects the resin flow in angle 

profiles curved sections and complex geometries, resulting in resin-rich or resin-poor regions. 
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Moreover, the void content requires special treatment, as its effect are relevant for the 

strength and fatigue life of composite laminate structures. Voids typically arise from entrapped 

air and moisture diffusion.  

Therefore, aforementioned factors should not be neglected in the design strategy for 

manufacturing special composite, aiming to fully cover the residual stress prevention. 
 

2.2 Modelling Approaches. 
 

2.2.1 Micromechanics-Based Models 

 

Micromechanics-based models have been extensively investigated recently. The work 

proposed by Chen (CHEN; ZHANG, 2018) explores residual stress in fiber-reinforced polymer 

matrix composites accounting for the thermal transfer in a microscale to compute curvature in 

thin plates. This model was applied to predict the cure-induced warpage of a non-symmetric 

laminate, comparing it with experimental results. A multi-physics and multi-scale approach was 

employed to model the composite as discrete layers in a macroscale, while micromechanics-

model was implemented at the subscale based on fiber and matrix properties to compute 

effective lamina responses. The micromechanics rule used follows concentric cylinder 

assemblage of fiber-matrix pairs, as illustrated in Figure 2.5, and incorporates a cure-dependent 

constitutive law for resin cure kinetics.   

 

  

FIGURE 2.5 – Concentric cylinder assemblage of fiber-matrix pairs for a micromechanics-

based model (Adapted from (CHEN; ZHANG, 2018)). 
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In this study simulations were also conducted to demonstrate temperature gradients 

through-the-thickness to evidence the interlaminar effect of different thermal expansion 

coefficients between successive laminas in thick laminates. 

Additionally, model results were verified using frictional contact in ABAQUS® to 

simulate tool-part interaction, accounting for relative motion between the laminate and the 

mold, comparing the obtained experimental and numerical curvatures. In this scenario, the 

results perfectly match, evidencing the successfully predictions of the model. One conclusion 

drawn from this study is that the analysis solely based on the CLT approach overestimate results 

as it does not account for resin shrinkage and tool-part interaction. 

In other recent work, Makinde (MAKINDE, 2018) demonstrates the influence of this 

residual stresses in angled structures and for singly curved sections, using a micromechanical 

based model integrated with path-dependent curing kinetics to predict shape distortions 

considering important mechanisms such as thermal expansion, resin shrinkage and frozen-in 

strains developed during curing cycles. Makinde's research also incorporates the chemical 

effects of resin in numerical simulations, which were further validated experimentally using 

carbon and glass hybrid laminates. 

As a result, thickness variation effects were assessed on shape distortions and twist for 

a wing planform. One conclusion drawn was that these deformations are predominantly 

influenced by values along the longitudinal direction and along the out-of-plane transverse 

direction of laminate. Notably, CTE plays a primary role, followed by the resin rich zones, 

which can create stress concentration, especially on one side of the curved section. These factors 

have a significant impact on shape distortions, more than manufacturing quality or thickness of 

part.  

 

2.2.2 Interlaminar Analytical Models  

 

In a different vein, some researchers developed analytical models to capture 

interlaminar stresses rather than intralaminar ones. Yuan et al. (YUAN et al., 2016) focused his 

study on interlaminar stresses and developed a model to predict through-the-thickness stresses 

and warpage in composite laminates during the autoclave curing process. The study highlights 

the critical impact of mismatches in the coefficient of thermal expansion (CTE) between the 

tool and composite materials, which generate significant interfacial shear stresses since the tool 

material has much higher CTE than the composite. These stresses affect the laminate's tension 

and warpage, with the model specifically addressing interlaminar stresses as key factors in 
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warpage and residual stresses. The model aims to predict how CTE differences between the 

tool and composite part influence the final product's shape and structural integrity. 

The approach proposed by the authors simplifies the prediction of through-thickness 

stress distribution and warpage by assuming a constant interfacial shear stress along the tool-

part interface, as illustrated in Figure 2.6 below, thereby circumventing the need for extensive 

resin characterization. It is assumed that plies close to the tool are stretched more than the plies 

further away, creating a stress gradient through the thickness of the laminate, similarly to a 

classical beam theory where the geometry undergoing tractions at the top and compressions at 

the bottom surfaces. 

 

 

FIGURE 2.6 – Schematic of a composite part under sliding friction conditions due to tool 

expansion (Adapted from (YUAN et al., 2016)). 

 

This methodology leverages classical beam theory as a fundamental principle to 

enhance the predictive capabilities of closed-form solutions, thereby avoiding the complexities 

associated with cure kinetics and nonlinear material behavior. 

The residual stress and warpage of composite part verified by the analytical model were 

validated against simulations using the Finite Element Method (FEM) with ABAQUS and 

experimental data, which are used to calibrate the input parameters of the approach. Results 

from the model show that warpage increases linearly with the increase in interfacial shear stress, 

emphasizing the critical need to account for stresses induced by tool-part interactions.  

 According to the author, the model not only demonstrates good agreement with 

experimental data but also provides a less computationally intensive alternative to FEM. It 

shows that the bending moment causing warpage is not solely due to residual stress induced in 

the plies, but also to the through-thickness stress distribution, which plays a significant role. 

This study highlights the essential management of these interactions to improve the quality and 
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dimensional accuracy of composite manufacturing processes, especially in scenarios involving 

autoclave curing with prepregs.  

González-Cantero (GONZÁLEZ-CANTERO et al., 2016) presents a novel analytical 

model for evaluating interlaminar stresses in curved composite laminates, specifically targeting 

scenarios of unfolding failure. This model focuses particularly on areas of high curvature in 

structures such as L-shaped, C-shaped, X-shaped, or T-shaped beams, where interlaminar 

stresses pose significant risks of delamination and subsequent failure. The methodology 

introduced by authors employs a set of infinite fictitious laminas in a 2D stress state assumption, 

improving the accuracy in predicting stresses compared to previous methods that struggled with 

the complexities of non-uniform loads and changes in curvature. Their results were validated 

against finite element models and literature for specific problems of curved section, 

demonstrating excellent agreement, and highlighting the model's effectiveness in managing 

complex load scenarios in beams with curved sections, considering the heterogeneity of a 

composite laminate across the thickness. 

The study emphasizes interlaminar stresses as a critical factor in structural failures, 

particularly in unfolding failures in curved composite laminates subjected to normal and 

tangential loads. It was noted that areas of high curvature, such as in L-shaped or C-shaped 

beams, are particularly susceptible to delamination due to these stresses, which reflect the 

complexities arising from manufacturing processes and operational stresses in curved 

laminates, even knowing that interlaminar strengths are significantly lower than intralaminar 

strengths, which contributes to the emergence of undesirable failure modes. 

Although both studies, carried out by Yuan et al. (YUAN et al., 2016) and González-

Cantero et al. (GONZÁLEZ-CANTERO et al., 2016), emphasize the presence of interlaminar 

stresses and the importance of modeling them, Cantero et al. focused on the operational 

challenges posed by complex geometries employed in aircraft structures. They discussed the 

presence of interfacial stresses in these components and how the increase in interlaminar 

stresses contributes to the risk of delamination and unfolding failures. Conversely, Yuan et al. 

(YUAN et al., 2016) demonstrated the significant impact of CTE mismatches on the 

interlaminar stresses in composites, evidencing that these CTE mismatches during the 

manufacturing process induce interfacial shear stresses and warpage. Thus, it was highlighted 

the importance of managing these mismatches to prevent residual stresses and deformation, 

through understanding and controlling CTE mismatches, aiming to enhance the structural 

integrity and performance of composite materials. 
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2.2.3 Variational Based Methods 

 

Despite the particularities of constitutive behavior to any continuous body, either linear or 

non-linear material (REDDY, 2019) and its micromechanical modelling, other solutions can be 

obtained from powerful approaches employed in mechanic of structures like the direct 

variational methods as principles of virtual work and the principle of minimum total potential 

energy. These methods are based on stored energy within the system and work performed on 

it, allowing to obtain the set of equilibrium equations which leads to closed-form solutions for 

a few structures of relatively simple shape (ALLEN; HAISLER, 1985) and specific boundary 

conditions. However, for the majority of the structures, approximation functions are required 

to describe the strain-displacement relationships.   

The key to use these principles is the easiness to determine approximate solutions of 

problems by employing a functional approach. Particularly with the total potential energy 

method, the solution is taken when the extremum (minimal and maximum) stationary values 

are found with respect to the variables of the problem (REDDY, 2004).  

A very popular type of approximated solution method, which use these energy principles, 

is Rayeigh-Ritz, a technique for solving statically indeterminate structures, which can be used 

to treat the problem in terms of stresses and strains by solving a static equilibrium equation 

derived from the system's total energy (ALLEN; HAISLER, 1985). This technique is flexible 

and straightforward to apply because the functional includes all intrinsic features of the 

problem, such as the governing equations, boundary and/or initial conditions, and any 

constraints (REDDY, 2004), consisting in a basis for the development of displacement finite 

element models. Additionally, refining results can be achieved by increasing the number of 

functions in polynomial equation chosen for approximation, since the displacement field are 

consistent with the geometric constraints.  

The other most popular and widely used approximation method is the Finite Element 

Methods, an approach derived from the Rayeigh-Ritz method. In FEM technique a given 

domain is viewed as an assemblage of subdomains (i.e., finite elements), and the displacement 

field of each subdomain could be described by base functions from a defined vectorial space 

(ELISEU LUCENA, 2021). The approximated solution is sought by locally admissible 

polynomial functions, which are piecewise smooth only over each individual subdomain 

(BARDELL, 1991). In FEM, also it is possible to easily input different boundary conditions. 

Accuracy of results can be achieved by enhanced the number of subdomains and/or choice of 

polynomial order of approximation of the elements.  
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3 Semi-Analytical Model Formulation 
 

 

Based on these theories, this study aims to investigate a newly developed semi-

analytical model for simulating fundamental geometric components in structural mechanics, 

such as laminated plates and plate-like beams, under different boundary conditions and loads, 

by utilizing engineering properties and material characterization parameters, such as 

coefficients of thermal expansion. This model streamlines the design concept step and prevents 

material losses during final assembly. 

The proposed methodology is based on the computation of thermal residual strain-

stresses, and the approach is addressed by the variational method of Principle of Stationary of 

the Total Potential Energy (PSTPE). The potential energy is minimized regarding the Rayleigh-

Ritz Approximation Solution and using the Hierarchical Polynomial Bardell Functions to obtain 

the displacement field relations (BARDELL, 1991). The displacement field was assumed 

smoothly continuous along the thickness, following the use of the two-dimensional 

displacement-based formulation known as the Classical Laminate Theory (LIMA et al., 2018). 

 

3.1 Thermal Residual Strains and Stresses  
 

As previously discussed, during the fabrication process of high-performance composite 

parts, processing thermoset resin at higher temperatures can often lead to increased residual 

stresses (ABOUHAMZEH et al., 2019). Since laminates have been cured at different 

temperatures from the service temperature, thermal stresses arise and must be considered 

(JONES, 1999). Also, the inherent interaction between the laminate and the tool part, as well 

the complex chemical compatibility between layers in hybrid laminates due to the different 

CTE of materials, possess a challenge for design, even in a flat laminate manufacturing, where 

such thermal stress can be present, resulting in warpage as illustrated in Figure 3.1.  
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FIGURE 3.1 – Warpage of [202/-202] carbon/epoxy laminate (AS4/3501-6) (Adapted from 

(DANIEL; ISHAI, 2006)). 

