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Abstract
Aim: Brown mussels exhibit a trans- Atlantic distribution putatively caused by either na-
tive dispersal or artificial gene flow, likely in concert with the transport of enslaved people 
from Africa. Evolutionary history and demographic models of this widespread species may 
clarify how the present- day distribution was impacted by natural versus artificial dispersal. 
Particularly, dating the timing of the South American/African split may determine whether 
the human slave trade likely impacted the contemporary distribution of brown mussels.
Location: Coastal Brazil, Morocco, South Africa, and Mozambique.
Taxon: Perna perna (Linnaeus 1758).
Methods: We genotyped a total of 644 samples from 18 populations at 10 microsat-
ellite loci. We estimated genetic structure with clustering algorithms in STRUCTURE 
and GENETIX. We estimated genetic distances by characterizing patterns of pair- wise 
FST using the program FSTAT, evaluating differences among and between regions via 
AMOVA, and testing isolation by distance in IBDWS. To estimate and date the most 
likely pathway by which P. perna crossed the Atlantic Ocean we used Bayesian factors 
from thermodynamically heated coalescent simulations in the program MIGRATE- n.
Results: We found no general pattern of reduced or elevated levels of genetic diver-
sity within any region across site or locus. We identified four genetic clusters: East 
South Africa (ESA), West South Africa (WSA), Brazil (BR) and North Africa (MO); FST 
ranged from 0.06 to 0.11 among regions and exhibited a significant pattern of isola-
tion by distance. Migration models indicated that P. perna dispersed from WSA to MO 
and from there to BR of approximately 2,000 years.
Main conclusions: Multiple lines of evidence suggest the Brazilian populations of P. 
perna have been a long- standing native population, originating from northern Africa 
and are unlikely a consequence of the African slave trade. Although, human introduc-
tion cannot be ruled out South American P. perna populations exhibited genetic char-
acteristics indicative of a divergent, isolated and established population, featuring the 
genetic signature expected for a native population.

K E Y W O R D S
biological invasions, brown mussel, cryptogenic, demographic modelling, human slave trade, 
microsatellites

www.wileyonlinelibrary.com/journal/jbi
mailto:
https://orcid.org/0000-0002-2725-9202
https://orcid.org/0000-0002-6837-0986
https://orcid.org/0000-0002-7071-141X
https://orcid.org/0000-0003-2250-0041
https://orcid.org/0000-0001-8798-5794
https://orcid.org/0000-0002-4311-0491
https://orcid.org/0000-0002-4838-1434
https://orcid.org/0000-0002-3210-1127
https://orcid.org/0000-0002-2432-3619
mailto:saviocalazans@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjbi.14232&domain=pdf&date_stamp=2021-08-26


2672  |    CALAZANS et AL.

1  |  INTRODUC TION

The potential harm offered by biological invasions to public health, 
agriculture and biodiversity is well- established (IMO -  International 
Maritime Organization, 2001). Moreover, damage caused by inva-
sive species highlights the importance of assessing the character-
istics of invasion success to better understand what promotes the 
spread of non- native species and to develop management actions 
(IMO -  International Maritime Organization, 2001). However, infer-
ring processes after a successful invasion is challenging, largely due 
to a lack of information about the biological invasion history (Estoup 
& Guillemaud, 2010). It can be difficult to determine the biogeog-
raphy of invasive species because they are often detected years, 
decades or even centuries after the introduction event took place 
(Crooks, 2005; Kowarik, 1995).

The transport of enslaved people from Africa to the Americas 
is well- known for its social and economic impact and is considered 
one of the first forms of globalization (Harms, 2002). The slave trade 
lasted between the 15th and 19th centuries (1501– 1888) with an es-
timate of fifteen to twenty- five millions of enslaved people landing 
in the Americas during that time (Curtin, 1969; Voyages Database, 
2009). Some studies have addressed the impact of this activity on 
the environment based on economic development such as defor-
estation, agricultural impacts (e.g. production of wheat, sugar cane, 
cotton), and the spread of weeds, land animals and their associated 
diseases (e.g. goats, pigs, chicken, rats and mosquitoes; Baskin, 
2002; Crosby, 1986). However, few studies have relayed the impacts 
of the slave trade to biogeographical patterns of marine species. 
These few studies include the transport of shipworms and gribbles 
(wood- boring crustaceans isopod) along with barnacles, seaweeds 
and sea squirts that hitchhiked on the hulls of wooden ships sailing 
across the Atlantic (Carlton, 1996).

