logo-ri

Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB)

Use este identificador para citar ou linkar para este item: https://www.repositorio.mar.mil.br/handle/ripcmb/846499
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSilva, Fabiano Gabriel da-
dc.contributor.authorRamos, Lucas P.-
dc.contributor.authorPalm, Bruna G.-
dc.contributor.authorMachado, Renato-
dc.date.accessioned2023-12-19T18:05:44Z-
dc.date.available2023-12-19T18:05:44Z-
dc.date.issued2022-
dc.identifier.citationda Silva, F.G.; Ramos, L.P.; Palm, B.G.; Machado, R. Assessment of Machine Learning Techniques for Oil Rig Classification in C-Band SAR Images. Remote Sens. 2022, 14, 2966. https://doi.org/10.3390/rs14132966pt_BR
dc.identifier.urihttps://www.repositorio.mar.mil.br/handle/ripcmb/846499-
dc.descriptionThis article aims at performing maritime target classification in SAR images using machine learning (ML) and deep learning (DL) techniques. In particular, the targets of interest are oil platforms and ships located in the Campos Basin, Brazil. Two convolutional neural networks (CNNs), VGG-16 and VGG-19, were used for attribute extraction. The logistic regression (LR), random forest (RF), support vector machine (SVM), k-nearest neighbours (kNN), decision tree (DT), naive Bayes (NB), neural networks (NET), and AdaBoost (ADBST) schemes were considered for classification. The target classification methods were evaluated using polarimetric images obtained from the C-band synthetic aperture radar (SAR) system Sentinel-1. Classifiers are assessed by the accuracy indicator. The LR, SVM, NET, and stacking results indicate better performance, with accuracy ranging from 84.1% to 85.5%. The Kruskal–Wallis test shows a significant difference with the tested classifier, indicating that some classifiers present different accuracy results. The optimizations provide results with more significant accuracy gains, making them competitive with those shown in the literature. There is no exact combination of methods for SAR image classification that will always guarantee the best accuracy. The optimizations performed in this article were for the specific data set of the Campos Basin, and results may change depending on the data set format and the number of images.pt_BR
dc.language.isoenpt_BR
dc.publisherRemote Senspt_BR
dc.rightsopenAccesspt_BR
dc.subjectMachine learningpt_BR
dc.subjectOil rig classificationpt_BR
dc.subjectSARpt_BR
dc.titleAssessment of Machine Learning Techniques for Oil Rig Classification in C-Band SAR Imagespt_BR
dc.typejournalArticlept_BR
dc.identifier.doihttps://doi.org/10.3390/rs14132966-
dc.subject.dgpmSensoriamento remotopt_BR
Aparece nas coleções:Hidrografia e Navegação: Coleção de Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
3_artigo_remotesensing-14-02966-v2-1.pdf9,76 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.