 

Therefore, thermal analysis can address more effects on laminate behavior than 

anticipated, being necessary to analyze the problem regarding thermoelastic effects. According 

to Daniel (DANIEL; ISHAI, 2006), the total strains in a laminate can be computed as an 

additive decomposition, i.e., the sum of all involved strains, as well as thermal effects, as given 

by Equation 1:  

 

{𝜺𝜺} = [𝐒𝐒]{𝝈𝝈} + ∆𝑇𝑇{𝜶𝜶} (1) 

 

The total strain {𝜺𝜺} consists of the mechanical strain term [𝐒𝐒]{𝝈𝝈}, which relates to the 

constitutive material response to mechanical loads, and the last term ∆𝑇𝑇{𝜶𝜶}, which relates to 

the thermal strains and requires knowledge of the thermal expansion coefficients. Considering 

a single orthotropic layer, conventionally referred to as the k layer, the total strains can be 

analyzed in its principal coordinate system (1, 2 and 3 directions), as Equation 2: 
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where terms 𝑆𝑆ij in flexibility matrix ([𝐒𝐒]) are related to the engineering properties of material 

of the layer, and 𝛼𝛼1, 𝛼𝛼2 are the longitudinal and transversal coefficients of thermal expansion 

in the principal laminae coordinate system. To determine the lamina stresses, Equation 2 must 

be inverted, leading to Equation 3: 
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{𝝈𝝈}𝑘𝑘 = [𝐐𝐐𝒃𝒃]𝑘𝑘({𝜺𝜺}𝑘𝑘 − ∆𝑇𝑇{𝜶𝜶}𝑘𝑘) (3) 

 

Where, based on the constitutive relationship for laminae material, the matrix [𝐐𝐐𝒃𝒃]𝑘𝑘 is given 

by Equation 4: 

 

[𝐐𝐐𝒃𝒃]𝑘𝑘 = �
𝑄𝑄11 𝑄𝑄12 0
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�
𝑘𝑘

= [𝑺𝑺]𝑘𝑘
−1 (4) 

 

The terms of the constitutive matrix [𝑸𝑸𝒃𝒃] are function of engineering material properties for an 

orthotropic lamina, indicated by Equation 5: 

 

𝑄𝑄11 =
𝐸𝐸1

1 − 𝜐𝜐12𝜐𝜐21
 

𝑄𝑄22 =
𝐸𝐸2
𝐸𝐸1
𝑄𝑄11 (5) 
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𝑄𝑄11 

𝑄𝑄12 = 𝜐𝜐21𝑄𝑄11 

𝑄𝑄66 = 𝐺𝐺12 

 

In Equation 5 the constant 𝐸𝐸1 represents the longitudinal Elastic Modulus, 𝐸𝐸2 the transversal 

Elastic Modulus, 𝜐𝜐12 the major Poisson´s ratio, 𝜐𝜐21 the minor Poisson´s ratio and 𝐺𝐺12 the shear 

modulus at 1-2 plane. By changing the reference to an arbitrary coordinate system, (e.g., 

stresses described in a global x-y-z coordinate system), the total stresses for the k layer results 

as presented in Equation 6. 
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In which the constitutive transformed matrix [𝑸𝑸�𝑏𝑏]𝑘𝑘 for the k layer is given by Equation 7: 

 

[𝑸𝑸�𝑏𝑏]𝑘𝑘 = [𝑻𝑻]𝑘𝑘
−1[𝑸𝑸𝒃𝒃]𝑘𝑘 [𝑻𝑻]𝑘𝑘

−𝑇𝑇 (7) 
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calculate from the coordinate transformation matrix [𝑻𝑻] between the reference systems as 

presented in Equation 8. 
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Where 𝜃𝜃𝑘𝑘 is the angle between the principal direction of each layer and the longitudinal 

direction in global system. The set of equations described above is useful in the definition of 

the stiffnesses of a multilayered laminate and stress analysis in any arbitrary orientation for 

each kth constituent layer. 

 

3.2 Strain and Stress Variation in a Laminate Thickness 
 

Now, considering a stacking sequence of laminae, compound a laminate, as shown in 

Figure 3.2 below, where each lamina through the laminate thickness contributes to the resultant 

laminate stresses. 

 

 

FIGURE 3.2 – A representative of a Stacking Sequence of laminas resulting in a laminate 

(Adapted from (DANIEL; ISHAI, 2006)). 

 

Usually, according to the CLT analysis, the bonds between layers in a laminate are 

presumed to be infinitesimally thin and no-shear-deformable. The displacements are continuous 

across lamina boundaries, so that no lamina can slip relative to another, resulting in a stress 

distribution for each layer. 
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In a macroscale point of view, in a laminate with a representative stacking sequence of 

N laminas illustrated on Figure 3.2, there will be a similar stresses distribution computed as the 

sum of all laminae resultant stresses, as given by Equation 9: 

 

{𝑵𝑵} = � � {𝝈𝝈}𝑘𝑘𝑑𝑑𝑑𝑑

𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘−1

𝑁𝑁

𝑘𝑘=1

(9𝑎𝑎) 

{𝑴𝑴} = � � {𝝈𝝈}𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘−1

𝑁𝑁

𝑘𝑘=1

(9𝑏𝑏) 

 

Each layer stresses and strains variation along laminate thickness (t) will contribute to a 

resultant laminate stresses and strains. The sum of those layer’s stresses is referred to as 

generalized forces and moments, which now act on the laminae midplane, as shown in Figure 

3.3, below:  

 

 

FIGURE 3.3 – A laminate with generalized forces and moments acting on its midplane, as a 

result of the layer stresses and strains variation through laminate thickness (Adapted from 

(DANIEL; ISHAI, 2006)). 
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From the Thin Plate theory, the assumption that each lamina exhibits small deflection 

behavior compared to the laminate dimensions, assures a Linear Strains-Displacements 

Relation (LSDR), illustrated in Figure 3.4. 

 

 

FIGURE 3.4 – Kinematics of thin lamina (Adapted from (REDDY, 2004)). 

 

Assuming the rectangle in Figure 3.4 represents the cross-section of a laminate in a x-z or y-z 

plane, and the new position after the laminate undergoes a configuration change due to 

deformation by a stress gradient transformation, any arbitrary point in the deformed segment 

could be represented in terms of the plate middle plane displacements, and referred to laminate 

coordinate system, as given by Equation 10:   

 

𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑑𝑑) = 𝑢𝑢0(𝑥𝑥, 𝑦𝑦) − 𝑑𝑑
𝜕𝜕𝑤𝑤0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥
(10𝑎𝑎) 

𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑑𝑑) = 𝑣𝑣0(𝑥𝑥,𝑦𝑦) − 𝑑𝑑
𝜕𝜕𝑤𝑤0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑦𝑦
(10𝑏𝑏) 

𝑤𝑤 = 𝑤𝑤0(𝑥𝑥,𝑦𝑦) (10𝑐𝑐) 

 

Therefore, the components of the linearized strain tensor at this point are given in Equation 11: 

 

𝜀𝜀𝑥𝑥 =
𝜕𝜕𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑑𝑑)

𝜕𝜕𝑥𝑥
=
𝜕𝜕𝑢𝑢0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥
− 𝑑𝑑

𝜕𝜕2𝑤𝑤0(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥2

= 𝜀𝜀𝑥𝑥0 + 𝑑𝑑𝜅𝜅𝑥𝑥 (11𝑎𝑎) 
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𝜀𝜀𝑥𝑥 =
𝜕𝜕𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑑𝑑)

𝜕𝜕𝑦𝑦
=
𝜕𝜕𝑣𝑣0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑦𝑦
− 𝑑𝑑

𝜕𝜕2𝑤𝑤0(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦2

= 𝜀𝜀𝑥𝑥0 + 𝑑𝑑𝜅𝜅𝑥𝑥 (11𝑏𝑏) 

𝛾𝛾𝑥𝑥𝑥𝑥 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑢𝑢0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑦𝑦
+
𝜕𝜕𝑣𝑣0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥
− 2𝑑𝑑

𝜕𝜕2𝑤𝑤0(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

= 𝛾𝛾0 + 𝑑𝑑𝜅𝜅𝑥𝑥𝑥𝑥 (11𝑐𝑐) 

 

Writing these strains-displacement relationship in a vector form results in Equation 12:  

 

�
𝜀𝜀𝑥𝑥
𝜀𝜀𝑥𝑥
𝛾𝛾𝑥𝑥𝑥𝑥 

� =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝜕𝜕𝑢𝑢0(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

𝜕𝜕𝑣𝑣0(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

𝜕𝜕𝑢𝑢0(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑣𝑣0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥 ⎭
⎪⎪
⎬

⎪⎪
⎫

+ z

⎩
⎪⎪
⎨

⎪⎪
⎧ −

𝜕𝜕2𝑤𝑤0(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥2

−
𝜕𝜕2𝑤𝑤0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑦𝑦2

−2
𝜕𝜕2𝑤𝑤0(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 ⎭

⎪⎪
⎬

⎪⎪
⎫

= {𝜺𝜺0} + 𝑑𝑑{𝜿𝜿} (12) 

 

The vector {𝜺𝜺0} is now referred to as midplane strain of laminate, while the vector {𝜿𝜿} as 

curvature.  

Then, the laminae thermoelastic effects (Equation 6), accounted into laminate stresses’ 

resultants (Equation 9), will give the generalized forces and moments acting in a mid-plane, as 

given by Equation 13: 

 

{𝑵𝑵} = �
𝑁𝑁𝑥𝑥
𝑁𝑁𝑥𝑥
𝑁𝑁𝑥𝑥𝑥𝑥

� = �� [𝑸𝑸�𝑏𝑏]𝑘𝑘 ��
𝜀𝜀𝑥𝑥0

𝜀𝜀𝑥𝑥0

𝛾𝛾𝑥𝑥𝑥𝑥0
�

𝑘𝑘

+ 𝑑𝑑 �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥

�
𝑘𝑘

− ∆𝑇𝑇 �
𝛼𝛼𝑥𝑥
𝛼𝛼𝑥𝑥
𝛼𝛼𝑥𝑥𝑥𝑥

�
𝑘𝑘

�𝑑𝑑𝑑𝑑
𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘−1

𝑁𝑁

𝑘𝑘=1

(13𝑎𝑎) 

{𝑴𝑴} = �
𝑀𝑀𝑥𝑥
𝑀𝑀𝑥𝑥
𝑀𝑀𝑥𝑥𝑥𝑥

� = �� [𝑸𝑸�𝑏𝑏]𝑘𝑘 ��
𝜀𝜀𝑥𝑥0

𝜀𝜀𝑥𝑥0

𝛾𝛾𝑥𝑥𝑥𝑥0
�

𝑘𝑘

+ 𝑑𝑑 �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥

�
𝑘𝑘

− ∆𝑇𝑇 �
𝛼𝛼𝑥𝑥
𝛼𝛼𝑥𝑥
𝛼𝛼𝑥𝑥𝑥𝑥

�
𝑘𝑘

�𝑑𝑑𝑑𝑑𝑑𝑑
𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘−1

𝑁𝑁

𝑘𝑘=1

(13𝑏𝑏) 

 

The contribution from the thermal effects can be evaluated as Equation 14: 

 

{𝑵𝑵𝑻𝑻} = �
𝑁𝑁𝑥𝑥𝑇𝑇

𝑁𝑁𝑥𝑥𝑇𝑇

𝑁𝑁𝑥𝑥𝑥𝑥𝑇𝑇
� = � � [𝑸𝑸�𝑏𝑏]𝑘𝑘∆𝑇𝑇 �

𝛼𝛼𝑥𝑥
𝛼𝛼𝑥𝑥
𝛼𝛼𝑥𝑥𝑥𝑥

�
𝑘𝑘

𝑑𝑑𝑑𝑑

𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘−1

𝑁𝑁

𝑘𝑘=1

(14𝑎𝑎) 

{𝑴𝑴𝑻𝑻} = �
𝑀𝑀𝑥𝑥
𝑇𝑇

𝑀𝑀𝑥𝑥
𝑇𝑇

𝑀𝑀𝑥𝑥𝑥𝑥
𝑇𝑇
� = � � [𝑸𝑸�𝑏𝑏]𝑘𝑘∆𝑇𝑇 �

𝛼𝛼𝑥𝑥
𝛼𝛼𝑥𝑥
𝛼𝛼𝑥𝑥𝑥𝑥

�
𝑘𝑘

𝑑𝑑𝑑𝑑𝑑𝑑

𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘−1

𝑁𝑁

𝑘𝑘=1

(14𝑏𝑏) 

 



40 
 
 

Where the  {𝛼𝛼𝑥𝑥 𝛼𝛼𝑥𝑥 𝛼𝛼𝑥𝑥𝑥𝑥}𝑇𝑇 is the vector containing the layer thermal coefficients calculated 

in the global coordinate system, as in Equation 15, based on its orientation 𝜃𝜃𝑘𝑘 : 

 

�
𝛼𝛼𝑥𝑥
𝛼𝛼𝑥𝑥
𝛼𝛼𝑥𝑥𝑥𝑥

�
𝑘𝑘

= [𝑻𝑻]𝑘𝑘
𝑇𝑇 �
𝛼𝛼1𝑘𝑘
𝛼𝛼2𝑘𝑘

0
� = �

𝛼𝛼1𝑘𝑘 cos2(𝜃𝜃𝑘𝑘) + 𝛼𝛼2𝑘𝑘 sin2(𝜃𝜃𝑘𝑘)
𝛼𝛼1𝑘𝑘 sin2(𝜃𝜃𝑘𝑘) + 𝛼𝛼2𝑘𝑘 cos2(𝜃𝜃𝑘𝑘)

2 cos(𝜃𝜃𝑘𝑘) sin(𝜃𝜃𝑘𝑘) �𝛼𝛼1𝑘𝑘 − 𝛼𝛼2𝑘𝑘�
� (15) 