Mussels and other shellfish are notoriously good invaders, likely 
because of life history characteristics enabling survival under variable 
conditions, such as continuous reproduction, fast growth rate, early 
reproduction, and resistance to environmental change (Karatayev 
et al., 2007; Ludyanskiy et al., 1993; Rajagopal et al., 2006). When 
seeking to identify the evolutionary history of invasions, studies of 
marine invasion genetics have generally found that introduced pop-
ulations are characterized by high genetic diversity (e.g. Crepidula 
onyx, Woodruff et al., 1986; Macoma balthica, Meehan et al., 1989; 
Mytilus galloprovincialis, Grant & Cherry, 1985; Potamocorbula amu-
rensis, Duda, 1994; Mytella charruana, Calazans et al., 2017; Gillis 
et al., 2009) as result of high propagule pressure (Rius et al., 2014). 
Based on genetic similarity between invaded and native populations, 
a number of studies have been able to use molecular genetic tools 
to identify sources of origins of invasion (e.g. Astanei et al., 2005; 
Calazans et al., 2017; Pigneur et al., 2011; Stepien et al., 2002).

The brown mussel Perna perna (Linnaeus 1758), is a marine bi-
valve belonging to the Mytilidae family. This species is a key eco-
system engineer in intertidal to subtidal habitats and is of economic 
importance as a source of human food (Resgalla Jr. et al., 2008; 
Siddall, 1980). Along the Atlantic coast of South America P. perna 

has been described as a native species (Venezuela; Southeastern 
Brazil to Uruguay; Ihering, 1897; Klappenbach, 1965; Rios, 2009; 
Vakily, 1989). In addition to the Atlantic, P. perna naturally occur 
across a wide- range throughout the old world, including the Red 
Sea, the Gulf of Aden, east and west coasts of Africa, and in the 
Mediterranean Sea (Lourenço et al., 2017; Sidall, 1980; Vakily, 1989). 
P. perna was recorded as invasive in the Gulf of Mexico in the early 
1990s (Holland, 2001) and was reported in southern Portugal, prob-
ably by a range expansion promoted by rising water temperatures 
(Lourenço et al., 2012). Interestingly, recent studies have suggested 
that P. perna was an anthropogenic introduction to the Brazilian 
coast based on the lack of P. perna shells in ancient shell middens 
(i.e. sambaquis) from Rio de Janeiro State (dating 2– 8 ka). Therefore, 
the prevailing explanation for the occurrence of P. perna in the new 
world is that P. perna were introduced to the Atlantic coast of South 
America associated with the transatlantic human slave trade, circa 
500 years ago (Fernandes et al., 2008; Souza et al., 2003, 2004, 
2010; Silva et al., 2018).

The goal of this study is to clarify the new world biogeographical 
origins of P. perna. Specifically, we seek to investigate whether or 
not P. perna is native to the western Atlantic (Brazilian) coast and to 
estimate the date of arrival to determine if the introduction is asso-
ciated with the human slave trade. We address these aims by first 
investigating the overall patterns of genetic diversity and genetic 
structure of P. perna across their range, and second by evaluating 
demographical models to estimate the migration path and timing 
of when Brazilian populations diverged from African populations. 
Using microsatellite markers, we test our predictions that, (1) new 
world populations would be most closely related to north African 
populations, (2) new world populations would exhibit reduced ge-
netic diversity compared to old world populations, and (3) the timing 
of the new world invasion would originate circa 500 years ago. These 
predictions are grounded in previous studies that have revealed a 
lack of ancient shell records in the new world (Souza et al., 2003), 
mtDNA similarity between North African and South American pop-
ulations (Cunha et al., 2014; Wood et al., 2007), and the possibility of 
admixture between Africa and South America (Oliveira et al., 2017).

2  |  MATERIAL S AND METHODS

2.1  |  Sampling collection and DNA analysis

A total of 644 samples of the brown mussel, P. perna, were obtained 
from 18 locations: eight in Brazil, three in Morocco, six along the coast 
of South Africa and one location in Mozambique (Figure 1; Table S1). 
Mantle tissue (20– 30 mg) was dissected from each individual, pre-
served in 92% ethanol, and stored at −20℃ until DNA extraction. Total 
genomic DNA extraction was performed using a standard proteinase-
 K protocol adapted from (Sambrook et al., 1989). All individuals were 
genotyped using a set of 10 microsatellite loci (Coelho et al., 2012) in 
three multiplex PCR reactions performed in a GeneAmp 9700 thermo-
cycler (PE Applied Biosystems) with volumes of 10 μl containing ±10 ng 
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of DNA, 0.5 μM of each primer labelled with a florescent marker, 
0.2 mM dNTPs (Bioline), 1.5 mM MgCl2, 3.0 μl of 5× PCR Buffer and 
0.75 U of GoTaq Polymerase (Promega). Cycling conditions consisted of 
an initial denaturing step of 5 min at 95℃, followed by 35 cycles of 30 s 
at 95℃, 30 s at 53 to 59℃ as optimization of annealing temperature 
(Coelho et al., 2012), 40 s at 72℃, and a final elongation step at 72℃ 
for 20 min, with subsequent separation of the PCR products using an 
ABI PRISM 3130xl DNA analyzer (Applied Biosystems) with Gene Scan 
Liz 500 as size standard (Applied Biosystems). Microsatellite raw allele 
sizes were manually scored in STRand 2.4.59 (Toonen & Hughes, 2001). 
Some of the present samples are the same as used in previous studies: 
EB (Weber & Silva, 2008); EA, RS, SC, EC, PR, SP (Oliveira et al., 2017); 
HMP, PLP, PAP, PEP, BAP, PDOP, ES, IM, ML (Cunha et al., 2014).

2.2  |  Data analysis

Frequency of microsatellite scoring errors, evidence of large allelic 
dropout and null alleles at high frequencies were estimated based 
on the algorithm presented in Brookfield (1996) using the program 
MICRO- CHECKER (Van Oosterhout et al., 2004). Hardy– Weinberg 
equilibrium (HWE) was estimated per population and locus with 
FSTAT (Goudet, 1995). Multiple contrasts of HWE probabilities were 

corrected according to the sequential Bonferroni procedure (Rice, 
1989; Table S2).

We estimated genetic structure with a Bayesian clustering algo-
rithm in STRUCTURE 2.2 (Prichard et al., 2000). We ran the initial 
analysis assuming that all sampled sites were independent popula-
tions capable of forming their own clusters (K = 1 to K = 18). The 
STRUCTURE analysis was set up with 20 replicate runs performed 
under the admixture and the correlated allele frequency model with 
50,000 Markov Chain Monte Carlo (MCMC) iterations after 500,000 
burn- in generations. After the initial number of clusters was defined 
by the first analysis, we re- ran STRUCTURE for each initially described 
cluster to determine whether sub- structuring was present. Overall, we 
identified the best supported number of clusters via Evanno delta K 
on these successive analyses. Moreover, for a better visual group rep-
resentation (i.e. across three dimensions) and to uncover population 
admixture in the absence of model assumptions, such as HWE, we 
visualized population clustering in a factorial correspondence analysis 
(FCA) in GENETIX v. 4.05 (Belkhir et al., 2004).