 

As the stiffness of each laminae constitutive relations can be calculated combining Equations 

4, 5 and 7, Equation 13 could be rewritten as Equation 16:  

 

�
𝑁𝑁𝑥𝑥
𝑁𝑁𝑥𝑥
𝑁𝑁𝑥𝑥𝑥𝑥

� = �
𝐴𝐴11 𝐴𝐴12 𝐴𝐴16
𝐴𝐴12 𝐴𝐴22 𝐴𝐴26
𝐴𝐴16 𝐴𝐴26 𝐴𝐴66

� �
𝜀𝜀𝑥𝑥0

𝜀𝜀𝑥𝑥0

𝛾𝛾𝑥𝑥𝑥𝑥0  
� + �

𝐵𝐵11 𝐵𝐵12 𝐵𝐵16
𝐵𝐵12 𝐵𝐵22 𝐵𝐵26
𝐵𝐵16 𝐵𝐵26 𝐵𝐵66

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥 

� − �
𝑁𝑁𝑥𝑥𝑇𝑇

𝑁𝑁𝑥𝑥𝑇𝑇

𝑁𝑁𝑥𝑥𝑥𝑥𝑇𝑇
� (16𝑎𝑎) 

 

�
𝑀𝑀𝑥𝑥
𝑀𝑀𝑥𝑥
𝑀𝑀𝑥𝑥𝑥𝑥

� = �
𝐵𝐵11 𝐵𝐵12 𝐵𝐵16
𝐵𝐵12 𝐵𝐵22 𝐵𝐵26
𝐵𝐵16 𝐵𝐵26 𝐵𝐵66

� �
𝜀𝜀𝑥𝑥0

𝜀𝜀𝑥𝑥0

𝛾𝛾𝑥𝑥𝑥𝑥0  
� + �

𝐷𝐷11 𝐷𝐷12 𝐷𝐷16
𝐷𝐷12 𝐷𝐷22 𝐷𝐷26
𝐷𝐷16 𝐷𝐷26 𝐷𝐷66

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥 

� − �
𝑀𝑀𝑥𝑥
𝑇𝑇

𝑀𝑀𝑥𝑥
𝑇𝑇

𝑀𝑀𝑥𝑥𝑥𝑥
𝑇𝑇
� (16𝑏𝑏) 

 

The stiffness laminate matrices ([𝑨𝑨], [𝑩𝑩] and [𝑫𝑫]) are widely recognized as the integration of 

each lamina constitutive relationship, clearly demonstrated in open literature by Jones (JONES, 

1999) and Daniel (DANIEL; ISHAI 2006). Thus, using the sum of mechanical and thermal 

generalized forces and moments applied on the laminate, it is possible to evaluate the 

thermoelastic effects over a laminate by rearranging Equation 16 above to find strains and, if 

necessary, curvatures at midplane of laminate by inverting this relation. 

 

�
{𝑵𝑵�}
{𝑴𝑴� }� = �

{𝑵𝑵𝑴𝑴} + {𝑵𝑵𝑻𝑻}
{𝑴𝑴𝑴𝑴} + {𝑴𝑴𝑻𝑻}

� = �
[𝑨𝑨] [𝑩𝑩]
[𝑩𝑩] [𝑫𝑫]� �

{𝝐𝝐𝟎𝟎}
{𝜿𝜿} �

(17) 

 

Or 
  

{𝒇𝒇} = [𝑪𝑪]{𝒆𝒆} (18) 
 

Where the laminate has now a representative stiffness matrix given as, 

 

[𝑪𝑪] = �
[𝑨𝑨] [𝑩𝑩]
[𝑩𝑩] [𝑫𝑫]� (19) 
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Thus, by knowing of the generalized forces and moments applied to structures ({𝑵𝑵�},{𝑴𝑴� }), 

whether they are mechanical ({𝑵𝑵𝑴𝑴}, {𝑴𝑴𝑴𝑴}), thermal ({𝑵𝑵𝑻𝑻}, {𝑴𝑴𝑻𝑻}) or a combination of both, by 

the geometric parameters of laminate and constitutive relations of layers, it is possible to 

determine the strains and curvature of mid-plane ({𝒆𝒆}). 

 

3.3 Principle of Stationary of the Total Potential Energy (PSTPE) 
 

Even though the stresses in an elastic body are unknown, the constitutive relations can 

be derived by expressing the equilibrium equations in terms of displacements rather than 

stresses, as demonstrated in the virtual work theorem. Therefore, this can be addressed by 

adopting the Principle of Stationary of the Total Potential Energy (PSTPE). PSTPE is a 

foundational concept in structural mechanics, providing an alternative basis for principles such 

as the Virtual Work theorem. It allows for deriving governing equations of continuum solids to 

directly determine exact or approximate solutions, intending to describe the system. Applicable 

across materials with linear or nonlinear elastic constitutive behavior (REDDY, 2019), PSTPE 

aims to solve the problem by finding the stationary values of a functional concerning the 

problem's variables. This functional is the total potential energy (Π) of the system, comprising 

the potential of internal energy due to deformation (𝑈𝑈) and the potential of work done by 

external forces (𝑉𝑉𝐸𝐸). The total potential energy is thus given by Equation 20 (REDDY, 2004):  

 
Π = 𝑈𝑈 + 𝑉𝑉𝐸𝐸 (20) 

 

Analyzing this functional relative to a stationary point, the total potential energy of the 

system is minimum if its value is minimum at this point (MEGSON, 2015), yielding to 

equilibrium equations in terms of displacements for an elastic system, considering the internal 

strain energy (𝑈𝑈) and external work done (𝑊𝑊) over the system, as given by Equation 21. 

 

δΠ = δ(𝑈𝑈 + 𝑉𝑉𝐸𝐸) = δ(𝑈𝑈 −𝑊𝑊) = 0 (21) 
 

Which may often be used to find approximated solutions for structural when an exact solution 

does not exist. 
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3.4 Rayleigh-Ritz Approximation Solution  
 

According to Allen (ALLEN; HAISLER, 1985), exact solutions to boundary value 

problems are impractical for complex structural systems. However, a powerful technique within 

variational methods, the Rayleigh-Ritz method, addresses this challenge by providing 

approximate solutions. This method ensures equilibrium and geometric compatibility by 

solving static equilibrium equations in terms of scalar energy quantity, representing the total 

energy of the system (Π).  

In the Rayleigh-Ritz method, displacement-fields are approximated using polynomial 

series with non-physical coefficients shown in Equation 22 below, referred to as generalized 

coordinates, i.e., 𝑞𝑞𝑖𝑖𝑖𝑖
𝑐𝑐,𝑣𝑣,𝑤𝑤. The polynomial approximation functions with respect to x and y 

coordinates, 𝜙𝜙𝑖𝑖(𝑥𝑥) and 𝜓𝜓𝑖𝑖(𝑦𝑦), satisfy essential geometric boundary problem conditions. 

 

𝑢𝑢0(𝑥𝑥,𝑦𝑦) = ��𝑞𝑞𝑖𝑖𝑖𝑖𝑐𝑐𝜙𝜙𝑖𝑖(𝑥𝑥)𝜓𝜓𝑖𝑖(𝑦𝑦)
𝑟𝑟

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

= [𝑵𝑵𝑐𝑐(𝑥𝑥,𝑦𝑦)]{𝒒𝒒𝑐𝑐} (22𝑎𝑎) 

 

𝑣𝑣0(𝑥𝑥,𝑦𝑦) = ��𝑞𝑞𝑖𝑖𝑖𝑖𝑣𝑣 𝜙𝜙𝑖𝑖(𝑥𝑥)𝜓𝜓𝑖𝑖(𝑦𝑦)
𝑟𝑟

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

= [𝑵𝑵𝑣𝑣(𝑥𝑥,𝑦𝑦)]{𝒒𝒒𝑣𝑣} (22𝑏𝑏) 

 

𝑤𝑤0(𝑥𝑥,𝑦𝑦) = ��𝑞𝑞𝑖𝑖𝑖𝑖𝑤𝑤𝜙𝜙𝑖𝑖(𝑥𝑥)𝜓𝜓𝑖𝑖(𝑦𝑦)
𝑟𝑟

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

= [𝑵𝑵𝑤𝑤(𝑥𝑥, 𝑦𝑦)]{𝒒𝒒𝑤𝑤} (22𝑐𝑐) 

 

Equation 22 can be represented in a matrix form where [𝑵𝑵𝑐𝑐,𝑣𝑣 𝑟𝑟𝑟𝑟 𝑤𝑤(𝑥𝑥,𝑦𝑦)] are the 1xnm line 

matrices containing the form functions, resulted from all the products 𝜙𝜙𝑖𝑖(𝑥𝑥)𝜓𝜓𝑖𝑖(𝑦𝑦), i.e., 

[𝜙𝜙1(𝑥𝑥)𝜓𝜓1(𝑦𝑦) … 𝜙𝜙1(𝑥𝑥)𝜓𝜓𝑟𝑟(𝑦𝑦)  𝜙𝜙2(𝑥𝑥)𝜓𝜓1(𝑦𝑦) … 𝜙𝜙2(𝑥𝑥)𝜓𝜓𝑟𝑟(𝑦𝑦) 𝜙𝜙𝑛𝑛(𝑥𝑥)𝜓𝜓1(𝑦𝑦) … 𝜙𝜙𝑛𝑛(𝑥𝑥)𝜓𝜓𝑟𝑟(𝑦𝑦)]. 

And the nmx1 column matrices {𝒒𝒒𝑐𝑐,𝑣𝑣 𝑟𝑟𝑟𝑟 𝑤𝑤} containing the generalized coordinates, 

[𝑞𝑞11𝑐𝑐  … 𝑞𝑞1𝑟𝑟𝑐𝑐   𝑞𝑞21𝑐𝑐 … 𝑞𝑞2𝑟𝑟𝑐𝑐  𝑞𝑞𝑛𝑛1𝑐𝑐 … 𝑞𝑞𝑛𝑛𝑟𝑟𝑐𝑐 ]𝑇𝑇. Alternatively, Equation 23 can be written in matrix form 

as follows, 

 

�
𝑢𝑢0
𝑣𝑣0
𝑤𝑤0

� = �
[𝑵𝑵𝑐𝑐(𝑥𝑥,𝑦𝑦)] [0] [0]

[0] [𝑵𝑵𝑣𝑣(𝑥𝑥,𝑦𝑦)] [0]
[0] [0] [𝑵𝑵𝑤𝑤(𝑥𝑥,𝑦𝑦)]

� �
{𝒒𝒒𝑐𝑐}
{𝒒𝒒𝑣𝑣}
{𝒒𝒒𝑤𝑤}

� (23) 

 

Or, briefly, 
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{𝒅𝒅} = [𝑵𝑵]{𝒒𝒒} (24) 
 

Considering that the strains in each lamina are given by the linear strain-displacement 

relationship, the mid-plane laminate strain {𝜺𝜺0} and curvature {𝜿𝜿} can be represented in matrix 

form in Equation 25, using these approximations mentioned above and taking the first and 

second derivative with respect to coordinates x and y: 

 

�{𝜺𝜺
0}

{𝜿𝜿} � =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜀𝜀𝑥𝑥0

𝜀𝜀𝑥𝑥0

𝜀𝜀𝑥𝑥𝑥𝑥0
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥⎭

⎪⎪
⎬

⎪⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�
�𝑵𝑵,𝑥𝑥

𝑐𝑐 (𝑥𝑥, 𝑦𝑦)� [0]
[0] �𝑵𝑵,𝑥𝑥

𝑣𝑣 (𝑥𝑥,𝑦𝑦)�
�𝑵𝑵,𝑥𝑥

𝑐𝑐 (𝑥𝑥,𝑦𝑦)� �𝑵𝑵,𝑥𝑥
𝑣𝑣 (𝑥𝑥,𝑦𝑦)�

� �
[0]
[0]
[0]

�

�
[0] [0]
[0] [0]
[0] [0]

� �
�𝑵𝑵,𝑥𝑥𝑥𝑥

𝑤𝑤 (𝑥𝑥,𝑦𝑦)�
�𝑵𝑵,𝑥𝑥𝑥𝑥

𝑤𝑤 (𝑥𝑥,𝑦𝑦)�
2�𝑵𝑵,𝑥𝑥𝑥𝑥

𝑤𝑤 (𝑥𝑥, 𝑦𝑦)�
�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�
{𝒒𝒒𝑢𝑢}
{𝒒𝒒𝑣𝑣}
{𝒒𝒒𝑤𝑤}

� (25) 

 

Or in a contracted form,  
 

{𝒆𝒆} = [𝑩𝑩]{𝒒𝒒} (26) 
 

The Equation 26 above is useful when minimizing the Total Potential Energy to obtain the set 

of equilibrium equations. 

 

3.5 Hierarchical Polynomial Bardell Functions 
 

The set of functions used in the present work to describe the displacement-field 

approximations is derived from the Rodrigue’s form of Legendre Orthogonal Polynomial’s 

(BARDELL, 1991). The polynomial form defined by Bardel is showed in Equation 27 below: 

 

𝑓𝑓𝑟𝑟(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂) = �
(−1)𝑛𝑛(2𝑜𝑜 − 2𝑠𝑠 − 7)‼

2𝑛𝑛𝑠𝑠! (𝑜𝑜 − 2𝑠𝑠 − 1)!
(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂)𝑟𝑟−2𝑛𝑛−1,   

𝑟𝑟
2�

𝑛𝑛=0

       𝑜𝑜 > 4. (27) 

 

Where the non-dimensional coordinates are given by 𝜉𝜉 = 2𝑥𝑥 𝑎𝑎� − 1 or  𝜂𝜂 = 2𝑦𝑦
𝑏𝑏� − 1, and 

𝑜𝑜‼ = 𝑜𝑜(𝑜𝑜 − 2), and  0‼ = (−1)‼ = 1, 𝑜𝑜 is the number of functions chosen for the polynomial 

series, remembering that should be more than 4. If 𝑜𝑜 is an odd number, the value of 𝑜𝑜 2�  is taken 

as the integer part of this division result. The parameters 𝑎𝑎 and 𝑏𝑏 are the dimensions of length 

and width, respectively, for a flat plate element showed in Figure 3.5. This plate has discretized 
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as one whole element and the interval of the non-dimensional coordinates (also known as 

natural coordinates) (𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂) is [−1,1] as showed in Figure 3.5. 

 

 
FIGURE 3.5 – An example of rectangular plate element with natural coordinates (Adapted 

from (BARDELL, 1991)). 

 
The first ten Polynomials and their correspondent slopes can be verified in Bardell’s 

(BARDELL, 1991) work. One important characteristic of these polynomials is that they belong 

to the same orthogonal basis of the Euler-Bernoulli beam element, as shown in Equation 28 

bellow. Thus, for a plate element as in Figure 3.5, its degrees of freedom can be given by the 

first four polynomial’s. 

 

𝑓𝑓1(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂) =
1
2
−

3
4

(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂) +
1
4

(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂)3 (28𝑎𝑎) 

 

𝑓𝑓2(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂) =
1
8
−

1
8

(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂) −
1
8

(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂)2 +
1
8

(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂)3 (28𝑏𝑏) 

 

𝑓𝑓3(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂) =
1
2

+
3
4

(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂) −
1
4

(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂)3 (28𝑐𝑐) 

 

𝑓𝑓4(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂) = −
1
8
−

1
8

(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂) +
1
8

(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂)2 +
1
8

(𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂)3 (28𝑑𝑑) 

 

These first four cubic modes of Bardell Polynomial’s presented are related to edge degrees of 

freedom and are used to model the cases studied in the present work, such as the plate clamped 

at one of its edges. Figure 3.6 shows these four polynomials, where the edge effect can be seen. 

According to the rule, the first and third are related to the edge displacement, representing either 

free or clamped constraints. When observing the edge on the left side (𝜉𝜉 = −1), the first 

polynomial allows for free displacement (𝑓𝑓1(𝜉𝜉) = 1), whilst the third polynomial imposes a 
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constraint (𝑓𝑓3(𝜉𝜉) = 0). At the right side (𝜉𝜉 = 1), the first polynomial imposes a clamped 

displacement (𝑓𝑓1(𝜉𝜉) = 0) and the third polynomial allows for free displacement (𝑓𝑓3(𝜉𝜉) = 1).  

 

 

FIGURE 3.6 – The first four polynomials of Bardell´s Functions in natural coordinates, 

(Source Author). 

 

The second and fourth polynomials are related to edge rotation. On the left side (𝜉𝜉 =

−1), edge rotation is constrained by the fourth polynomial, while the second allows free 

rotation. On the right side (𝜉𝜉 = 1), the rotation constraint is opposite for these polynomials. 

This effect is illustrated in Figure 3.7, where the first derivative with respect to 𝜉𝜉 of these first 

four polynomials are shown. On the left side (𝜉𝜉 = −1), the derivative function equals zero for 

the fourth polynomial and differs from zero for the second polynomial in the same side.  
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FIGURE 3.7 – The first derivative of the first four polynomials of Bardell´s Functions, 

in natural coordinates, (Source Author). 

 

Starting from the fifth polynomial, all Bardell polynomials have no effect on the 

boundaries, allowing refinements without difficult in imposing boundary conditions. This 

approach guarantees satisfaction of the boundary conditions, and meets the minimum continuity 

requirement, simplifying the computation of displacements, strains and consequently stresses. 

Therefore, the form functions indicated in Equation 22 can now be rewritten in non-

dimensional coordinates (𝜉𝜉 𝑐𝑐𝑜𝑜 𝜂𝜂). As an example, for the displacement field in 𝑢𝑢, (Equation 

22a), the line matrix containing the form functions is as follows:   

 

[𝑵𝑵𝑐𝑐(𝜉𝜉, 𝜂𝜂)] = [𝑓𝑓1(𝜉𝜉)𝑓𝑓1(𝜂𝜂) …𝑓𝑓1(𝜉𝜉)𝑓𝑓𝑟𝑟(𝜂𝜂)  𝑓𝑓2(𝜉𝜉)𝑓𝑓1(𝜂𝜂) … 𝑓𝑓2(𝜉𝜉)𝑓𝑓𝑟𝑟(𝜂𝜂) 𝑓𝑓𝑛𝑛(𝜉𝜉)𝑓𝑓1(𝜂𝜂) … 𝑓𝑓𝑛𝑛(𝜉𝜉)𝑓𝑓𝑟𝑟(𝜂𝜂)] 

 

3.6 Proposed Semi-Analytical Model 
 

Using the Bardell functions (Equations 27 and 28) to represent the displacement field 

given in Equation 22, we derive the set of equations in the three principal directions shown as 

presented in Equation 25. This leads to Equation 29, which describes the strains and curvatures: 
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�{𝜺𝜺
0}

{𝜿𝜿} � =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
2 𝑎𝑎� �𝑵𝑵,𝜉𝜉

𝑐𝑐 (𝜉𝜉,  𝜂𝜂)� [0]

[0] 2
𝑏𝑏� �𝑵𝑵,𝜂𝜂

𝑣𝑣 (𝜉𝜉,  𝜂𝜂)�
2
𝑏𝑏� �𝑵𝑵,𝜂𝜂

𝑐𝑐 (𝜉𝜉,  𝜂𝜂)� 2 𝑎𝑎� �𝑵𝑵,𝜉𝜉
𝑣𝑣 (𝜉𝜉,  𝜂𝜂)�

[0]
[0]
[0]

[0] [0]
[0] [0]
[0] [0]

4
𝑎𝑎2� �𝑵𝑵,𝜉𝜉𝜉𝜉

𝑤𝑤 (𝜉𝜉,  𝜂𝜂)�
4
𝑏𝑏2� �𝑵𝑵,𝜂𝜂𝜂𝜂

𝑤𝑤 (𝜉𝜉,  𝜂𝜂)�
8
𝑎𝑎𝑏𝑏� �𝑵𝑵,𝜉𝜉𝜂𝜂

𝑤𝑤 (𝜉𝜉,  𝜂𝜂)�⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�
{𝒒𝒒𝑢𝑢}
{𝒒𝒒𝑣𝑣}
{𝒒𝒒𝑤𝑤}

� (29) 

 

Thus, by minimizing the total potential energy (Π) defined in Equation 21, we obtain the 

following expression, 

 

δΠ = {δ𝒒𝒒}𝑇𝑇
𝜕𝜕Π
𝜕𝜕{𝒒𝒒} = 0 (30) 

 

for the plate under thermo-mechanical loads, the minimal functional Π will result: 

 

δΠ = {δ𝒒𝒒}𝑇𝑇 ��[𝑩𝑩]𝑻𝑻[𝑪𝑪][𝑩𝑩]
𝑆𝑆

𝑑𝑑𝑆𝑆{𝒒𝒒} −�[𝑩𝑩]𝑻𝑻{𝒇𝒇}
𝑆𝑆

𝑑𝑑𝑆𝑆 − �[𝑵𝑵]𝑻𝑻{𝒇𝒇𝐒𝐒}
𝑆𝑆

𝑑𝑑𝑆𝑆 − �[𝑵𝑵]𝑻𝑻{𝒇𝒇𝚪𝚪}
𝚪𝚪

𝑑𝑑𝚪𝚪

−�[𝑵𝑵]𝑻𝑻{𝒇𝒇𝐢𝐢}
𝒊𝒊

� = 0 

 
The above expression can be briefly written as follows,  
 

δΠ = {δ𝒒𝒒}𝑇𝑇�[𝑲𝑲]{𝒒𝒒} − �𝑭𝑭𝒇𝒇� − {𝑭𝑭𝑺𝑺} − {𝑭𝑭𝚪𝚪} − {𝑭𝑭𝒊𝒊}� = 𝟎𝟎 (32) 
 

Where [𝑲𝑲] is the stiffness matrix of system, and �𝑭𝑭𝒇𝒇�, {𝑭𝑭𝑺𝑺}, {𝑭𝑭𝚪𝚪}, {𝑭𝑭𝒊𝒊}  refer to the vectors 

associated with the midplane generalized thermo-mechanical forces ({𝒇𝒇}), transverse force per 

unit of area ({𝒇𝒇𝐒𝐒}) , transverse force per unit of length ({𝒇𝒇𝚪𝚪}) and concentrated forces ({𝒇𝒇𝐢𝐢}) 

acting on the laminate, respectively, schematically indicated in Figure 3.8, 
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(a) (b) 

  
(c) (d) 

FIGURE 3.8 – An illustration of plate with (a) mid-plane generalized forces and moments (b) 

transverse load per unit of area, (c) load per unit of length, and (d) transverse concentrated 

force (Adapted from (REDDY, 2004)). 

 

The stiffness matrix of the system, and the vectors associated with the forces indicated in 

Equation 32 are computed as follows, 

 

[𝑲𝑲] = �[𝑩𝑩]𝑻𝑻[𝑪𝑪][𝑩𝑩]
𝑆𝑆

𝑑𝑑𝑆𝑆 (33) 

�𝑭𝑭𝒇𝒇� = �[𝑩𝑩]𝑻𝑻{𝒇𝒇}
𝑆𝑆

𝑑𝑑𝑆𝑆 (34) 

{𝑭𝑭𝑺𝑺} = �[𝑵𝑵]𝑻𝑻{𝒇𝒇𝐒𝐒}
𝑆𝑆

𝑑𝑑𝑆𝑆 (35) 

{𝑭𝑭𝚪𝚪} = �[𝑵𝑵]𝑻𝑻{𝒇𝒇𝚪𝚪}
𝚪𝚪

𝑑𝑑𝚪𝚪 (36) 
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{𝑭𝑭𝒊𝒊} = �[𝑵𝑵]𝑻𝑻{𝒇𝒇𝐢𝐢}
𝒊𝒊

(37) 

 

The vectors {𝒇𝒇}, {𝒇𝒇𝐒𝐒}, {𝒇𝒇𝚪𝚪}, and {𝒇𝒇𝐢𝐢}, indicated in Equations 34, 35, 36 and 37 are related to the 

forces applied over the laminate,  

 

{𝒇𝒇} =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑁𝑁𝑥𝑥𝑥𝑥

0

𝑁𝑁𝑥𝑥𝑥𝑥0

𝑁𝑁𝑥𝑥𝑥𝑥0

𝑀𝑀𝑥𝑥𝑥𝑥
0

𝑀𝑀𝑥𝑥𝑥𝑥
0

𝑀𝑀𝑥𝑥𝑥𝑥
0 ⎭
⎪⎪
⎬

⎪⎪
⎫

  {𝒇𝒇𝐒𝐒} = �
𝑓𝑓𝑆𝑆𝑥𝑥
𝑓𝑓𝑆𝑆𝑥𝑥
𝑓𝑓𝑆𝑆𝑧𝑧
�  {𝒇𝒇𝚪𝚪} = �

𝑓𝑓Γ𝑥𝑥
𝑓𝑓Γ𝑥𝑥
𝑓𝑓Γ𝑧𝑧

�  {𝒇𝒇𝐢𝐢} = �
𝑓𝑓𝑖𝑖𝑥𝑥
𝑓𝑓𝑖𝑖𝑥𝑥
𝑓𝑓𝑖𝑖𝑧𝑧
� 

 

The non-trial solution of Equation 32 results in the following set of linear equations to be solved, 

 

[𝑲𝑲]{𝒒𝒒} = �𝑭𝑭𝒇𝒇� + {𝑭𝑭𝑺𝑺} + {𝑭𝑭𝚪𝚪} + {𝑭𝑭𝒊𝒊} (38) 
 

The solution of linear system given in Equation 38 allows for the determination of the 

generalized coordinates {𝒒𝒒}, as indicated in Equation 39, 

 

{𝒒𝒒} = [𝑲𝑲]−𝟏𝟏��𝑭𝑭𝒇𝒇� + {𝑭𝑭𝑺𝑺} + {𝑭𝑭𝑪𝑪} + {𝑭𝑭𝒊𝒊}� (39) 

 

Consequently, we obtain the displacements and strains through Equations 24 and 26, 

respectively, which are reiterated: 

 

{𝒅𝒅} = [𝑵𝑵]{𝒒𝒒} (24) 

 

{𝒆𝒆} = [𝑩𝑩]{𝒒𝒒} (26) 

  

Yielding to the determination of any residual stress layer by using the equation 3, repeated here, 

and allowing for analysis.  