To evaluate genetic differentiation between the Brazilian region 
and African regions, we estimated genetic distances by characterizing 
patterns of pair- wise FST using the program FSTAT (Goudet, 1995). 
Furthermore, we evaluated differences among and between regions 
via AMOVA in Arlequin (Excoffier & Heidi, 2010). Also, we tested for 

F I G U R E  1  Comparing sea currents and routes associated with the slave trade show parallel patterns with regard to the contemporary 
distribution of brown mussels. The distribution in red shows the natural occurrence, in green the cryptogenic origin, and in orange regions of 
recent invasion. Sample locations and names of brown mussel populations used in this study are denoted by circles. The bold arrows indicate 
the most likely migration route of brown mussels. The dotted lines with arrows show the predominant direction of the sea currents
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isolation by distance, determining whether P. perna populations exhibit 
a pattern of natural genetic relatedness decaying with geographic dis-
tance. Here, we used genetic distance (FST; Weir & Cockerham, 1984) 
in a pair- wise analysis with the least- cost geographic distance (short-
est over- water distance) between sampling locations (km) estimated 
in Google Earth Tools 7.1.5.1557 (Google, n.d). Significance was eval-
uated in IBDWS (Jensen et al., 2005) using a Mantel test with 10,000 
randomizations of linearized FST (i.e. FST/(1 − FST)).

To determine whether patterns of genetic diversity in the new 
world region were similar to those of the northern or southern 
African regions, we estimated per population allele frequencies, ob-
served heterozygosity (HO), expected heterozygosity (HE) and Allelic 
Richness (AR) using FSTAT (Goudet, 1995). We used a two- way 
Analysis of Variance (ANOVA) with post- hoc Tukey test in R statisti-
cal package version 3.2.3 (R Core Team, 2014) to test whether there 
were any significant differences among loci and between regions 
for levels of genetic diversity. Additionally, we compared the mean 
frequencies of private alleles calculated in GenAlex v.6 (Peakall & 
Smouse, 2006) among all localities grouped by region, which can be 
indicative of population isolation in case of presence of uniqueness 
or may suggest possible recent gene flow by the lack of private al-
leles between populations.

To estimate the most likely pathway used by P. perna to cross the 
Atlantic Ocean, we used marginal likelihood comparisons (Bayesian 
factors) from thermodynamically heated coalescent simulations to 
test how likely the data fit 14 demographic models (Figure 2). We 
chose our models based on a combination of previous data and 
possible migration paths proposed for P. perna in previous stud-
ies (e.g. Wood et al., 2007). Because previous studies found South 
African populations split into two regions (i.e. East and West; Cunha 
et al., 2014 and this study, see Section 3), we first tested models 
differentiating an ancestral East South Africa (Model 1) versus an 
Ancestral West South Africa (Model 2). Next, we compared sim-
plistic models differentiating an old world origin (Model 3) versus a 
new world origin (Model 4). The remaining nine models posit more 
complicated evolutionary histories for P. perna. Models 5– 7 included 
different scenarios originating in the old world and spreading to the 
new world, Models 8– 10 include different scenarios with a general 
South African Origin, Models 11– 13 mimic Models 8– 10, but do not 
include the east South African populations (i.e. they are part of a 
separate lineage), and finally Model 14 posits an ancient unsampled 
population (‘ghost’ population) which would be ancestral to Africa, 
Morocco and Brazil (suggested by P. Beerli, pers. comm.; Figure 2). 
Tests of our models were conducted in the program MIGRATE- n v. 
4.6 (Beerli, 2006), following the methods of Beerli and Palczewski 
(2010). Our whole data set was used for analysis using the stepwise 
mutation model for microsatellite DNA loci. We used the default pa-
rameters in MIGRATE- n, which estimate all population sizes (θ) and 
all immigration rates (M) independently by adjusting the interactions 
among populations by matrix definition. The starting point for ge-
nealogy parameters was set using Theta and M values generated 
from an FST calculation and with variable constant for all loci. For the 
Bayesian Markov chain MCMC Strategy settings, we used one long 

chain with the first 1000 steps discarded as burn- in and the remain-
ing 9000 steps recorded, with an increment of 100 steps, and with 
the assumption of an equal (and universal) mutation rate among loci. 
Next, we ranked the marginal likelihoods first for Models 1 versus 
2 and then for Models 3– 14 to identifying which model best rep-
resents the migration path used by P. perna populations sampled in 
this study (Beerli & Palczewski, 2010).