 

{𝝈𝝈}𝑘𝑘 = [𝐐𝐐𝒃𝒃]𝑘𝑘({𝜺𝜺}𝑘𝑘 − ∆𝑇𝑇{𝜶𝜶}𝑘𝑘) (3) 
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Thus, the proposed semi-analytical model can now be applied to plates and plate-like 

beam geometries of laminates under generalized thermo-mechanical forces acting in its 

midplane, as well as mechanical forces either applied transversely per unit of area, per unit of 

length or concentrated. 

 All vectors and matrices related to Equation 38 were implemented in a computing 

environment using the commercial platform MATLAB®, considering different laminates, 

geometries, boundary conditions and loads. The results are presented in the next chapter. 



51 
 
 

4 Results and Discussion 
 

 

The purpose of this chapter is to describe the results obtained using the proposed semi-

analytical model, which employs Bardell´s functions to approximate displacement-fields in the 

Rayleigh-Ritz approximation solution for the thermoelastic loads in laminate plate-like beam 

and plate composites.  

Initially, the model was implemented to solve common problems found in the open 

literature for different load cases, such as cantilever plate-like beam with mechanical load, in 

configurations as, load at tip, distributed load, and for a biclampled plate-like beam with load 

at middle, considering an E-glass Epoxy laminate.  

Next, a Carbon-Fiber composite free plate [902/02] was considered, and simulations 

were carried out under thermal loads only, as this layup exhibits warpage under thermal loading. 

Additionally, the results were compared with an equation for CLT warpage solution found in 

Daniel (DANIEL; ISHAI, 2006). To verify the model effectiveness, a stress analysis was 

carried out, and the principal stresses were computed for each layer in the laminate. The sum 

of these stresses equals zero, confirming the model accuracy for thermal load conditions. 

Furthermore, a bi-material clamped plate-like beam was verified under thermal load, 

and the results were compared with an exact solution equation of a bi-material experiment, 

available in Cambridge University website (THERMAL, 2022).  

Finally, the proposed semi-analytical model was used to verify the thermal load in a 

monolithic composite plate, simulating a cure step that occurs in composite fabrication. In this 

case, the result was compared with simulation using the software ABAQUS®. 

 

4.1 Verification of the Proposed Semi-Analytical Model for Mechanical 

Loading Cases 
 

4.1.1 Case 1: Cantilever Composite Plate-Like Beam with a Concentrated Load at the 

Tip 

 

The semi-analytical model previously presented was implemented and validated against 

three well know literature cases, considering mechanical load only.  
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Firstly, a punctual mechanical load was applied to the tip of a cantilever beam, as shown 

in Figure 4.1. The maximum deflection obtained from the closed-form solution of the problem 

is also indicated in the figure. 

 

 

𝑤𝑤𝑡𝑡𝑖𝑖𝑡𝑡 =
𝐹𝐹0𝑎𝑎3

3𝐸𝐸𝐼𝐼
 

FIGURE 4.1 – An example of cantilever beam loaded at the tip, along with the equation from 

closed-form solution to compute the maximum deflection (Adapted from (REDDY, 2004)). 

 

A unidirectional laminate [09] was chosen to facilitate the effective laminate Young´s Moduli 

(𝐸𝐸�𝑥𝑥) computation and to allow the comparison with the closed-form solution. The lamina 

properties are listed in Table 4.1 below, with geometry values of length 𝑎𝑎 = 254 𝑚𝑚𝑚𝑚, width 

𝑏𝑏 = 𝑎𝑎 20⁄  and thickness 𝑡𝑡 = 0.127 𝑚𝑚𝑚𝑚, resulting in a plate-like beam geometry. A E-

Glass/Epoxy laminate was chosen because this material has the extensive data available in 

literature, which allows the reader to verify the information. 

 
TABLE 4.1 – Engineering properties of laminae for E-Glass/Epoxy, from (JONES, 1999). 

𝑬𝑬𝟏𝟏 [MPa] 𝑬𝑬𝟐𝟐 [MPa] 𝝊𝝊𝟏𝟏𝟐𝟐 𝑮𝑮𝟏𝟏𝟐𝟐 [MPa] 𝜶𝜶𝟏𝟏 [°C-1] 𝜶𝜶𝟐𝟐 [°C-1] 
53780 17930 0.25 8620 6.3x10-6 20.52x10-5 

 

The result for the maximum deflection using the closed-form solution indicated in 

Figure 4.1 was computed using the effective laminate Young´s Moduli (𝐸𝐸�𝑥𝑥) calculated 

following the section 7.12 in Daniel (DANIEL; ISHAI, 2006). The Moment of Inertia depends 

on the rectangular geometry section (𝐼𝐼 = 𝑏𝑏. ℎ3 12⁄ ) and the applied mechanical load was 𝐹𝐹0 =

1𝑁𝑁 in z-direction. The maximum deflection result for closed-formed solution is 𝑤𝑤𝑟𝑟𝑚𝑚𝑥𝑥 =

64.2685 𝑚𝑚𝑚𝑚.  

Employing the proposed semi-analytical model, the typical deflection result is obtained 

by taken the Equation 38, where the laminate is under concentrated load forces, represented by 

the vector {𝒇𝒇𝐢𝐢} = {0 0 𝐹𝐹0}𝑇𝑇, resulting in the equilibrium set of equations [𝑲𝑲]{𝒒𝒒} = {𝑭𝑭𝒊𝒊}. 
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The solution of this system provides the column matrix {𝒒𝒒}, containing the generalized 

coordinates. The maximum deflection 𝑤𝑤𝑟𝑟𝑚𝑚𝑥𝑥 is then computed using Equation 24. The 

displacement field and the 𝑤𝑤𝑟𝑟𝑚𝑚𝑥𝑥 are shown in Figure 4.2. The geometric boundary conditions 

assured by Bardell functions combination was (Clamped-Free-Free-Free), using the third and 

fourth polynomials in the 𝜉𝜉 coordinate and all the first four polynomials in the 𝜂𝜂 coordinate. 

The result of 𝑤𝑤𝑟𝑟𝑚𝑚𝑥𝑥 = 64.1566 𝑚𝑚𝑚𝑚 was obtained using 15 terms in the polynomial Bardell 

series in the x and y directions. 

 

 

FIGURE 4.2 – The cantilever beam simulated using the proposed semi-analytical model. 

 

4.1.2 Case 2: Cantilever Composite Plate-Like Beam with Distributed Load 

 

Next, the proposed semi-analytical model is verified by using a distributed mechanical 

load of 𝑞𝑞0 = 1 N/𝑚𝑚𝑚𝑚 in z-direction as shown in the Figure 4.3, applied to the previously 

described cantilever beam. The problem given by Equation 38 results now in the set of 

equilibrium equations [𝑲𝑲]{𝒒𝒒} = {𝑭𝑭𝚪𝚪}, with transverse force per unit of length acting in the 

laminate as the vector {𝒇𝒇𝚪𝚪} = {0 0 𝑞𝑞0}𝑇𝑇. The geometric boundary conditions ensured by the 

combination of Bardell functions were the same as in the previous problem (Clamped-Free-

Free-Free), using the third and fourth polynomials in the 𝜉𝜉 coordinate and all the first four 

polynomials in the 𝜂𝜂 coordinate.  
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𝑤𝑤𝑡𝑡𝑖𝑖𝑡𝑡 =
𝑞𝑞0𝑎𝑎4

8𝐸𝐸𝐼𝐼
 

FIGURE 4.3 – A cantilever beam with distributed load and the expression for maximum 

deflection (Adapted from (REDDY, 2004)). 

 

The deflection obtained through the closed-form solution is 𝑤𝑤𝑡𝑡𝑖𝑖𝑡𝑡 = 24.1007 𝑚𝑚𝑚𝑚. Figure 4.4 

shows the beam deflection and its maximum value (𝑤𝑤𝑟𝑟𝑚𝑚𝑥𝑥) obtained through simulation of the 

proposed semi-analytical model using 15 terms in the polynomial Bardell series in the x and y 

directions. 

 

 

FIGURE 4.4 – The cantilever beam simulated using the proposed semi-analytical model. 

 

4.1.3 Case 3: Bi-Clamped Composite Plate-Like Beam with a Central Load 

 

Finally, the model was validated using a concentrated mechanical load 𝐹𝐹0 = 1 𝑁𝑁 in the 

z-direction, but now applied to a biclamped beam, as shown in Figure 4.5. The problem given 

by Equation 38 results in the equilibrium equation [𝑲𝑲]{𝒒𝒒} = {𝑭𝑭𝒊𝒊}, with concentrated load forces 

acting in the laminate as the vector {𝒇𝒇𝐢𝐢} = {0 0 𝐹𝐹0}𝑇𝑇. The geometric boundary conditions 
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assured by Bardell functions combination were (Clamped-Free-Clamped-Free), using none of 

the first four polynomials in the 𝜉𝜉 coordinate and all of the first four polynomials in the 𝜂𝜂 

coordinate. 

 

 

𝑤𝑤𝑟𝑟𝑖𝑖𝑚𝑚−𝑠𝑠𝑡𝑡𝑚𝑚𝑛𝑛 =
𝐹𝐹0𝑎𝑎3

192𝐸𝐸𝐼𝐼
 

FIGURE 4.5 – An example of biclamped beam with a mid-span mechanical load (Adapted 

from (REDDY, 2004)). 

 
The typical deflection obtained through the closed-form solution is 𝑤𝑤𝑟𝑟𝑖𝑖𝑚𝑚−𝑠𝑠𝑡𝑡𝑚𝑚𝑛𝑛 = 1.0042 𝑚𝑚𝑚𝑚. 

The warpage and the maximum deflection (𝑤𝑤𝑟𝑟𝑚𝑚𝑥𝑥) computed by simulation is shown in Figure 

4.6. In this case, the proposed semi-analytical model also adopted 15 terms in the Bardell 

polynomial series for both the x and y directions. 

 

 

FIGURE 4.6 – The biclamped beam simulated using the proposed semi-analytical model. 

 

All the results for maximum deflections, compared to those of the closed-form solution 

to the problem, are listed in Table 4.2 bellow. The convergence of the relative error is also 

presented by increasing the number of terms in the polynomial Bardell series. 
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TABLE 4.2 – Results for the symmetric composite beam simulated. 

Beam problem 
type 

Number of 
terms  

Polynomial 
Series  

𝒘𝒘𝒎𝒎𝒎𝒎𝒎𝒎 [mm]  
(proposed 

model) 

𝒘𝒘𝒎𝒎𝒎𝒎𝒎𝒎 [mm]  
(Closed-
Solution) 

Relative  
error 
(%) 

cantilever beam  
loaded at tip 

6 63.8476 64.2684 0.6548 
10 64.0903 64.2684 0.2772 
15 64.1566 64.2684 0.1740 

cantilever beam  
with distributed 

load 

6 23.9031 24.1007 0.8199 
10 24.0158 24.1007 0.3519 
15 24.0479 24.1007 0.2190 

biclamped beam  
with punctured 

load 

6 0.9275 1.0042 7.6316 
10 0.9928 1.0042 1.1296 
15 1.0002 1.0042 0.3945 

 

The Figures 4.7 and 4.8 show the comparison between deflection distribution along 

length computed through the proposed semi-analytical model and the result obtained by the 

closed-form solution available by Megson (MEGSON, 2015). These comparisons are for a 

cantilever beam loaded at the tip and with a distribute load, respectively. The closed-form 

solution is given by deflection 𝑤𝑤(𝑥𝑥) computed in the neutral plane (𝑤𝑤(𝑥𝑥)|𝑥𝑥=0),  

 

 

FIGURE 4.7 – Comparison of deflection along beam length, calculated from the proposed 

model and literature closed-solution for the clamped beam loaded at the tip. 
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FIGURE 4.8 – Comparison of deflection along beam length, calculated from the proposed 

model and literature closed-solution for the clamped beam with distributed load. 

 

After examining the previous Figures 4.7 and 4.8, along with the deflection values listed 

in Table 4.2 and their correspondent relative error results, it is possible verify that the proposed 

semi-analytical model is validated for the mechanical load. The Figures above show the good 

agreement for beam deflection along its length. All the geometric boundary condition of 

clamped at one edge and bi-clamped beam were simulated by selecting which of the first four 

polynomials should be considered in the function series, as mentioned in section 3.5. 

 

4.2 Verification of the Proposed Semi-Analytical Model for Thermal 

Loading Cases 
 
4.2.1 Case 1: Clamped-Free Bi-Material Plate-Like Beam Laminate Subjected to 

Thermal Loading 

 

In order to validate the model for applied thermal loads, the analysis was carried out in 

a bi-material plate-like beam laminate composed by fabric layers of high-end thermoplastic 

composite material [(0,90)/(+45,-45)]2S with an aluminum layer at the bottom. 

This stacking sequence using aluminum is a noncommercial layup intended to simulate 

a similar experiment carried out by Marques (MARQUES, 2023), which performed a 

comprehensive resin characterization and indirectly verified the warpage behavior in a bi-
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material plate-like beam laminate due to thermal residual effects. The modelling of the 

experimental setup follows the content available in Cambridge website (THERMAL, 2022), as 

illustrated in Figure 4.9. 

 
 

(a) 
 

(b) 
 

 

(c) 

 

FIGURE 4.9 – An illustration of (a) bi-material beam experimental setup available in 

(THERMAL, 2022), (c) simulating a clamped bi-material plate-like beam laminate (bonded 

together) and (b) resulting internal stresses generating a uniform curvature when undergoes a 

temperature change ∆T. 

 

According to the content in reference (THERMAL, 2022), the maximum deflection (𝛿𝛿) 

is function of the curvature (𝜅𝜅) of the bi-material beam, assuming that they are bonded and do 

not slip relative to each other. The exact solution is given in the Equation 40 below and can be 

calculated by the relaxation method or using available functions in commercial platforms to 

solve transcendental equations. 

 

𝜅𝜅 =
2 sin �tan−1�𝛿𝛿 𝑥𝑥� ��

�(𝑥𝑥2 + 𝛿𝛿2)
(40) 

 

The curvature is computed by an expression obtained from the moment balance, which 

arises from stress distribution due to misfit strains between the bonded materials. More detailed 

information can be found at (CLYNE, 1996). This curvature expression is given in Equation 

41, and is related to constituents’ material properties and their thickness, 
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𝜅𝜅 =
6(ℎ𝐴𝐴𝐴𝐴 + ℎ𝐶𝐶)ℎ𝐴𝐴𝐴𝐴ℎ𝐶𝐶∆𝜀𝜀

𝐸𝐸𝐴𝐴𝐴𝐴2ℎ𝐴𝐴𝐴𝐴
4 + 4𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐶𝐶ℎ𝐴𝐴𝐴𝐴

3ℎ𝐶𝐶 + 6𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐶𝐶ℎ𝐴𝐴𝐴𝐴
2ℎ𝐶𝐶

2 + 4𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐶𝐶ℎ𝐴𝐴𝐴𝐴ℎ𝐶𝐶
3 + 𝐸𝐸𝐶𝐶2ℎ𝐶𝐶

4 (41) 

 

Where ℎ𝐴𝐴𝐴𝐴 and ℎ𝐶𝐶  are the thickness of aluminum and composite, respectively, the Elastic 

modulus are 𝐸𝐸𝐴𝐴𝐴𝐴 and 𝐸𝐸𝐶𝐶 , and the misfit strain ∆𝜀𝜀 is computed using the temperature step ∆𝑇𝑇 

and the thermal expansion coefficients (𝛼𝛼𝐴𝐴𝐴𝐴 ,𝛼𝛼𝐶𝐶) of constituents’ materials, as given by Equation 

42: 

 

∆𝜀𝜀 = (𝛼𝛼𝐴𝐴𝐴𝐴 − 𝛼𝛼𝐶𝐶)∆𝑇𝑇 (42) 

 

The properties and engineering constants for both materials are given in Table 4.3. Each 

thermoplastic laminae have the same geometry values, 𝑎𝑎 = 200 𝑚𝑚𝑚𝑚, 𝑏𝑏 = 26 𝑚𝑚𝑚𝑚 and 𝑡𝑡 =

0.31 𝑚𝑚𝑚𝑚, while the aluminum layer has a thickness of 𝑡𝑡 = 1.25 𝑚𝑚𝑚𝑚.  

 

TABLE 4.3 – Engineering properties of Toray Cetex® TC1225 High Strength T300JB 3K 

Carbon and aluminum layer of Al2024-T4 

 𝑬𝑬𝟏𝟏 [MPa] 𝑬𝑬𝟐𝟐 [MPa] 𝝊𝝊𝟏𝟏𝟐𝟐 𝑮𝑮𝟏𝟏𝟐𝟐 [MPa] 𝜶𝜶𝟏𝟏 [°C-1] 𝜶𝜶𝟐𝟐 [°C-1] 
TC1225 58 58 0.052 3.9 1.73x10-5 1.73x10-5 

Aluminum 73.1 73.1 0.33 48.6 24.7x10-6 24.7x10-6 
 

Using the proposed semi-analytical model, the problem given by Equation 38 results in 

the equilibrium equation [𝑲𝑲]{𝒒𝒒} = �𝑭𝑭𝒇𝒇�. The thermal load is derived from the simulated cure 

degree step for the resin, ∆𝑇𝑇= 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 = −115 ℃, resulting in the midplane generalized 

thermal forces {𝒇𝒇} = �𝑁𝑁𝑥𝑥𝑥𝑥𝑇𝑇 𝑁𝑁𝑥𝑥𝑥𝑥𝑇𝑇 𝑁𝑁𝑥𝑥𝑥𝑥𝑇𝑇 𝑀𝑀𝑥𝑥𝑥𝑥
𝑇𝑇 𝑀𝑀𝑥𝑥𝑥𝑥

𝑇𝑇 𝑀𝑀𝑥𝑥𝑥𝑥
𝑇𝑇 �

𝑇𝑇
 applied to the laminate, 

computed following the Equation 14. The geometric boundary conditions assured by Bardell 

functions are the same as those given in Section 4.1.1 and 4.1.2.  

The Figure 4.10 shows the warpage of the bi-material plate-like beam laminate using 

the semi-analytical model, considering only the thermal load applied to the cantilever plate-like 

beam configuration.  
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FIGURE 4.10 – The cantilever plate-like beam simulated using the present model. 

 

The curvature and deflection relation given in Equation 40 was solved using the 

Matlab® “fzero” function, resulting in a maximum beam deflection of 𝛿𝛿 = 10.2405 𝑚𝑚𝑚𝑚. The 

results for deflections and convergence analysis with error achieved by the proposed semi-

analytical model are listed in Table 4.4 below.  

 
Table 4.4 – Results for cantilever bi-material plate-like beam laminate with thermal load only. 

Number of terms  
Polynomial Series  

𝒘𝒘𝒎𝒎𝒎𝒎𝒎𝒎 [mm]  
(proposed model) 

𝒘𝒘𝒎𝒎𝒎𝒎𝒎𝒎 [mm]  
(Closed-Solution) 

Relative  
error (%) 

6x5 13.3678 10.2405 30.5385% 
10x5 11.2003 10.2405 9.3725% 
15x5 10.5974 10.2405 3.4551% 
18x5 10.4683 10.2405 2.2245% 
21x5 10.3986 10.2405 1.5438% 
25x5 10.3844 10.2405 1.0536% 

 

The convergence study evaluated up to 25 terms for the polynomial series in x direction while 

maintaining 5 terms in y direction. However, adding more than 18 additional terms resulted in 

a timeout of 1 hour during simulation. This issue arises from a code architecture where subcodes 

run sequentially, including one for derivation and integration of symbolic matrices, whose size 

is proportional to the number of terms in the polynomial series.  

 Thus, since the error between the exact solution and the simulated maximum deflection 

using 15 terms was approximately 3 %, and the magnitude of this difference was 0.35 𝑚𝑚𝑚𝑚, the 
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model convergence and accurate were considered satisfactory. Improved results and 

convergence rates could be achieved by enhancing the simulation code to run in parallel, and 

by changing the method to compute integration. 

 Since the results satisfactorily validated the developed model, demonstrating the 

possibility of achieving good results for thermal loads in bi-material laminates, the next step is 

to conduct simulations for laminate plates with specific geometric boundary conditions and 

subjected to the mechanical or thermal loads. These simulations will be compared with cases 

in the open literature or numerical results obtained by FEM. 

 

4.2.2 Case 2: Monolithic Laminate Plate Subjected to Thermal Loading 

 

In order to verify the approach with other geometries and materials, the model was 

applied to a non-symmetric [902/02] Carbon/Epoxy free plate under thermal load and compared 

to the CLT model. The engineering properties for material laminas with a thickness of 𝑡𝑡 =

0.19 𝑚𝑚𝑚𝑚  and dimensions 𝑎𝑎 = 𝑏𝑏 = 200 𝑚𝑚𝑚𝑚 are listed in Table 4.5. The warpage of the plate 

according to the CLT model was calculated, resulting in the out-of-plane deflection (𝑤𝑤(𝑥𝑥,𝑦𝑦)) 

given by Equation 43, available in chapter 8 of Daniel (DANIEL; ISHAI, 2006):  

 

𝑤𝑤(𝑥𝑥,𝑦𝑦) = −
1
2
�𝜅𝜅𝑥𝑥. 𝑥𝑥2 + 𝜅𝜅𝑥𝑥.𝑦𝑦2 + 𝜅𝜅𝑥𝑥𝑥𝑥. 𝑥𝑥.𝑦𝑦� (43) 

 

TABLE 4.5 – Engineering properties of laminae constituents for (AS4/3501-6) (Adapted from 

(DANIEL; ISHAI, 2006)). 

𝑬𝑬𝟏𝟏 [MPa] 𝑬𝑬𝟐𝟐 [MPa] 𝝊𝝊𝟏𝟏𝟐𝟐 𝑮𝑮𝟏𝟏𝟐𝟐 [MPa] 𝜶𝜶𝟏𝟏 [°C-1] 𝜶𝜶𝟐𝟐 [°C-1] 
142000 10300 0.28 7200 -0.9x10-6 27x10-6 

 

Figure 4.11a shows the warpage of the laminate and maximum displacements at z-

direction calculate by Equation 43 for CLT model and using the curvatures obtained through 

the inversion of Equation 17, for the laminate under the thermal load only. The thermal load is 

derived from the simulated cure step for the resin, ∆𝑇𝑇= 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 = −115 ℃, resulting in 

a generalized thermal forces and moments acting in midplane of the laminate {𝒇𝒇} =

�𝑁𝑁𝑥𝑥𝑥𝑥𝑇𝑇 𝑁𝑁𝑥𝑥𝑥𝑥𝑇𝑇 𝑁𝑁𝑥𝑥𝑥𝑥𝑇𝑇 𝑀𝑀𝑥𝑥𝑥𝑥
𝑇𝑇 𝑀𝑀𝑥𝑥𝑥𝑥

𝑇𝑇 𝑀𝑀𝑥𝑥𝑥𝑥
𝑇𝑇 �

𝑇𝑇
. 
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The same load was used to compute the strains and curvatures using the proposed semi-

analytical model. In this case, the problem given by Equation 38 results in the equilibrium 

equation [𝑲𝑲]{𝒒𝒒} = �𝑭𝑭𝒇𝒇�. The geometric boundary conditions assured by Bardell functions 

combination was (F-F-F-F), using all the four polynomials in the 𝜉𝜉 and 𝜂𝜂 coordinates. Figure 

4.11b shows warpage of the laminate for the simulations with the proposed semi-analytical 

model, demonstrating the perfect match of maximum displacements at z-direction and the 

saddle shape when compared with the CLT results.  

 

  
(a) (b) 

FIGURE 4.11 – The warpage results using (a) CLT model for a non-symmetric [902/02] 

composite free plate under thermal load and (b) through the proposed semi-analytical model. 