After the coalescent model simulations identified which model 
best fit our data, we sought to determine the time of the most recent 
common ancestor for each lineage. Here, we estimated the number 
of generations since coalescence of populations (represented by 
posterior distributions) divided by the expected mutation rate (time 
in generations = divergence (posterior distribution)/mutation rate) 
for each lineage in the model. The mutation rate used was 10−4, as 
has previously been described as the best estimate for microsat-
ellites (Inoue et al., 2014; Sun et al., 2012; Whittaker et al., 2003) 
which is orders of magnitude greater than typical nucleotide substi-
tution rates of 10−8, due to replication slippage of microsatellite loci 
(Sun et al., 2012). To convert generations to years before present, 
we used two different estimates for generation time: one year, as 
suggested by other studies (Cunha et al., 2014; Oliveira et al., 2017) 
and six months, a more conservative estimate given that P. perna 
typically spawn twice a year and are reproductively active as early as 
three months (Lunetta, 1969; Mesquita et al., 2001).

3  |  RESULTS

All microsatellite loci were highly polymorphic among the 18 popula-
tions. The 644 individuals returned 448 alleles, with an average of 45 al-
leles per locus, ranging from 5 (P02- IM30 and ML30) to 57 (P20- PEP48). 
However, populations exhibited some loci with a deficit of heterozygotes 
relative to Hardy– Weinberg proportions (Table S2). This pattern is un-
surprising given that other studies have already described this pattern in 
mollusks in general, and especially in P. perna (Coelho et al., 2012; Zardi 
et al., 2015). Following the methods in Zardi et al. (2015), we used null 
allele frequency as the basis of locus inclusion in downstream analyses. 
Tests for null alleles revealed that two loci (P11 and P16; Figure S1) ex-
hibited frequencies above 0.2, the threshold at which loci are charac-
terized by a high frequency of null alleles (Selkoe & Toonen, 2006), and 
were removed from downstream analyses (Chapuis & Estoup, 2007). The 
remaining eight loci were included in all downstream analyses.

The STRUCTURE analysis revealed four clusters (k = 4) for 
the three regions studied using the most likely posterior probabil-
ities with the Evanno et al. (2005) criteria. These clusters included 
the three general regions (South America, North Africa and South 
Africa), with South Africa further split into eastern and western 
clusters (Figure 3; Figure S2). The FCA corroborated the structure 
results, revealing four visual population clusters with the three axes 
describing 50.3% of the total among- population variation (Figure 4). 
In light of these results, downstream regional analysis includes the 
following notation: South America— BR; North Africa— MO; east 
South Africa— ESA; west South Africa— WSA.
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Genetic differentiation (i.e. FST) between populations (Table S3) 
and regions indicated genetic isolation among regions (p < 0.001). 
We found that pairwise regional comparisons exhibited similar ge-
netic differentiation (BR- MO, average FST = 0.08; BR- WSA, aver-
age FST = 0.086; BR- ESA, average FST = 0.10; MO- WSA, average 
FST = 0.11; and MO- ESA, average FST = 0.09; Figure S3). The small-
est difference was found between the South Africa regions, WSA and 
ESA, exhibiting an average FST = 0.06 (Figure S3). Genetic and geo-
graphical distances exhibited a significant pattern of isolation by dis-
tance among all populations (Mantel R = 0.8066, p < 0.001; Figure S4). 

However, these results should be taken with caution due to the high 
variance in distance among populations (see Diniz- Filho et al., 2013).

Overall, population genetic diversity was high within all pop-
ulations. Allelic Richness (AR) and Expected Heterozygosity (HE) 
varied between 2.38– 12.96 and 0.20– 0.99 respectively and the 
highest allelic richness was recorded at MC_PuntaOuro (12.96) and 
MR_Mirleft (12.96; Table S4). The analysis of molecular variance 
(AMOVA) showed that the majority of the variation explained was 
within populations (94.6%), with variation among regions explaining 
only 4.69% of the variation (Table S5). Among region differences in 

F I G U R E  2  Coalescent representations of the models tested to evaluate possible patterns of lineage diversification and population 
connectivity in Perna perna. First, WSA was ancestral to ESA. Second, Africa was the most likely source sending migrants to the New World. 
The most likely migration pattern (see Section 3) was that P. perna dispersed from West South Africa to Morocco, and finally from Morocco 
to Brazil (Model 12). The ribbon designates the best model for each type of comparison (see Table 1)
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genetic diversity revealed a significant effect of both site and locus 
as well as a significant interaction effect of site- by- locus for both 
measures (ANOVA: Site p < 0.001, Locus p < 0.001, and interaction 
effect, p < 0.001, Figure S5). Given the significant site effect, we 
ran post hoc tests to determine whether regions differed in genetic 
diversity. Our analysis indicated that BR and MO were not differ-
entiated in genetic diversity (i.e. AR and HE) but both exhibited sig-
nificantly less diversity than ESA and WSA (post hoc Tukey test, AR: 
p < 0.001; HE: p < 0.001; Table S6). Comparisons between South 
African regions (ESA and WSA) exhibited a significant interaction be-
tween site and locus. The analysis of private allelic genotypes reveal 
that the BR cluster exhibited the lowest frequency of private alleles 
(ESA = 0.7; WSA = 1.7; MO = 0.5 and BR = 0.3; Figure S6) indicating 
that it is likely to be the youngest or less adapted population.

Testing the likelihood of different models of migration, allowed us to 
reconstruct a best migration model used by P. perna populations in the 
geographical scale studied. First, WSA was ancestral to ESA (Figure 2; 
Table 1a). Second, Africa was more likely the source of migrants to the 
New World, than vice versa. When comparing more complex models, 
the most likely route of migration was that P. perna dispersed from WSA 
to MO, and finally from MO to BR (Figure 2; Table 1b; Model 12). When 
estimating the time of migration between regions, model estimation 
showed BR descended from MO before 500 years, with the mode 
value of the maximum likelihood estimate at 0.4333/µ, with µ = aver-
age microsatellite mutation rate (Table S7). The 2.5%– 97.5% range of 
posterior probabilities was 0.000– 2.7333. This translates to 2,167 (0– 
5800) years ago, with our conservative estimate of two generations per 
year (Table S8). Although the confidence intervals associated with time 
overlap with zero, and hence cannot rule out human introduction, the 
mode estimate of time predates the human slave trade.

4  |  DISCUSSION

We found that new world populations of P. perna were likely 
founded via a natural geographical expansion from northern Africa 

approximately 2,000 years ago and not as a consequence of the 
human slave trade. We identified significant population structure 
with four primary genetic clusters of P. perna. When we compared 
different demographic models based on a combination of previous 
data and possible migration paths, we found support for an old world 
(i.e. South African) origin of P. perna. Subsequently, P. perna natu-
rally migrated to northern Africa and then crossed the Atlantic to 
the new world, as represented by our model 12 (Figure 2). Overall, 
South American P. perna populations are closely related to North 
African populations and exhibit genetic characteristics indicative of 
a divergent, isolated and established population. In addition, these 
populations feature the genetic signature expected for a native pop-
ulation with a genetic divergence from Africa having occurred over 
500 years ago.

The widespread distribution of P. perna falls into four previously 
described Atlantic provinces: North East Atlantic (NEA); Tropical East 
Atlantic (TEA); Southwest Indian Ocean and Southwest Atlantic (Floeter 
et al., 2008). Although there are high levels of endemism within each 
of these biogeographical provinces, Floeter et al. (2008) conducted 
genus and species level cluster analyses of reef- fishes and found con-
sistent cross- provincial patterns of connectivity. Processes driving 
the trans- Atlantic connectivity between Africa and South America are 
likely influenced by pelagic larval dispersal associated with both the 
Northern Equatorial Current and the Southern Equatorial Current (e.g. 
see study by Freitas et al., 2014 and references therein). Indeed, our 
data suggest that it is likely these currents brought P. perna to South 
America. Within South Africa we found that P. perna were split along 
an east- west gradient. Oceanographic features, together with local 
adaptation, have been identified as key determinants for the main-
tenance of phylogeographic breaks along this specific region (Teske 
et al., 2013). The primary oceanographical influence on the east and 
south coasts of South Africa is the Agulhas Current. This strong, warm 
current flows to the southwest along the eastern seaboard of South 
Africa following the narrow continental shelf (Lutjeharms, 2006). It 
usually lies 10 km offshore, but it can occasionally flow nearer to the 
shore at 0 to 1 km offshore (Goschen & Schumann, 1990). Numerous 