 

The values of principal stresses in each layer are summarized in Table 4.7 below, 

indicating the residual stresses induced in the laminate by thermal load. Note that the sum of 

stresses in longitudinal direction results in the same value, but opposite in signal, compared to 

the sum of stresses in the transversal direction, thus canceling each other, as expected for a 

result of the non-symmetric layup under thermal load only. 

 
TABLE 4.6 – Stresses distributed in each layer for [902 /02]. 

layer 𝝈𝝈𝟏𝟏  [MPa] 𝝈𝝈𝟐𝟐 [MPa] 𝝉𝝉𝟏𝟏𝟐𝟐 [MPa] 
1 -16.9313 16.9313 0 
2 -113.3778 22.0727 0 
3 -16.9313 16.9313 0 
4 79.5152 11.7899 0 
Σ -67.7253 67.7253 0 
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To represent the tool-part interaction effect discussed in Chapter 2, a reinforcement layer 

of aluminum was added to the laminated composite plate. The aluminum layer has the same 

engineering constants listed in Table 4.3, and the same thickness of 𝑡𝑡 = 1.25 𝑚𝑚𝑚𝑚. The results 

for Semi-Analytical model are shown in Figure 4.12 below. 

 

 
FIGURE 4.12 – Warpage result through simulation using the proposed semi-analytical model 

for a bi-material composite free plate [902/02/Al] under thermal load. 

 

The results presented in Figures 4.11b and 4.12 intends to give an idea of the influence 

of the interaction between the tool-metal and a Carbon/Epoxy composite. The warpage in 

Figure 4.11b is greater than that in Figure 4.12. This behavior reflects the influence of the 

additional aluminum lamina in the second case, which prevents some of the warpage that occurs 

in the non-symmetric layup [902/02]. Thus, it can be inferred that the tool-part interaction 

contributes to the buildup of residual stresses in the composite upon tool removal. 

 

4.2.3 Case 3: Cantilever Laminate Plate under Thermal Loading 

 

Additionally, using a different layup configuration, the developed model was validated 

using a laminate with orthotropic stacking sequence [45/90/-75/-45] as found in Vermes 

(VERMES; CZIGANY, 2022), in which each lamina material is a Hexcel IM7/913 UD prepreg, 

and its properties are listed in Table 4.7 below. Each ply has a thickness of  𝑡𝑡 = 0.13 𝑚𝑚𝑚𝑚 and 

the dimensions are 𝑎𝑎 = 𝑏𝑏 = 190 𝑚𝑚𝑚𝑚. 
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TABLE 4.7 – Engineering properties of laminae constituents for (Hexcel IM7/913 UD 

prepreg). 

𝑬𝑬𝟏𝟏 [MPa] 𝑬𝑬𝟐𝟐 [MPa] 𝝊𝝊𝟏𝟏𝟐𝟐 𝑮𝑮𝟏𝟏𝟐𝟐 [MPa] 𝜶𝜶𝟏𝟏 [°C-1] 𝜶𝜶𝟐𝟐 [°C-1] 
163300 8700 0.3 4500 3.0x10-7 3.2x10-5 

 

The semi-analytical model developed was configured to simulate the composite plate with 

one edge fully restrained, i.e., Clamped-Free-Free-Free (C-F-F-F) configuration, as allowed by 

the combinations of Bardell functions. In his experimental work, Vermes (VERMES; 

CZIGANY, 2022) used a laminate that was treated in the autoclave at a plateau temperature of 

140 °𝐶𝐶, and cooldown to room temperature (25 °𝐶𝐶). This temperature profile was used in the 

present simulation. 

The maximum deflection of the laminate plate occurred distant from the initial condition, 

and the result achieved by the proposed semi-analytical model around the corner was 𝑤𝑤𝑟𝑟𝑚𝑚𝑥𝑥 =

118.2138 𝑚𝑚𝑚𝑚, using 8 terms of the polynomial series in both directions, as shown in Figure 

4.13a.  

The obtained results were compared to numerical simulation in FEM using ABAQUS®, 

by adopting the following assumptions: 

• The part was created in a 3D Modeling Space, deformable Type, using a Base Feature 

of Conventional Shell Planar Type (S4R) due to the thin characteristic of plate 

dimensions (thickness less than 𝑡𝑡 = 2 𝑚𝑚𝑚𝑚). 

• Due to thinner plate characteristics, a quadratic function (second order elements) were 

chosen for the displacement of elements, to mitigate the numerical issue of overly stiff 

behavior known as shear locking effect. Additionally, enhanced hourglass control was 

applied to avoid the mesh instability when using reduced integration elements, ensuring 

proper shape distortions. 

• A thermal load of ∆𝑇𝑇= 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 = −115 ℃ was applied to define cooldown cure 

degree process. 

• The resultant number of elements in the mesh was 9,025. 
 
The result of simulation using FEM ABAQUS® showed a maximum deflection of 

approximately 𝑤𝑤𝑟𝑟𝑚𝑚𝑥𝑥 = 120.8400 𝑚𝑚𝑚𝑚, as shown in Figure 4.13b below. The Table 4.8 shows 

the results of both models employed. 
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(a) 

 

(b) 

 

FIGURE 4.13 – Warpage result for the orthotropic laminate plate [45/90/-75/-45] clamped at 

one edge in y direction using (a) proposed semi-analytical model and (b) FEM ABAQUS®. 

 
TABLE 4.8 – Comparison between results obtained from FEM and from the proposed Semi-

Analytical model. 

Method 
Number of terms  
Polynomial Series 𝒘𝒘𝒎𝒎𝒊𝒊𝒎𝒎−𝒅𝒅𝒆𝒆𝒇𝒇𝒅𝒅𝒆𝒆𝒅𝒅  [mm] error 

FEM -ABAQUS - 120.840 - 
Semi-Analytical Model 6 x 6 115.355 4.5390 % 
Semi-Analytical Model 7 x 7 117.0607 3.1275 % 
Semi-Analytical Model 8 x 8 118.2138 2.1732 % 
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The same configuration of boundary conditions and thermal loads was applied to a 

composite orthotropic plate using numerical simulations at ABAQUS® and by the semi-

analytical model proposed in this work (Rayleigh-Ritz using Bardell functions to describe the 

displacement-fields). Initially, 6 terms in the Bardell series were chosen for both directions, and 

the warpage result closely matched those obtained via FEM, as shown in Figures 4.13a and 

4.13b, and in the maximum deflection values listed in Table 4.8. Once again, the thermal effects 

on laminate behavior during the curing process were demonstrated, highlighting the issues that 

arise in the fabrication process. This simulation also included a boundary restriction commonly 

encountered in the fabrication of laminate plates and panels. 
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5 Conclusion 
 

 

The simulations performed using the proposed semi-analytical model yield results that 

agree fairly well with those obtained through closed-form solutions, exact solutions, and the 

finite element (FE) method, for both mechanical and thermal loads. The model was validated 

under various conditions, including different materials such as thermosetting polymers like E-

Glass/Epoxy and Carbon Fiber/Epoxy (AS4/3501-6), thermoplastic materials (Toray Cetex® 

TC1225 High Strength T300JB 3k Carbon), unidirectional lamina (Hexcel IM7/913 UD 

prepreg), and a bi-material composite plate with an Aluminum layer (Al2024-T4). 

The model's predictions were compared against exact solutions and finite element 

simulations for different loading and boundary conditions, showing excellent correlation. This 

includes validation for a laminate beam under mechanical load and thermal load applied to a 

bi-material plate-like beam laminate, as demonstrated in Section 4.2.  

In certain cases, a convergence study was performed, indicating the necessity of addition 

of higher order to enhance result accuracy. This need is demonstrated by the error results 

presented in Section 4.1.3, which analyzes a biclamped beam under mechanical load (see Figure 

4.6), and in Section 4.2.1, which examines a bi-material plate-like beam laminate under thermal 

load (see Figure 4.10).  

The convergence study revealed that specific cases may require an increase in the 

number of terms of polynomial series. This highlights some limitations of the current model 

and suggests the need for considering approximation functions with improved convergence 

properties. 

In the analysis performed on the bi-material plate-like beam laminate, as demonstrated 

in Section 4.2, the warpage results highlighted a significant aspect of thermal effects on 

laminates. These findings underscore the importance of considering thermal effects in 

composite fabrication and operation, as their influence cannot be overlooked. The results 

presented indicate that for bi-material non-symmetric laminates, the influence of reinforcement 

layers, such as aluminum, plays a crucial role in warpage outcomes. This underscores the 

necessity of considering any reinforcement layer during the composite laminate design process 

to achieve the desired geometry of the final part. 

Additionally, the interaction between the composite laminate and the mold during the 

curing process significantly impacts the final geometry of the part. This Tool-Part Interaction 
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is clearly demonstrated by the results in Section 4.2.2 for monolithic plates. For a bi-material 

laminate layup, the warpage behavior is attenuated due to the interaction between the composite 

and aluminum material. As shown in Figure 4.12, the bi-material laminate shows reduced 

warpage compared to conventional composite laminates, as illustrated in Figure 4.11, which 

exhibits significant warping due to the nonsymmetric layup.  

Furthermore, the warpage behavior in composite plates due to thermal effects is 

significantly influenced by mold constraints, as demonstrated in the last simulation of an 

orthotropic laminate plate with a clamped edge (refer to Figure 4.13). These effects can be 

effectively captured by the proposed semi-analytical model, as evidenced by the close 

agreement with the results from numerical simulations using FEM.  

According to the objectives of this work, the developed computational tool provides 

valuable insights for the design and manufacturing process, allowing to prevent geometric 

distortions and residual stresses in laminates. 

The model proposed herein is suitable for the exploratory application of the Rayleigh-

Ritz approximation solution using Bardell polynomial functions, which is the main contribution 

of this work. Therefore, it is possible to conclude that the proposed approach calculates the 

residual strains and stresses during the cure cycle of laminate fabrication, emphasizing the 

substantial impact of residual thermal loads on the final geometry of the part. 

 

5.1 Future Works 
 

Future work includes extending the proposed formulation to address the kinetics of cure 

involved in laminate fabrication. This extension would enable the prediction of significant 

effects such as chemical and hygroscopic residual stresses. This can be accomplished by using 

the viscoelastic behavior of composite constituents, such as shrinkage coefficients, or by 

employing phenomenological models, including time-dependent or path-dependent models, 

where changes in the engineering properties of fiber and matrix can be tracked. 

The current model could be compared with thick plate theory analyses available in the 

literature to potentially enhance the model by including transverse shear stresses. 

Moreover, the present model can be extended by changing the strain-displacement field 

from a linear to a nonlinear relationship, such as Von-Kármán relations, to handle more 

complex geometries such as shells and cylinders. 
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In a more detailed investigation, resin characterization could be conducted to convey 

more accuracy to the model. Experimental setups for plates or clamped beams could validate 

the model against real-world data, providing further confidence in its predictive capabilities. 

By addressing these areas, the robustness and applicability of the semi-analytical model 

can be significantly enhanced, providing a more comprehensive tool for analyzing thermo-

mechanical stresses in composite laminates. 
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Appendix A – Micromechanics and Glass Transition 
 

 

A.1 Engineering Properties of Lamina Changing During Cure 
 

This Appendix shows the equations adopted in the micromechanics model, in order to 

represent the engineering properties changes of a laminae during the cure cycle, when a phase 

transformation from liquid to glassy state occurs with the resin. This transformation is assumed 

to follow the DiBenedetto equation (LAWRENCE, 1969), to represent the cure degree update. 

 
𝑇𝑇𝑔𝑔 − 𝑇𝑇𝑔𝑔0
𝑇𝑇𝑔𝑔∞ − 𝑇𝑇𝑔𝑔0

=
𝜆𝜆𝜒𝜒

(1 − (1 − 𝜆𝜆)𝜒𝜒)
(𝐴𝐴. 1) 

 

Where 𝜒𝜒 is the degree of cure of the resin, 𝜆𝜆 is a structure-dependent parameter with a value 

between 0 and 1, 𝑇𝑇𝑔𝑔0 is the glass transition temperature of the uncured resin (when 𝜆𝜆 = 0), and 

𝑇𝑇𝑔𝑔∞ is the glass transition temperature of the fully reacted resin (𝜆𝜆 = 1), (MAGDALENA, 

2011). 

Equation A.1 presents the relationship between the glass transition temperature (𝑇𝑇𝑔𝑔) and 

𝜒𝜒, which determines when vitrification occurs during curing of the resin. This characteristic 

strongly affects the elastic properties of resin, such as Young and Shear Modulus, Poisson´s 

coefficient, as well as the CTE, which assumes different values for each phase change.   

To elucidate, Table A.1 presents the values of these parameters for Araldite 

LY5052/Hardener HY5052 extracted from Svanberg (SVANBERG; HOLMBERG, 2004b), 

and Carbon Fabric Hexcel AGP193-P extracted from Daniel (DANIEL; ISHAI, 2006). 