F I G U R E  4  Scatter plots of factorial 
correspondence analysis (FCA) of the 
microsatellite data indicating regional 
genetic diversification in Perna perna. 
Each dot corresponds of one individual. 
The margins of the graphs represent the 
position of each gravity centre. Each of 
the four clusters observed here represent 
the same four different cluster identified 
by STRUCTURE: red (West South Africa), 
yellow (East South Africa), blue (Morocco) 
and green (Brazil)
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direct observations indicate that water currents significantly affect the 
dispersal of the early life stages of fishes and invertebrates (Beckley, 
1995; Groeneveld & Branch, 2002). Although, there are examples 
of dispersal in the direction opposite to the Agulhas Current, mainly 
by actively dispersing species such as rock lobsters (Groeneveld & 
Branch, 2002), sardines (Roberts et al., 2010) and dolphins (Mendez 
et al., 2011), it appears that the passive dispersal of P. perna is unable 
to overcome the current, creating the genetic structure observed be-
tween our ESA and WSA populations.

With regard the connectivity of transatlantic populations, our ge-
netic models identified Brazilian populations as likely originating from 
the same region in Africa where most of Brazilian enslaved people 
originated (Bight of Benin and Central- West Africa; Voyages Database, 
2009), making a good argument for linking South American P. perna to 
the transport of enslaved people. However, if P. perna did not get to 
Brazil via slave trade, then how did they get to Brazil? There are two 
other possible mechanisms that P. perna could have used to cross the 
Atlantic Ocean approximately 2,000 years ago. First, natural dispersal 
is possible given that other species show distributions spanning oceans 
(UNEP- WCMC, 2018). Additionally, natural ocean crossings have been 
documented with aid of extreme natural events, like hurricanes (Carlton 
et al., 2017; Houle, 1998). There are many examples of organism that 
exhibit a post- Gondwana dispersal pattern across the South Atlantic, 
including plants, freshwater fishes, birds, reptiles and mammals (Briggs, 
2003; Censky et al., 1998; Givnish & Renner, 2004; Oliveira et al., 
2009). It is likely that P. perna migration may have followed a simi-
lar system of dispersal. Second, human- aided pre- Columbian Atlantic 
crossing could also explain the genetic patterns observed here. Similar 
to P. perna, Mya arenaria was first documented in sixteenth century 
Europe after Columbus’ voyage, but archeological samples found shells 
predating Columbus by hundreds of years (Petersen et al., 1992). A 
possible explanation for the transport of these clams was that Vikings 
might have carried them back home via incidental transport or as live 
food (Essink et al., 2017). The same possibility may be held by ocean- 
going voyagers, crossing the South Atlantic before Columbus's voyage. 
There is evidence of the possibility that cross- Atlantic rafting can occur 
in as <100 days (Barragán, 2019; Klink, 1985), however, to date no 
such evidence of human pre- Columbian South American crossings ex-
ists (Moreno- Mayar et al., 2018; Taube, 2004).

Our results match those of C14 dated P. perna from archaeolog-
ical sites in Brazil, which suggests shells pre- dated the slave trade 
(Pierri et al., 2016). Why had other studies found conflicting re-
sults? Likely because they did not use as large a sample set as our 
study. Our study benefited from a collaborative effort which used 
samples combined from multiple previous studies (i.e. Cunha et al., 
2014; Oliveira et al., 2017; Weber & Silva, 2008; Zardi et al., 2015). 
Although some of these studies independently found results that 
conflict with this study (Oliveira et al., 2017; Weber & Silva, 2008), 
our study shows that the accuracy of estimating evolutionary his-
tory can be significantly improved by the addition of more taxa and 
by increasing the spatial coverage of sampling.

If P. perna did arrive to the Atlantic coast of South America via the 
human slave trade, we would expect to see either reduced genetic 

diversity (owing to a genetic bottleneck) or high genetic diversity 
(owing to high propagule pressure and/or admixture; Roman & 
Darling, 2007). Regardless, the genetic pattern ought to match back 
to a source region, identifying the origin of the invasion (e.g. Stepien 
et al., 1999). Moreover, we would expect to see reduced private al-
leles, genetic clustering with one or more ‘native’ populations, FST 
reduced between South America and some ‘native’ populations, and 
models showing South America was founded <500 years ago. In this 
study, we found that South American populations do not exhibit the 
genetic signatures associated with an invasion (e.g. neither reduced 
or elevated genetic diversity, nor genetic similarity to a specific na-
tive source population) and colonization likely occurred >500 years 
ago. Indeed, the supporting qualitative evidence (e.g. patterns of 
genetic clustering, and regional estimates of differentiation) pro-
vides further evidence for a natural colonization that pre- dates the 
Atlantic slave trade.

If P. perna is indeed a recent invader (<500 years), it would necessi-
tate at least one of the following three parameters of our demographi-
cal models were wrong: (1) Our model posits a microsatellite mutation 
rate that ranges from 10−6 to 10−2, as is the typical range of mutation 
rates estimated for microsatellites (Table S7; Schlötterer, 2000). But for 
P. perna to have arrived in the past 500 years, the mutation rate would 
need to be at the extreme high end of these values (e.g. =/>2 × 10−3). 
Middle and lower microsatellite mutation rates (e.g. <3 × 10−3, 
Whittaker et al., 2003) generate levels of genetic differentiation too lit-
tle to be associated with the human slave trade. (2) Selection acting on 
the mussels, such as a selective sweep among new world populations, 
would need to drive patterns of diversity to differentiate new world 
populations relative to old world populations. (3) An unusually fast 
generation time (<6 months) despite other studies suggesting 1- year 
generation time for P. perna (Oliveira et al., 2017). However, if mutation 
rates are =/>2 × 10−3 and generation times are <6 months, this would 
enable the generation of the distinct genetic characteristics necessary 
to put the time of invasion in line with the human slave trade as a pos-
sible vector (Table S8). Moreover, the lower 95% confidence interval 
associated with our dating of the split between MO and BR includes 
zero, further providing the possibility of a recent invasion. Although it is 
possible that P. perna is a recent invader, the combined evidence indi-
cates it was likely naturally founded in South America >500 years ago.

Defining P. perna as invasive to the western Atlantic coast of 
South America has numerous political implications. Studies have high-
lighted the importance of P. perna as a natural environmental engineer 
and as a major source of protein for human consumption (Antunes 
& Mesquita, 2018; Freitas & Velastin, 2010). However, in Brazil, the 
Ministry of Environment produced a report listing P. perna as an es-
tablished exotic species (Lopes et al., 2009). Following the status 
update, the state of Paraná produced a decree to regulate and con-
trol production of invasive species (including P. perna; IAP -  Instituto 
Ambiental do Paraná, 2009, 2015). Once P. perna was categorized as 
a possible bioinvader in Brazil, Venezuela acted to list P. perna as a 
cryptogenic exotic species (Pérez et al., 2007). Furthermore, studies 
have discussed strategies for species control (Oliveira, & Machado, 
2009; de Souza et al., 2009), following international guidelines for 
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management and control of invasive species (CBD, 2002). In light 
of the results found in this study, countries in South American may 
re- evaluate regulations seeking to control or classifying P. perna as 
invasive along the coast especially since the Brazilian population of 
P. perna has already started to present characteristics of a genetic 
operational taxonomic unit (OTU). Although our results suggest that 
Brazilian P. perna exhibit a genetic pattern of a naturally dispersed 
population having been founded approximately 2,000 years, it cannot 
be ruled out that Brazilian P. perna populations were introduced by 
humans. Our results conclude that genetic patterns of isolation ob-
served here would not likely develop naturally in 500 years or less 
since settlement. Hence, Brazilian P. perna populations were unlikely 
a consequence of the African slave trade.
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