 
TABEL A.1 - Resin and fiber physical Properties of LY5052 epoxy matrix and Hexcel 

AGP193-P. 

Resin rubbery state Resin glassy state Fiber 

𝑬𝑬𝒎𝒎𝒓𝒓𝒓𝒓𝒃𝒃 28 MPa 𝐸𝐸𝑚𝑚
𝑔𝑔𝐴𝐴𝑥𝑥 2600 MPa 𝐸𝐸𝑓𝑓 235000 MPa 

𝝊𝝊𝒎𝒎𝒓𝒓𝒓𝒓𝒃𝒃 0.497 𝜐𝜐𝑚𝑚
𝑔𝑔𝐴𝐴𝑥𝑥 0.38 𝜐𝜐𝑓𝑓 0.2 

𝑮𝑮𝒎𝒎𝒓𝒓𝒓𝒓𝒃𝒃 9.4 MPa 𝐺𝐺𝑚𝑚
𝑔𝑔𝐴𝐴𝑥𝑥 940 MPa 𝐺𝐺𝑓𝑓 27000 MPa 

𝜶𝜶𝒎𝒎𝒓𝒓𝒓𝒓𝒃𝒃 178x10-6 °C-1 𝛼𝛼𝑚𝑚
𝑔𝑔𝐴𝐴𝑥𝑥 71x10-6 °C-1 𝛼𝛼𝑓𝑓 -0.5x10-6 °C-1 

𝜷𝜷𝒎𝒎
𝒓𝒓𝒓𝒓𝒃𝒃 -2.33 % 𝛽𝛽𝑚𝑚

𝑔𝑔𝐴𝐴𝑥𝑥 -2.33 % 𝛽𝛽𝑓𝑓 0 
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Such changing of resin parameters during different phases, such as rubbery and glassy 

state, directly affects the lamina composite parameters. Consequently, the engineering 

properties of the lamina, such as Longitudinal, Transverse and Shear Modulus, as well 

Poisson´s coefficient, will undergo changes in their values during cure schedule. Additionally, 

this temperature changing will influence the CTE and Chemical Shrinkage Coefficient in the 

longitudinal and transversal directions for a Carbon-Epoxy laminae over time, following the 

micromechanical behavior and fiber and matrix mixture rule (DANIEL; ISHAI, 2006), as 

described by Equations A.1 to A.9.  

 

𝐸𝐸1 = 𝐸𝐸𝑟𝑟(𝑇𝑇, 𝜒𝜒)𝑉𝑉𝑟𝑟 + 𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓 (𝐴𝐴. 2) 

1
𝐸𝐸2

=
𝑉𝑉𝑟𝑟

𝐸𝐸𝑟𝑟(𝑇𝑇,𝜒𝜒) +
𝑉𝑉𝑓𝑓
𝐸𝐸𝑓𝑓

(𝐴𝐴. 3) 

𝜐𝜐12 = 𝑉𝑉𝑟𝑟𝜐𝜐𝑟𝑟(𝑇𝑇,𝜒𝜒) + 𝑉𝑉𝑓𝑓𝜐𝜐𝑓𝑓 (𝐴𝐴. 4) 

1
𝐺𝐺12

=
𝑉𝑉𝑟𝑟

𝑣𝑣(𝑇𝑇,𝜒𝜒) +
𝑉𝑉𝑓𝑓
𝐺𝐺𝑓𝑓

(𝐴𝐴. 5) 

𝛼𝛼1 =
1
𝐸𝐸2
�𝛼𝛼𝑓𝑓𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓 + 𝛼𝛼𝑟𝑟(𝑇𝑇,𝜒𝜒)𝐸𝐸𝑟𝑟(𝑇𝑇,𝜒𝜒)𝑉𝑉𝑟𝑟� (𝐴𝐴. 6) 

𝛼𝛼2 = �1 + 𝜐𝜐𝑓𝑓�𝛼𝛼𝑓𝑓𝑉𝑉𝑓𝑓 + �1 + 𝜐𝜐𝑟𝑟(𝑇𝑇,𝜒𝜒)�𝛼𝛼𝑟𝑟(𝑇𝑇,𝜒𝜒)𝑉𝑉𝑟𝑟 − 𝛼𝛼1𝜐𝜐12 (𝐴𝐴. 7) 

𝛽𝛽1 =
1
𝐸𝐸1
�𝛽𝛽𝑓𝑓𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓 + 𝛽𝛽𝑟𝑟(𝑇𝑇,𝜒𝜒)𝐸𝐸𝑟𝑟(𝑇𝑇,𝜒𝜒)𝑉𝑉𝑟𝑟� (𝐴𝐴. 8) 

𝛽𝛽2 = �1 + 𝜐𝜐𝑓𝑓�𝛽𝛽𝑓𝑓𝑉𝑉𝑓𝑓 + �1 + 𝜐𝜐𝑟𝑟(𝑇𝑇,𝜒𝜒)�𝛽𝛽𝑟𝑟(𝑇𝑇,𝜒𝜒)𝑉𝑉𝑟𝑟 − 𝛽𝛽1𝜐𝜐12 (𝐴𝐴. 9) 

 

Where 𝑉𝑉𝑓𝑓 and 𝑉𝑉𝑟𝑟 represent the volume fractions of each constituent (fiber and matrix), and the 

values of 𝐸𝐸𝑟𝑟(𝑇𝑇,𝜒𝜒), 𝐺𝐺𝑟𝑟(𝑇𝑇, 𝜒𝜒), 𝜐𝜐𝑟𝑟(𝑇𝑇, 𝜒𝜒), 𝛼𝛼𝑟𝑟(𝑇𝑇,𝜒𝜒), and 𝛽𝛽𝑟𝑟(𝑇𝑇,𝜒𝜒) are taken from Table A.1, 

depending on whether the resin is under rubbery or glassy state. The equations that represent 

this update of constituents’ parameters related to degree of cure and temperature are shown in 

Equations A.10 to A.16 below. 

 

𝐸𝐸𝑟𝑟(𝑇𝑇,𝜒𝜒) = �
0,     𝑖𝑖𝑓𝑓  𝜒𝜒 < 𝜒𝜒𝑔𝑔, 𝑇𝑇 ≥ 𝑇𝑇𝑔𝑔(𝜒𝜒)
𝐸𝐸𝑟𝑟𝑟𝑟𝑐𝑐𝑏𝑏 ,    𝑖𝑖𝑓𝑓  𝜒𝜒 ≥ 𝜒𝜒𝑔𝑔, 𝑇𝑇 ≥ 𝑇𝑇𝑔𝑔(𝜒𝜒)

𝐸𝐸𝑟𝑟
𝑔𝑔𝐴𝐴𝑥𝑥,    𝑖𝑖𝑓𝑓 𝑇𝑇 < 𝑇𝑇𝑔𝑔(𝜒𝜒)                  

(𝐴𝐴. 10) 

 

𝜐𝜐𝑟𝑟(𝑇𝑇, 𝜒𝜒) = �
0,     𝑖𝑖𝑓𝑓  𝜒𝜒 < 𝜒𝜒𝑔𝑔, 𝑇𝑇 ≥ 𝑇𝑇𝑔𝑔(𝜒𝜒)
𝜐𝜐𝑟𝑟𝑟𝑟𝑐𝑐𝑏𝑏,    𝑖𝑖𝑓𝑓  𝜒𝜒 ≥ 𝜒𝜒𝑔𝑔, 𝑇𝑇 ≥ 𝑇𝑇𝑔𝑔(𝜒𝜒)

𝜐𝜐𝑟𝑟
𝑔𝑔𝐴𝐴𝑥𝑥,    𝑖𝑖𝑓𝑓 𝑇𝑇 < 𝑇𝑇𝑔𝑔(𝜒𝜒)                  

(𝐴𝐴. 11) 
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𝐺𝐺𝑟𝑟(𝑇𝑇,𝜒𝜒) = �
0,     𝑖𝑖𝑓𝑓  𝜒𝜒 < 𝜒𝜒𝑔𝑔, 𝑇𝑇 ≥ 𝑇𝑇𝑔𝑔(𝜒𝜒)
𝐺𝐺𝑟𝑟𝑟𝑟𝑐𝑐𝑏𝑏 ,    𝑖𝑖𝑓𝑓  𝜒𝜒 ≥ 𝜒𝜒𝑔𝑔, 𝑇𝑇 ≥ 𝑇𝑇𝑔𝑔(𝜒𝜒)

𝐺𝐺𝑟𝑟
𝑔𝑔𝐴𝐴𝑥𝑥,    𝑖𝑖𝑓𝑓 𝑇𝑇 < 𝑇𝑇𝑔𝑔(𝜒𝜒)                  

(𝐴𝐴. 12) 

 

𝛼𝛼𝑟𝑟(𝑇𝑇,𝜒𝜒) = �
0,     𝑖𝑖𝑓𝑓  𝜒𝜒 < 𝜒𝜒𝑔𝑔, 𝑇𝑇 ≥ 𝑇𝑇𝑔𝑔(𝜒𝜒)
𝛼𝛼𝑟𝑟𝑟𝑟𝑐𝑐𝑏𝑏,    𝑖𝑖𝑓𝑓  𝜒𝜒 ≥ 𝜒𝜒𝑔𝑔, 𝑇𝑇 ≥ 𝑇𝑇𝑔𝑔(𝜒𝜒)

𝛼𝛼𝑟𝑟
𝑔𝑔𝐴𝐴𝑥𝑥,    𝑖𝑖𝑓𝑓 𝑇𝑇 < 𝑇𝑇𝑔𝑔(𝜒𝜒)                  

(𝐴𝐴. 13) 

 

𝛽𝛽𝑟𝑟(𝑇𝑇,𝜒𝜒) = �
0,     𝑖𝑖𝑓𝑓  𝜒𝜒 < 𝜒𝜒𝑔𝑔, 𝑇𝑇 ≥ 𝑇𝑇𝑔𝑔(𝜒𝜒)
𝛽𝛽𝑟𝑟𝑟𝑟𝑐𝑐𝑏𝑏 ,    𝑖𝑖𝑓𝑓  𝜒𝜒 ≥ 𝜒𝜒𝑔𝑔, 𝑇𝑇 ≥ 𝑇𝑇𝑔𝑔(𝜒𝜒)

𝛽𝛽𝑟𝑟
𝑔𝑔𝐴𝐴𝑥𝑥,    𝑖𝑖𝑓𝑓 𝑇𝑇 < 𝑇𝑇𝑔𝑔(𝜒𝜒)                  

(𝐴𝐴. 14) 

 

Table A.2 shows the resultant engineering properties for a Carbon/Epoxy lamina, obtained 

from micromechanics relations previously presented. These properties are based on the resin 

and fiber properties listed in Table A.1, with a composition of 60% and 40%, respectively. 

 
TABLE A.2 – Resultant Engineering properties of a Carbon/Epoxy lamina. 

𝑬𝑬𝟏𝟏 [MPa] 𝑬𝑬𝟐𝟐 [MPa] 𝝊𝝊𝟏𝟏𝟐𝟐 𝑮𝑮𝟏𝟏𝟐𝟐 [MPa] 𝜶𝜶𝟏𝟏 [°C-1] 𝜶𝜶𝟐𝟐 [°C-1] 
142040 6394 0.272 2233 2.35x10-8 3.88x10-5 

 
The effects of time changing in the lamina properties, CTE and Chemical Shrinkage 

Coefficient, during a hypothetical cure cycle, are illustrated in Figures 2.2 and 2.3 using 

Equations A.1 to A.14. The assumptions include temperature rate and cure degree rate given by 

Equations A.15 and A.16, respectively: 

 

𝑇𝑇𝑟𝑟𝑚𝑚𝑡𝑡𝑐𝑐 =
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐
𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛𝑚𝑚𝐴𝐴 − 𝑡𝑡𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐

(𝐴𝐴. 15) 

 

𝜒𝜒𝑟𝑟𝑚𝑚𝑡𝑡𝑐𝑐 =
1

𝑡𝑡𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐
(𝐴𝐴. 16) 

 

where 𝑇𝑇𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 is the temperature at polymer of matrix starts the liquid-rubbery transition at 

instant 𝑡𝑡𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 during the curing process, and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the room temperature reached by the 

composite at the end of the curing process, at instant 𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛𝑚𝑚𝐴𝐴 . The hypothetical values for these 

variables were 𝑇𝑇𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 = 140℃ and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 25℃, for a time process of 𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛𝑚𝑚𝐴𝐴 = 20ℎ, with 

curing starts at instant 𝑡𝑡𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 = 12ℎ. 
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